Thai Journal of Mathematics Volume 17 (2019) Number 1: 229-237
http://thaijmath.in.cmu.ac.th

A Note on Multipliers of Weighted Lebesgue Spaces

Birsen Sağır ${ }^{\dagger, 1}$ and Cenap Duyar ${ }^{\ddagger}$
${ }^{\dagger}$ Ondakuz Mayıs University, Department of Mathematics, Turkey e-mail : bduyar@omu.edu.tr
${ }^{\ddagger}$ Ondokuz Mayıs University, Department of Mathematics, Turkey e-mail : cenapd@omu.edu.tr

Abstract

In this paper, it is solved that the spaces $M\left(L_{w}^{p^{\prime}}(G), L_{w^{\prime}}^{\infty}(G)\right)$ and $L_{w}^{P}(G)$ can be topologically and algebraically identified, where $1 \leq p^{\prime}<$ $\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$ and w a Beurling weight on a locally compact Abelian group G. Also it is proved that the spaces $M\left(L_{w}^{1} \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$ can be identified with the weighted spaces of bounded measures $M_{w}(G)$.

Keywords : multipliers; weighted Lebesgue space.
2010 Mathematics Subject Classification : 43A15.

1 Introduction

Throughout this paper, G is a locally compact Abelian group and $d x$ is a Haar measure on G. The unit of G shall be denoted by e. The translation by $a \in G$ of a measurable function f is defined by the formula $L_{a} f(x)=f(x-a)$. We denote by $C_{0}(G)$ the space of continuous functions vanishing at infinity and by $C_{c}(G)$ the space of continuous compactly supported functions. If $1 \leq p<\infty$, then $L^{p}(G)$ shall denote the space of functions f such that $|f|^{p}$ is integrable $[1-3$. A Beurling weight on G is a measurable locally bounded function w satisfying, for each $x, y \in G$, the following two properties: $w(x) \geq 1$ and $w(x+y) \leq w(x) w(y)$. From this definition of w, it is deduced easily that $w d x$ is a positive measure on

[^0]G. We denote by $L_{w}^{p}(G), 1 \leq p<\infty$, the Banach spaces of equivalence classes of complex-valued measurable functions on G under the system of norm
$$
\|f\|_{p, w}=\left(\int_{G}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}<\infty .
$$

We represent by $L_{w}^{\infty}(G)$ the Banach space of all measurable functions f on G such that

$$
\|f\|_{\infty, w}=\underset{x \in G}{\operatorname{esssup}}\{|f(x)| w(x)\} .
$$

We express by l_{w}^{p} the discrete version of $L_{w}^{p}(G)$. Again we have the space

$$
M_{w}(G)=\left\{\mu: \mu \text { is a bounded measure and }\|\mu\|_{w}=\int w|\mu|<\infty\right\} .
$$

All these spaces are Banach spaces. One can find more about these spaces in $2 / 6$.
Let E and F be two Banach spaces of measurable functions and assume that E and F are stable by translations. A multiplier on E to F is a bounded linear operator commuting with all translations. We denote by $M(E, F)$ the space of all multipliers on E to F. It is known that a translation operator is an isometry on $L^{p}(G)$, while it is not in general an isometry on $L_{w}^{p}(G)$. This fact is closely related to multiplier problems for $\left.L_{w}^{p}(G), ~ 6-9\right]$.

The conjugate space of $L_{w}^{p}(G)$ is the $L_{w}^{p^{\prime}}(G)$, where $w^{\prime}=w^{1-p^{\prime}}$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=$ 1 or $p^{\prime}=\frac{p}{p-1}$.

It can be easily seen that $L_{w}^{p}(G)$ is a reflexive Banach space. $L_{w}^{1}(G)$ is a Banach algebra under convolution,

$$
L_{w}^{p} * L_{w}^{1} \subset L_{w}^{p},
$$

and by $[7,9]$ there exists the inequality

$$
\|g * f\|_{p, w} \leq\|g\|_{1, w}\|f\|_{p, w} .
$$

2 Main Results

2.1 Multipliers Space of $\left(L_{w^{\prime}}^{p^{\prime}}(G), L_{w^{\prime}}^{\infty}(G)\right), p^{\prime}>1$

In this section, we will give the space of multipliers acting on some Beurling weighted spaces. We denote by $M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ the space of all multipliers of $\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ and $\|T\|_{p, q, w}$ the operator norm of each $T \in M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$. Furthermore we denote by $M\left(L_{w}^{1}(G)\right)$ the space of all multipliers on $L_{w}^{1}(G)$ and $\|T\|_{1, w}$ the operator norm of each $T \in M\left(L_{w}^{1}(G)\right)$. Denote $\langle f, g\rangle_{w}=$ $\int_{G} f(t) \frac{1, w}{g(t)} w(t) d t$ for $f \in L_{w}^{p}(G), g \in L_{w}^{q}(G)$. If $\mu \in M_{w}(G)$, then we write $\|\mu\|_{w}=\int w|\mu|$ (see $[3$ for the definition of $|\mu|)$. Before starting to define multipliers spaces, we will give the following definition and theorems, whose proofs can be found in 5 .

Definition 2.1. Let $T: L_{w}^{p}(G) \rightarrow L_{w}^{q}(G)$ be a bounded linear transformation, where $1 \leq p, q \leq \infty . T$ is said to be a multiplier of $\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ if T commutes with every translation operator.

Theorem 2.2. Let $T: L_{w}^{1}(G) \rightarrow L_{w}^{p}(G)$ be a bounded linear transformation with $p>1$. Then
(i) $T \in M\left(L_{w}^{1}(G), L_{w}^{p}(G)\right)$ if and only if there exists a unique function $g \in$ $L_{w}^{p}(G)$ such that $T=T_{g}: f \rightarrow g * f, f \in L_{w}^{1}(G)$.
(ii) There exists a constant $c \geq 1$ dependent only on the weight function w such that

$$
\|T g\|_{1, p, w} \leq\|g\|_{p, w} \leq c\|T g\|_{1, p, w} .
$$

(iii) $M\left(L_{w}^{1}(G), L_{w}^{p}(G)\right)$ and $L_{w}^{p}(G)$ are topologically and algebraically identified by the mapping of part (i).

Theorem 2.3. Assume that the weight w is continuous. Let T be a bounded linear operator on $L_{w}^{1}(G)$. Then
(i) $T \in M\left(L_{w}^{1}(G)\right)$ if and only if there exists a unique measure μ such that $T=T_{\mu}: f \rightarrow \mu * f, f \in L_{w}^{1}(G)$.
(ii) $w(e)\|\mu\|_{w}=\left\|T_{\mu}\right\|$.
(iii) $M\left(L_{w}^{1}(G)\right)$ and $M_{w}(G)$ are topologically and algebraically identified.

The proofs can be found (5).
A characterization of the elements in $M\left(L_{w}^{p^{\prime}}(G), L_{w}^{\infty}(G)\right)$ can be readily obtained by examing the adjoints of these multipliers in the light of the results of the previous two theorem.

Lemma 2.4. Let G be a noncompact, locally compact Abelian group. Then
(i) If $f \in L_{w}^{p}(G), 1 \leq p<\infty$, then $\lim _{s \rightarrow \infty}\left\|f+L_{s} f\right\|_{p, w}=2^{\frac{1}{p}}\|f\|_{p, w}$,
(ii) If $f \in C_{0, w^{\prime}}(G)$, then $\lim _{s \rightarrow \infty}\left\|f+L_{s} f\right\|_{\infty, w}=\|f\|_{\infty, w}$.

Proof. Let f be in $L_{w}^{p}(G)$. Then $f w^{\frac{1}{p}} \in L_{p}$ and since $\overline{C_{c}(G)}=L^{p}(G)$, for all $\varepsilon>0$, there exists $g_{\varepsilon} \in C_{c}(G)$ such that

$$
\begin{equation*}
\left\|f w^{\frac{1}{p}}-g_{\varepsilon}\right\|_{p}<\frac{\varepsilon}{2+2^{\frac{1}{p}}} . \tag{1}
\end{equation*}
$$

If $\sup p g=K$ is said, then since K is compact, so is $K K^{-1}$. Thus using that $C_{c}(G)$ is translation invariant, we have $L_{s} g \in C_{c}(G)$ and hence $K \cap K_{s}=\varnothing$, where $\sup p L_{s} g=s K=K_{s}$ for $s \notin K K^{-1}$. Indeed if $K \cap K_{s} \neq \varnothing$, then there exists a $t \in K \cap K_{s}$ such that $t=k_{1}$ and $t=s k_{2}$ with $k_{1}, k_{2} \in K$. Thus $k_{1}=s k_{2}$
and hence $s=k_{1} k_{2}^{-1}$, and we have $s \in K K^{-1}$ as a contradiction by choosing of s. It is again known that

$$
\begin{equation*}
\left\|g+L_{s} g\right\|_{p}=2^{\frac{1}{p}}\|g\|_{p} \tag{2}
\end{equation*}
$$

for all $g \in C_{c}(G) 10$. Using that the space $L^{p}(G)$ is translation invariant and (1), (2), we obtain

$$
\begin{aligned}
\left|\left\|f w^{\frac{1}{p}}+L_{s}\left(f w^{\frac{1}{p}}\right)\right\|_{p}-\left\|g+L_{s} g\right\|_{p}\right| & \leq\left\|f w^{\frac{1}{p}}+L_{s}\left(f w^{\frac{1}{p}}\right)-g-L_{s} g\right\|_{p} \\
& \leq\left\|f w^{\frac{1}{p}}-g\right\|_{p}+\left\|L_{s}\left(f w^{\frac{1}{p}}-g\right)\right\|_{p} \\
& =2\left\|f w^{\frac{1}{p}}-g\right\|_{p}<2 \frac{\varepsilon}{2+2^{\frac{1}{p}}},
\end{aligned}
$$

and for $s \notin K K^{-1}$, using this last inequality and (2)

$$
\begin{aligned}
\left|\left\|f w^{\frac{1}{p}}+L_{s}\left(f w^{\frac{1}{p}}\right)\right\|_{p}-2^{\frac{1}{p}}\left\|f w^{\frac{1}{p}}\right\|_{p}\right| \leq & \left|\left\|f w^{\frac{1}{p}}+L_{s}\left(f w^{\frac{1}{p}}\right)\right\|_{p}-\left\|g+L_{s} g\right\|_{p}\right| \\
& +\left|\left\|g+L_{s} g\right\|_{p}-2^{\frac{1}{p}}\|g\|_{p}\right| \\
& +\left|2^{\frac{1}{p}}\|g\|_{p}-2^{\frac{1}{p}}\left\|f w^{\frac{1}{p}}\right\|_{p}\right| \\
< & 2 \frac{\varepsilon}{2+2^{\frac{1}{p}}}+2^{\frac{1}{p}}\left\|f w^{\frac{1}{p}}-g\right\|_{p} \\
< & 2 \frac{\varepsilon}{2+2^{\frac{1}{p}}}+2^{\frac{1}{p}} \frac{\varepsilon}{2+2^{\frac{1}{p}}}=\varepsilon .
\end{aligned}
$$

Lemma 2.5. If $f \in L_{w}^{p}(G)$ and $g \in L_{w^{\prime}}^{p^{\prime}}(G)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $w^{\prime}=w^{1-p^{\prime}}$, then

$$
\begin{equation*}
\|f * g\|_{\infty, w^{\prime}} \leq\|f\|_{p, w}\|g\|_{p^{\prime}, w^{\prime}} \tag{3}
\end{equation*}
$$

Proof. If we show that

$$
\begin{equation*}
\|f * g\|_{\infty, w^{\prime}} \leq\left\||f| w^{\frac{1}{p}} *|g|\left(w^{\prime}\right)^{\frac{1}{p}}\right\|_{\infty} \tag{4}
\end{equation*}
$$

then one can easily seen (3). Let $x \in G$ be abritrary and fixed. Then, for $y \in G$
we have

$$
\begin{aligned}
\left|f * g(x) w^{\prime}(x)\right| & =\left|\int_{G} f(x-y) w^{\frac{1}{p}}(x-y) \frac{w^{1-p^{\prime}(x)}}{w^{\frac{1}{p}}(x-y)} g(y) d y\right| \\
& \leq \int_{G}\left(\left(|f| w^{\frac{1}{p}}\right)(x-y) w^{1-p^{\prime}(x)} \frac{w^{\frac{1}{p}}(x)}{w^{\frac{1}{p}}(y)}|g|(y)\right) d y \\
& =\int_{G}\left(\left(|f| w^{\frac{1}{p}}\right)(x-y)|g|(y) w^{-\frac{1}{p}}(y) w^{1-p^{\prime}}(x) w^{\frac{1}{p}}(x)\right) d y \\
& \left.=\int_{G}\left(\left(|f| w^{\frac{1}{p}}\right)(x-y)\left(\left(|g| w^{-\frac{1}{p}}\right)(y)\right) w^{2-\left(p^{\prime}+\frac{1}{p}\right.}\right)\right) d y \\
& \leq \int_{G}\left(\left(|f| w^{\frac{1}{p}}\right)(x-y)\left(\left(|g| w^{-\frac{1}{p}}\right)(y)\right)\right) d y \\
& =\int_{G}\left(\left(|f| w^{\frac{1}{p}}\right) *\left(|g| w^{-\frac{1}{p}}\right)\right) d y .
\end{aligned}
$$

This satisfies (4). Finally (3) can be easily obtained from (4).
Theorem 2.6. Let $T: L_{w^{\prime}}^{p^{\prime}}(G) \rightarrow L_{w^{\prime}}^{\infty}(G)$ be a bounded linear transformation, where $p>1, \frac{1}{p}+\frac{1}{p^{\prime}}=1, w$ is a Beurling weight function and $w^{\prime}=w^{1-p^{\prime}}$. Then
(a) $T: L_{w}^{p}(G) \rightarrow L_{w^{\prime}}^{\infty}(G)$ if and only if there exists a unique function $g \in$ $L_{w}^{p}(G)$ such that $T=T_{g}: f \rightarrow g * f, f \in L_{w}^{p^{\prime}}(G)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $w^{\prime}=w^{1-p^{\prime}}$,
(b) There exists a constant $c \geq 1$ dependent only on the weight function w such that

$$
\left\|T_{g}\right\|_{p^{\prime}, \infty, w^{\prime}} \leq\|g\|_{p, w} \leq c\left\|T_{g}\right\|_{p^{\prime}, \infty, w^{\prime}},
$$

(c) $M\left(L_{w^{\prime}}^{p^{\prime}}(G), L_{w^{\prime}}^{\infty}(G)\right)$ and $L_{w}^{p}(G)$ are topologically and algeabrically identified by the mapping of part (a).

Proof. If $g \in L_{w}^{p}(G)$ and we set $T f=g * f$ for each $f \in L_{w}^{p^{\prime}}(G)$, then by using Lemma 2.2 we obtain $\left\|_{g} * f\right\|_{\infty, w^{\prime}} \leq\|g\|_{p, w}\|f\|_{p^{\prime}, w^{\prime}}$. Therefore $T \in M\left(L_{w^{\prime}}^{p^{\prime}}(G)\right.$, $\left.L_{w^{\prime}}^{\infty}(G)\right)$ and

$$
\begin{equation*}
\|T\|_{p^{\prime}, \infty, w^{\prime}} \leq\|g\|_{p, w} . \tag{5}
\end{equation*}
$$

Conversely suppose $T \in M\left(L_{w}^{p^{\prime}}(G), L_{w^{\prime}}^{\infty}(G)\right)$ and denote by T^{*} the adjoint of T, that is, the continuous linear transformation from $L_{w^{\prime}}^{\infty}(G)^{*}$ to $L_{w}^{p^{\prime}}(G)^{*}=$ $L_{w}^{p}(G), \frac{1}{p}+\frac{1}{p^{\prime}}=1, w^{\prime}=w^{1-p^{\prime}}$. Since $L_{w}^{1}(G) \subset L_{w^{\prime}}^{\infty}(G)^{*}$ we can write
$\langle T f, h\rangle_{w}=\left\langle f, T^{*} h\right\rangle_{w}$ for each $f \in L_{w^{\prime}}^{p^{\prime}}(G), h \in L_{w}^{1}(G)$. Moreover, for each $s \in G$ we have

$$
\begin{aligned}
\left\langle f, T^{*} L_{s} h\right\rangle_{w} & =\left\langle T f, L_{s} h\right\rangle_{w}=\left\langle L_{s} T f, h\right\rangle_{w}=\left\langle T L_{s} f, h\right\rangle_{w} \\
& =\left\langle L_{s} f, T^{*} h\right\rangle_{w}=\left\langle f, L_{s} T^{*} h\right\rangle_{w}
\end{aligned}
$$

where $f \in L_{w}^{p^{\prime}}(G), h \in L_{w}^{1}(G)$. Consequently, by Theorem 2.1, there exists a unique $g \in L_{w}^{p}(G)$ such that $T^{*} h=g * h$ for each $h \in L_{w}^{1}(G)$. An elementary computation reveals for each $f \in L_{w^{\prime}}^{p^{\prime}}(G)$ and $h \in L_{w}^{1}(G)$ that

$$
\langle T f, h\rangle_{w}=\left\langle f, T^{*} h\right\rangle_{w}=\langle f, g * h\rangle_{w}=\langle g * f, h\rangle_{w}
$$

Therefore $T f=g * f$ for each $f \in L_{w^{\prime}}^{p^{\prime}}(G)$. On the other hand from the form of T^{*} and Theorem 2.1, we see that

$$
\|g\|_{p, w} \leq c\left\|T^{*}\right\|_{1, w} \leq c\left\|T^{*}\right\|_{w^{\prime}, \infty}=c\|T\|_{p^{\prime}, \infty, w^{\prime}},
$$

where $\left\|T^{*}\right\|_{1, w}$ denotes the norm of T^{*} restricted to $L_{w}^{1}(G)$. Thus

$$
\begin{equation*}
\|g\|_{p, w} \leq c\|T\|_{p^{\prime}, \infty, w^{\prime}} \tag{6}
\end{equation*}
$$

This combined with (5) and (6) completes the proof. of Theorem2.3.

2.2 Multipliers of $\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$.

Note that $L_{w}^{1}(G) \cap L_{w}^{p}(G)$ is a Banach space with the norm $\cdot\|\cdot\|_{1, p, w}=$ $\|\cdot\|_{1, w}+\|\cdot\|_{p, w}[8]$. Now we denote by $M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$ the space of all multipliers from $L_{w}^{1}(G) \cap L_{w}^{p}(G)$ to $L_{w}^{1}(G)$ and $\|T\|$ the operator norm of each $M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$. If $\mu \in M_{w}(G)$, then we define $\|\mu\|_{w}=\int_{G} w|\mu|$, and if $w=1$, then we use the symbol $\|\mu\|=\int_{G}|\mu|$.

The following theorem is a generalized version of the Theorem 3.5.1 in [8].

Theorem 2.7. Let G be a noncompact locally compact Abelian group, $1<p<\infty$, w is continuous at the unit e of G and $w(e)=1$. If $T: L_{w}^{1}(G) \cap L_{w}^{p}(G) \rightarrow L_{w}^{1}(G)$ is a continuous linear transformation, then the following are equivalent:
(i) $T \in M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$,
(ii) There exists a unique measure $\mu \in M_{w}(G)$ such that $T f=\mu * f$ for each $f \in L_{w}^{1}(G) \cap L_{w}^{p}(G)$.

Moreover the correspondece between T and μ defines an isometric algebra isomorphism of $M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$ onto $M_{w}(G)$.

Proof. If $\mu \in M_{w}(G)$ and $T f=\mu * f$ for each $f \in L_{w}^{1}(G) \cap L_{w}^{p}(G)$, then

$$
\begin{aligned}
\|T f\|_{1, w} & =\|\mu * f\|_{1, w}=\int_{G}\left|\int_{G} f(t-s) \mu(s) d s\right| w(t) d t \\
& \leq \int_{G}\left(\int_{G}|f(t-s)||\mu(s)| d s\right) w(t) d t \\
& \leq \int_{G}\left(\int_{G}|f(t)||\mu(s)| d s\right) w(t+s) d t \\
& \leq \int_{G}\left(\int_{G}|f(t)| w(t) d t\right) w(s)|\mu(s)| d s \\
& \leq\|f\|_{1, w}\|\mu\|_{w} \leq\|f\|_{1, p, w}\|\mu\|_{w} .
\end{aligned}
$$

Thus $T \in M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$ and $\|T\| \leq\|\mu\|_{w}$.
Conversely, suppose that $T \in M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$. Then for each $f \in L_{w}^{1}(G) \cap L_{w}^{p}(G)$ we have $\|T f\|_{1, w} \leq\|T\|\left(\|f\|_{1, w}+\|f\|_{p, w}\right)$. Combining this estimate with Lemma 2.1 (i), we deduce that

$$
\begin{aligned}
2\|T f\|_{1, w} & =\lim _{s \rightarrow \infty}\left\|T f+L_{s} T f\right\|_{1, w}=\lim _{s \rightarrow \infty}\left\|T\left(f+L_{s} f\right)\right\|_{1, w} \\
& \leq \lim _{s \rightarrow \infty}\|T\|\left(\left\|f+L_{s} f\right\|_{1, w}+\left\|f+L_{s} f\right\|_{p, w}\right) \\
& =\|T\|\left(2\|f\|_{1, w}+2^{\frac{1}{p}}\|f\|_{p, w}\right)
\end{aligned}
$$

for each $f \in L_{w}^{1}(G) \cap L_{w}^{p}(G)$. Thus

$$
\|T f\|_{1, w} \leq\|T\|\left(\|f\|_{1, w}+2^{\frac{1}{p}-1}\|f\|_{p, w}\right), f \in L_{w}^{1}(G) \cap L_{w}^{p}(G) .
$$

Repeating this process n times, we see that

$$
\|T f\|_{1, w} \leq\|T\|\left(\|f\|_{1, w}+2^{n\left(\frac{1}{p}-1\right)}\|f\|_{p, w}\right) .
$$

Since $p>1$ we have $\lim _{n} 2^{n\left(\frac{1}{p}-1\right)}=0$, and so we conclude that

$$
\|T f\|_{1, w} \leq\|T\|\|f\|_{1, w} .
$$

Hence T is continuous on $L_{w}^{1}(G) \cap L_{w}^{p}(G)$, considered as a subspace of $L_{w}^{1}(G)$. Thus T defines a continuous linear transformation from $L_{w}^{1}(G) \cap L_{w}^{p}(G)$ as a subspace of $L_{w}^{1}(G)$ to $L_{w}^{1}(G)$ which commutes with translation. Since $L_{w}^{1}(G) \cap$ $L_{w}^{p}(G)$ is dense in $L_{w}^{1}(G), T$ determines a unique element $T^{/}$of $M\left(L_{w}^{1}(G)\right)$ and $\left\|T^{\prime}\right\| \leq\|T\|$. By Theorem 2.2 in (5), there exists a unique a element $\mu \in M_{w}(G)$ such that $T^{/} f=\mu * f$ for each $f \in L_{w}^{1}(G)$ and $\|\mu\|_{w}=\left\|T^{/}\right\|$. Consequently $T f=\mu * f$ for each $f \in L_{w}^{1}(G) \cap L_{w}^{p}(G)$ and $\|\mu\|_{w} \leq\|T\|$. Hence (i) and (ii) are equivalent. It is evident that the correspondence between T and μ defines isometric algebra isomorphism from $M\left(L_{w}^{1}(G) \cap L_{w}^{p}(G), L_{w}^{1}(G)\right)$ onto $M_{w}(G)$.

The spaces $M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ are Banach spaces of continuous linear transformations from $L_{w}^{p}(G)$ to $L_{w}^{q}(G)$. The norm of an element $T \in M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ will be denoted by $\|T\|_{p, q, w}$. Our first result shows that certain of these spaces may be identified with each other.

Theorem 2.8. Let G be a locally compact Abelian group and suppose that $1 \leq p<$ $\infty, 1<q \leq \infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$, that w is a weight function on $G, w^{\prime}=$ $w^{1-p^{\prime}}$. Then there exists an isometric linear isomorphism of $M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ onto $M\left(L_{w}^{q^{\prime}}(G), L_{w}^{p^{\prime}}(G)\right)$.

Proof. Let $T \in M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$. If $1<p, q<\infty$, then we define T^{*} : $L_{w}^{q^{\prime}}(G) \rightarrow L_{w}^{p^{\prime}}(G)$ to be the operator adjoint to T, that is, the linear operator determined by the equation

$$
\left\langle f, T^{*} g\right\rangle_{w}=\langle T f, g\rangle_{w} \quad\left(f \in L_{w}^{p}(G), g \in L_{w}^{q^{\prime}}(G)\right) .
$$

Clearly T^{*} is continuous. Morever, $T^{*} L_{s}=L_{s} T^{*}$ for each $s \in G$, since as usual we have for $f \in L_{w}^{p}(G)$ and $g \in L_{w^{\prime}}^{q^{\prime}}(G)$ that

$$
\begin{aligned}
\left\langle f, T^{*} L_{s} g\right\rangle_{w} & =\left\langle T f, L_{s} g\right\rangle_{w}=\left\langle L_{s} T f, g\right\rangle_{w}=\left\langle T L_{s} f, g\right\rangle_{w} \\
& =\left\langle L_{s} f, T^{*} g\right\rangle_{w}=\left\langle f, L_{s} T^{*} g\right\rangle_{w}
\end{aligned}
$$

Thus $T^{*} \in M\left(L_{w}^{q^{\prime}}(G), L_{w}^{p^{\prime}}(G)\right)$ and $\|T\|_{p, q, w}=\left\|T^{*}\right\|_{q^{\prime}, p^{\prime}, w}$. The reflexivity of $L_{w}^{p}(G)$ and $L_{w}^{q}(G)$ shows immediately that the mapping $T \rightarrow T^{*}$ is surjective. Hence this mapping defines an isometric linear isomorphism from $M\left(L_{w}^{p}(G), L_{w}^{q}(G)\right)$ onto $M\left(L_{w}^{q^{\prime}}(G), L_{w}^{p^{\prime}}(G)\right)$, when $1<p, q<\infty$.

The assertion of the theorem for the cases $p=1,1<q \leq \infty$ and $1 \leq q<\infty$, $q=\infty$, follows immediately from Theorem 2.1 and Theorem 2.3.

References

[1] E. Hewit, K.A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin, 1963.
[2] H. Rieter, J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society, New Sreies, Oxford Science Publication, 2000.
[3] W. Rudin, Fourier Analysis on Groups, Interscience Publisheri in Pure and Applied Mathematics (Second Printing), 1966.
[4] J.J. Benedetto, Harmonic Analysis and Applications, Boca Raton, Florida: CRC Press, 1997.
[5] A. Bourouihiya, Beurling Weighted Spaces, Product-Convolution Operators, and the Tensor Product of Frames, P.h.D. Thesis, University of Maryland, 2006.
[6] G.I. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc. London Math. Soc. 19 (1969) 327-340.
[7] C.E. Heil, Wiener Amalgam Space in Generalized Harmonic Analysis and Wavelet Theory, P.h.D. Thesis, University of Maryland, 1990.
[8] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen wissenschaften, 1971.
[9] G.N.K. Murthy, K.R. Unni, Multipliers on weighted spaces, Func. Analysis and its Applications, Lecture Notes in Math. 399, Springer-Verlag, Berlin (1973), 273-291.
[10] L. Hörmander, Estimates for translation invariant operators in L^{p}-spaces, Acta Math. 104 (1960) 93-140.
(Received 17 March 2014)
(Accepted 7 July 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2019 by the Mathematical Association of Thailand. All rights reserved.

