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Predictability in Atmospheric Model

P. Sangapate and D. Sukawat

Abstract: Atmosphere is a dynamical system, which is a system that
changes over time. An interesting feature of the dynamical system is pre-
dictability. Predictability is an ability to make an accurate forecast, which
depends on degree of freedom and uncertainty in the initial condition. The
shallow water model is applied for the atmosphere. It is particularly well
suited and often used to test numerical techniques for weather prediction.
In this research, predictability of the spectral shallow water model is inves-
tigated by using the Lyapunov exponent, maximum Lyapunov exponent,
and finite size Lyapunov exponent, which are the measures of the rate of
growth of error in a dynamical system.

Keywords: Shallow water model, Spectral method, Lyapunov exponent,
Predictability time.

1 Introduction

Fluid flow is a process that can be found at any place and any time. Exam-
ples are the flows of water in rivers, lakes, and oceans. Another important
example is atmospheric flow which causes winds. The complete set of equa-
tions that describes fluid flow, the Navier-Stokes equations, is very complex
which makes it impractical to apply in the real world. Thus, it is necessary
to simplify the equations to applicable forms. Shallow water equations, a
simplified version of the Navier-Stokes equations, are widely used in many
fields including atmospheric and oceanographic studies. This results in
spherical shallow water equations, which is important for atmospheric and
oceanic numerical model development and applications. For examples, it is
a basic model for atmospheric prediction, climate change study and pollu-
tion dispersion in the atmosphere. Although simplified from the full set of
equations, the shallow water equations still maintain an important prop-
erty, nonlinear behavior. As a consequence, the shallow water equations
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can sometimes behave in a chaotic manner that is unpredictable. Pre-
dictability is ability to make an accurate forecast, which depends on its
degree of freedom and uncertainty in the initial condition. In this research,
predictability of the spectral shallow water model is investigated using Lya-
punov exponent to measure rate of divergence of nearby trajectories.

The outline of the paper is organized as follows: Section 2 introduces
the spectral shallow water model, which is tested by standard test cases in
Section 3. Sections 4 investigate predictability of the spectral shallow wa-
ter model by using the Lyapunov exponent, maximum Lyapunov exponent,
and finite size Lyapunov exponent. Section 5 is the conclusions.

2 Model

The experiments in this research are performed using a spectral transform
shallow water equations model, STSWM (CHAMMP, 2005) with 2 standard
test cases of (Williamson, 1992).

2.1 Spectral Shallow Water Model

The shallow water model is the simplest form of the equation of motion
that can describes the horizontal structure, hydrostatic homogenous, and
incompressible flow. The spectral shallow water model is refered to as the
momentum equation and equation of continuity in vector form

dV
dt

= −fk×V−∇Φ (2.1)

and
dΦ
dt

= −Φ∇ ·V (2.2)

where V ≡ iu + jv is the horizontal vector velocity,
Φ ≡gh is the free surface geopotential,
h is the free surface height,
g is the acceleration of gravity,
f≡ 2Ω sinϕ is the Coriolis parameter,
ϕ is latitude,
Ω is the angular velocity of the earth.

The derivative is given by

d

dt
() =

∂

∂t
() + (V · ∇)() (2.3)
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and the ∇ operator is defined in spherical coordinates as

∇() ≡ i
a cosϕ

∂

∂ϕ
() + (V · ∇)() (2.4)

where λ denotes longitude, a is the radius of the earth.
The spectral method is approximated in term of the Fourier series, which is
one of the most powerful solution techniques and has no truncation error.
The spectral form of the shallow water model are

−n(n+1)∂ψm,n

∂t = −1
2

∫ 0
−1[

im
1−µ2 AmPm,n− ∂

∂µBmPm,n]dµ+2Ω[n(n−1)Dmχm,n−1+

(n + 1)(n + 2)Dm,n+1χm,n+1 − Vm,n (2.5)

−n(n+1)∂χm,n

∂t = −1
2

∫ 0
−1[

im
1−µ2 BmPm,n+Am

∂
∂µPm,n]dσ−2Ω[n(n−1)Dmψm,n−1+

(n + 1)(n + 2)Dm,n+1ψm,n+1 + Um,n + n(n + 1)(Em,n + Φm,n) (2.6)

∂Φm,n

∂t
= −1

2

∫ 0

−1
[

im

1− µ2
CmPm,n −Dm

∂

∂µ
Pm,n]dσ + n(n + 1)Φχm,n (2.7)

where ψm,n,χm,n,and Φm,n are streamfunction, divergent, and geopotential
height and Am,Bm,Cm,Dm,Em,Pm are coefficients.

3 Measurement of Predictability

Chaotic phenomena are common in nonlinear dynamic systems. They are
deterministic and very sensitive to initial conditions. A chaotic system is
mainly identified by testing Lyapunov exponents. There are many mea-
surements of predictability. In this research, the following measurements
are applied.

3.1 Lyapunov Exponent

Lyapunov exponents (LE) is the rate of divergence or convergence of two
nearby initial points of a dynamical system. A positive Lyapunov expo-
nent measures the average exponential divergence of two nearby trajectories
whereas a negative Lyapunov exponent measures the average exponential
convergence of two nearby trajectories.
The Lyapunov exponent is given by

λ =
1

∆t
ln

dt

d0
(3.1)
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where d0 is initial distance, dt is growth of the difference between two
nearby trajectories, and ∆t is time period. The exponent can be used to
identify whether the motion is periodic or chaotic by consider the Lyapunov
exponents λ : if λ < 0 , then the motion is periodic and if λ > 0 , then the
motion is chaotic (Jing-qing, 2004).

3.2 Maximum Lyapunov Exponent

The maximum Lyapunov exponent (MLE) is the average exponential sep-
aration of two infinitesimally close trajectories for a long time in the phase
space and is given by

λ = lim
t→∞

1
t− t0

ln
d(t)
d0

(3.2)

where d(t) is distance between the trajectories at time t. The maximum
Lyapunov exponent is based on the infinitesimal distance (Murison, 1995).

3.3 Finite Size Lyapunov Exponent

Generalize the maximum Lyapunov exponent to the average exponential
separation of two trajectories at finite error δ. The finite size Lyapunov
exponent (FSLE) is the average exponential separation of two trajectories
at finite errors in the phase space and is given by

λ(δn) =
1

〈τ(δn, r)〉e ln r (3.3)

where 〈τ(δn, r)〉e is the doubling time, taken for a perturbation to grow
from an initial size δn to a rδn, average over many realizations, and r is
a factor which in this case is chosen to be r = 2 or r =

√
2. In the limit

of infinitesimal separation between trajectories, the finite size Lyapunov
exponent tends to the maximum Lyapunov exponent (Aurell, 1997).

3.4 Maximum Predictable Time Scale

Predictability refers to the ability to make predictions of future events.
Since a positive Lyapunov exponent of time series indicates divergent tra-
jectories, so that the time series cannot be predicted in the long-term. The
maximum predictable time scale can be estimated using the relation with
the maximum Lyapunov exponent

Tp =
1

λmax
(3.4)
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Therefore Tp is defined as an index for measuring the predictability of
chaotic systems. The range of the maximum predictable time scale Tp is
insensitive to the variations of prediction step length, while outside the
range, the systematic error can be greatly magnified (Jing-qing, 2004).

4 Experiment Cases

In this research, the spectral transform shallow water model, STSWM,
(CHAMMP, 2005) is run on a computer with Linux operating system. The
test cases in the standard test set from Williamson et al. are implemented
in the STSWM.
Williamson’s First Case: Advection of Cosine Bell over the Pole. First case
test is the advective component of the shallow water equations,

∂

∂t
(h) +

u

a cos θ

∂

∂λ
(h) +

v

a

∂

∂θ
(h) +

h

a cos θ

[
∂u

∂λ
+

∂(v cos θ)
∂θ

]
= 0 (4.1)

The solid body rotation is given by

u = u0(cos θ cosα + sin θ cosλ sinα) (4.2)

v = −u0 sinλ sinα (4.3)

where u0 ≈ 40 m/s, is the advecting wind velocity, a = 6.37122×106m (the
mean radius of the earth) and α is the angle between the axis of solid body
rotation and the polar axis of the spherical coordinate system, θ is latitude
and λ is longitude. The initial cosine bell test pattern to be advected is
given by

h(λ, θ) =
{

(h0
2 )(1 + cos πr

R )) ; r < R
0 ; r ≥ R

(4.4)

where h0 = 1000 m, R = a
3 , r is the great circle distance between (λ, θ) and

the center, (λc, θc) =
(

3π
2 , 0

)
.

Williamson’s Sixth Case: Rossby-Haurwitz waves. The initial streamfunc-
tion and initial height field are given by

ψ = −a2ω sin θ + a2K cosR θ sin θ cosRλ (4.5)

gh = gh0 + a2A(θ) + a2B(θ) cos Rλ + a2C(θ) cos 2Rλ (4.6)
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where ω, K, R, A, B,and C are constants.

Experiments in this study are summarized in Table 1.

Table 1. Parameters for the experiments

Experiment truncation α ∆t

case1-1 T42 0.0 1200
case1-2 T42 0.05 1200
case1-3 T42 1.52 1200
case1-4 T42 1.57 1200
case1-5 T42 1.52 600
case1-6 T63 1.52 900
case1-7 T106 1.52 600
case1-8 T170 1.52 450
case6-1 T42 1.52 1200
case6-2 T63 1.52 1200

5 Results

From the experiments, the initial height fields of the spectral shallow water
model are shown in Figure 1.
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Figure 1: (a) Initial cosine bell and (b) Initial Rossby-Haurwitz waves.
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(a) (b)

(c) (d)

Figure 2: Time series of Lyapunov exponent for advection of cosine bell (a)
T=42, α=1.52, ∆t = 600,(b) T=63, α=1.52, ∆t = 900,(c) T=106, α=1.52,
∆t = 600, and (d) T=170, α=1.52, ∆t = 450.
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Figures 2-3 show time series of Lyapunov exponent as a function of
geopotential height and longitude velocity component in different trunca-
tions T42, T63, T106, and T170.

(a) (b)

Figure 3: Time series of Lyapunov exponent for Rossby Haurwitz waves
(a) T=42, α=1.52, ∆t = 1200,(b) T=63, α=1.52, ∆t = 1200.
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Figure 4: Finite size Lyapunov exponent as a function of error for Case 1-1
- Case 1-8.
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(g) (h)

Figure 5: Predictability time based on MLE and FSLE for Case 1-1 - Case
1-8.

Figures 2(a)-2(d), the earier motions are sensitive to initial condition
and then the motions are stable in the later time. For T106 and T170 in
Figures 2(c)-2(d), the motion is more stable than T42 and T163 in Figures
2(a)-2(b). A positive Lyapunov exponent of time series indicates dissipative
trajectories periodicity, so that the time series cannot be predicted in the
long time (Jing-qing, 2004). The maximum predictable time scale Tp for
cases T42, T63, T106, and T170 are 14.8628, 1.1338, 5.5556, and 2.5253
hrs, respectively.

Figures 3(a)-3(b), the earier motions are insensitive to initial condition
and then the motions are unstable in the later time. For T63 in Figure
3(b), the motion is more stable than T42 in Figure 3(a). For a positive
Lyapunov exponent, the motion cannot be predicted in the long time. The
maximum predictable time scale Tp for cases T42 and T63 are 0.1235 and
9.8722 hrs, respectively.

Figure 4 shows the plot of finite size Lyapunov exponent λ(δ) as a
function of an error δ for Cases 1-1 - 1-8. The λ(δ) of α = 1.57 is more
larger than α = 0.0, α = 0.05, and α = 1.52, respectively. The λ(δ) of
T170 is more smaller than T42, T63, and T106, respectively. For small
error, λ(δ) tends to λmax. For larger errors, λ(δ) decreases with δ and the
analysis predicts an enhancement of predictability time.

Figure 5 shows the predictability time Tp based on FSLE and MLE as
a function of the tolerance ∆ for an initial error of 0.1. For figures 5(a)-
5(h), the FSLE gives longer predictability time than MLE, which is an
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enhancement of predictability for a range of prediction error tolerances ∆
is observed. For α = 1.57 in Figure 5(d), the predictability time is smaller
than α = 0.0, α = 0.05, and α = 1.52 in Figures 5(a)-5(c). For T170 in
Figure 5(h), the predictability time is larger than most of T42, T63, and
T106 in Figures 5(e)-5(g).

6 Conclusions

In this research, numerical experiments of the shallow water equation model
STSWM are performed and predictability time of 2 standard test cases
(Williamson, 1992) are investigated. Results from the experiment show
that, the predictability time of spectral shallow water model is relates to
Lyapunov exponent and also depend on model resolution and angular ve-
locity. For high resolution and low angular velocity, the maximum pre-
dictability time scale of the spectral shallow water model is more longer
than that of the low resolution and high angular velocity.
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