Thai Journal of Mathematics Volume 17 (2019) Number 1 : 277–281

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Note on Representable Autometrized Algebras

B. V. Subba Rao † , Akella Kanakam ‡ and Phani Yedlapalli §,1

[†]Department of Mathematics, P.G. Courses, P.R. Government College(Auto.) Kakinada, Andhra Pradesh 533005, India e-mail : bvsrao.65@gmail.com

[‡]Department of Mathematics, Ideal Institute of Technology Kakinada, Andhra Pradesh 533005, India e-mail : sreepada1970@gmail.com

[§]Department of Basic Science, Shri Vishnu Engineering College for Women, Vishnupur, Bhimavaram, A.P. 534202, India e-mail : phaniyedlapalli23@gmail.com

Abstract: In this paper, two remarkable results are obtained in a Representable Autometrized Algebra $A = (A, +, \leq, *)$ satisfying the condition [R]:

 $a * (a \land b) + a \land b = a$ for all $a, b \in A$.

Keywords : contraction mapping; lattice ordered autometrized algebra; metric operation; representable autometrized algebra; semiregular autometrized algebra. **2010 Mathematics Subject Classification :** 06F05.

1 Introduction

Representable Autometrized Algebras were introduced and studied by B. V. Subba Rao ([1–3]). In this paper we obtained two results regarding Representable Autometrized Algebra $A = (A, +, \leq, *)$ satisfying the condition $[R] : a * (a \land b) + a \land b = a$ for all $a, b \in A$.

¹Corresponding author.

Copyright C 2019 by the Mathematical Association of Thailand. All rights reserved.

In the first theorem, if there exists $1 \in A$ such that a + (1 * a) = 1 + 1, for all $a \in A$, then we proved that it is unique.

In the second theorem, if $1 \in A$ such that a + (1 * a) = 1 + 1, for all $a \in A$, then we proved the following.

- (1) If A has least element say α , then $\alpha = 0$ and
- (2) If A has greatest element say β , then $\beta = 1$.

2 Lattice Ordered Autometrized Algebra and Representable Autometrized Algebra

Here we recall the definition of (i) Lattice Ordered Autometrized algebra (Swamy [4, 5]), (ii) Representable Autometrized Algebra, introduced and studied by Subba Rao ([1–3]).

Definition 2.1. A system $A = (A, +, \leq, *)$ is called a "Lattice Ordered Autometrized Algebra" if and only if

- (i) $(A, +, \leq)$ is a commutative lattice ordered semigroup with '0', and
- (ii) * is a metric operation on A.

i.e., * is a mapping from $A\times A$ into A satisfying the formal properties of distance, namely,

- (M_1) $a * b \ge 0$ for all a, b in A, equality, if and only if a = b,
- (M_2) a * b = b * a for all a, b in A, and
- (M_3) $a * b \le a * c + c * b$ for all a, b, c in A.

Definition 2.2. A lattice ordered autometrized algebra $A = (A, +, \leq, *)$ is called a "Representable Autometrized Algebra", if and only if, A satisfies the following conditions:

- $\begin{array}{ll} (L_1) & A=(A,+,\leq,*) \text{ is a semiregular autometrized algebra,} \\ & \text{ i.e., } a\in A \text{ and } a\geq 0 \text{ implies } a*0=a, \text{ and} \end{array}$
- (L₂) For every a in A all the mapping $x \mapsto a + x$, $x \mapsto a \lor x$, $x \mapsto a \land x$ and $x \mapsto a * x$ are contractions (i.e., if θ denotes any one of the operations $+, \lor, \land$ and *, then, for each a in A, $(a\theta x) * (a\theta y) \le x * y$ for all x, y in A).

Theorem 2.3. Let $A = (A, +, \leq, *)$ be a Representable Autometrized Algebra satisfying the condition [R] $a * (a \land b) + a \land b = a$, for all $a, b \in A$. If there exists $1 \in A \ni a + (1 * a) = 1 + 1 \forall a \in A$, then, it is unique.

Proof. Let $A = (A, +, \leq, *)$ be a Representable Autometrized Algebra satisfying (R) mentioned in the theorem. Let $1 \in A$ and $1^1 \in A$ such that

$$a + (1 * a) = 1 + 1$$
 for all $a \in A$ (2.1)

278

A Note on Representable Autometrized Algebras

and

$$a + (1^1 * a) = 1^1 + 1^1$$
 for all $a \in A$. (2.2)

Since $1 \in A$, by (2.1) we have

1 + (1 * 1) = 1 + 1,

i.e.,

$$1 + 0 = 1 + 1.$$

So,

$$1 = 1 + 1. \tag{2.3}$$

In a similar manner since $1^1 \in A$, from(2.2), we get

$$1^1 = 1^1 + 1^1. (2.4)$$

Putting $a = 1^1$ in (2.1), we get

$$1^{1} + (1 * 1^{1}) = 1 + 1 = 1$$
 (from(2.3)). (2.5)

Also putting a = 1 in (2.2), we get

$$1 + (1^{1} * 1) = 1^{1} + 1^{1} = 1^{1} \text{ (from(2.4))}.$$
(2.6)

Therefore we get

$$\begin{array}{rl} 1+1^1 &=1^1+1 \\ &=1^1+[1^1+\left(1*1^1\right)] \\ &=\left(1^1+1^1\right)+\left(1*1^1\right) \\ &=1^1+\left(1*1^1\right) \\ &=1. \end{array}$$

Again from (2.6), we get

$$1 + 1^{1} = 1 + [1 + (1^{1} * 1)]$$

= 1 + 1 + (1^{1} * 1)
= 1 + (1 * 1^{1})
= 1^{1}, (from (2.6) since 1 * 1^{1} = 1^{1} * 1)

 $\Rightarrow 1 = 1^1.$

Thus, there exists a unique $1 \in A$ such that a + (1 * a) = 1 + 1 for all $a \in A$, if it exists.

Theorem 2.4. Let $A = (A, +, \leq, *)$ be a Representable Autometrized Algebra satisfying the condition [R] $a * (a \land b) + a \land b = a$, for all $a, b \in A$. If there exists $1 \in A \ni a + (1 * a) = 1 + 1 \forall a \in A$, then, we have

- (i) If A has least element α then $\alpha = 0$,
- (ii) If A has greatest element β then $\beta = 1$.

279

Proof. Let $A = (A, +, \leq, *)$ be Representable Autometrized Algebra satisfying the condition (R) mentioned in the theorem.

Let
$$1 \in A$$
 such that $a + (1 * a) = 1 + 1 \quad \forall a \in A.$ (2.7)

Therefore, by Theorem 2.3 above, 1 is unique.

(i) Assume that A has a least element α . Therefore $\alpha \leq x \ \forall x \in A$. In particular $\alpha \leq 0$. Therefore

$$0 = (0 * \alpha) + \alpha \quad \text{by } (R)$$

= $\alpha + (0 * \alpha)$. (2.8)

We have $2\alpha \leq \alpha$ (since $\alpha \leq 0$) but $\alpha \leq 2\alpha$ (since α is the least element of A). Therefore $2\alpha = \alpha$. By induction, it follows that $n\alpha = \alpha$ for every positive integer n. Therefore

$$\begin{aligned} \alpha * 0 &= (\alpha + 0) * 0 \\ &= [\alpha + (\alpha + (0 * \alpha))] * [\alpha + (0 * \alpha)] \text{ from } (2.8) \\ &= [2\alpha + (0 * \alpha)] * [\alpha + (0 * \alpha)] \\ &\leq 2\alpha * \alpha \quad (\text{since } x \mapsto a + x \text{ is a contraction, } \forall a \in A) \\ &= 0 \quad (\text{since } 2\alpha = \alpha), \end{aligned}$$

i.e., $\alpha * 0 \leq 0$, but $\alpha * 0 \geq 0$, therefore $\alpha * 0 = 0$. Hence $\alpha = 0$. Thus, if α is the least element of A, then it must be 0, the additive identity of A.

(ii) Assume that A has a greatest element, β , say. So, $x \leq \beta \forall x \in A$. In particular, we have $1 \leq \beta$ and $0 \leq \beta$. Therefore, by (R), we have $(\beta * 1) + 1 = \beta$, and by (2.7), we have $\beta + (1 * \beta) = 1 + 1$. By (2.7) we also have 1 + (1 * 1) = 1 + 1 $\Rightarrow 1 + 0 = 1 + 1$ $\Rightarrow 1 = 1 + 1$. Therefore $\beta + (1 * \beta) = 1$. Since $0 \leq \beta$ we have $\beta \leq 2\beta$, but $\beta \geq 2\beta$ (since β is the greatest element in A). Therefore $2\beta = \beta$.

280

A Note on Representable Autometrized Algebras

By induction, it follows that $n\beta = \beta$ for every positive integer 'n'. Now using the properties of contraction mappings we have

$$0 = \beta * \beta \ge (\beta * 1) * (\beta * 1) \ge [(\beta * 1) + \beta] * [(\beta * 1) + \beta] \ge 1 * [(\beta * 1) + \beta] \ge (1 + 1) * [(\beta * 1) + 1 + \beta] = 1 * (\beta + \beta) = 1 * 2\beta.$$

So, $2\beta * 1 \leq 0$. But $2\beta * 1 \geq 0$, therefore $2\beta * 1 = 0$ $\Rightarrow 2\beta = 1$ $\Rightarrow \beta = 1$ (since $2\beta = \beta$). Thus, if there exists a greatest element β in A, then $\beta = 1$.

Acknowledgement : We are very much indebted to Dr. K.L.N. Swamy, Emeritus Professor of Mathematics and Retired Rector of Andhra University, Waltair, A.P.-INDIA, for his continuous inspiring encouragement throughout the preparation of this paper.

References

- B.V. Subba Rao, Lattice ordered autometrized algebras, Math Seminar Notes 6 (1978) 429-448.
- [2] B.V. Subba Rao, Lattice ordered autometrized algebras II, Math Seminar Notes 7 (1979) 193-210.
- [3] B.V. Subba Rao, Lattice ordered autometrized algebras III, Math Seminar Notes 7 (1979) 441-455.
- [4] K.L.N. Swamy, Dually residuated lattice ordered semigroups, Math. Annalen 159 (1965) 105-114.
- [5] K.L.N. Swamy, Dually residuated lattice ordered semigroups II, Math. Annalen 160 (1965) 64-71.

(Received 12 November 2014) (Accepted 2 June 2016)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th