Thai Journal of Mathematics Volume 17 (2019) Number 1 : 229–237

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Note on Multipliers of Weighted Lebesgue Spaces

Birsen Sağır^{\dagger ,1} and Cenap Duyar^{\ddagger}

[†]Ondakuz Mayıs University, Department of Mathematics, Turkey e-mail : bduyar@omu.edu.tr

[‡]Ondokuz Mayıs University, Department of Mathematics, Turkey e-mail : cenapd@omu.edu.tr

Abstract: In this paper, it is solved that the spaces $M\left(L_w^{p'}(G), L_{w'}^{\infty}(G)\right)$ and $L_w^P(G)$ can be topologically and algebraically identified, where $1 \leq p' < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$ and w a Beurling weight on a locally compact Abelian group G. Also it is proved that the spaces $M\left(L_w^1 \cap L_w^p(G), L_w^1(G)\right)$ can be identified with the weighted spaces of bounded measures $M_w(G)$.

Keywords : multipliers; weighted Lebesgue space. 2010 Mathematics Subject Classification : 43A15.

1 Introduction

Throughout this paper, G is a locally compact Abelian group and dx is a Haar measure on G. The unit of G shall be denoted by e. The translation by $a \in G$ of a measurable function f is defined by the formula $L_a f(x) = f(x-a)$. We denote by $C_0(G)$ the space of continuous functions vanishing at infinity and by $C_c(G)$ the space of continuous compactly supported functions. If $1 \leq p < \infty$, then $L^p(G)$ shall denote the space of functions f such that $|f|^p$ is integrable [1–3]. A Beurling weight on G is a measurable locally bounded function w satisfying, for each $x, y \in G$, the following two properties: $w(x) \geq 1$ and $w(x + y) \leq w(x) w(y)$. From this definition of w, it is deduced easily that wdx is a positive measure on

Copyright C 2019 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

G. We denote by $L_w^p(G)$, $1 \le p < \infty$, the Banach spaces of equivalence classes of complex-valued measurable functions on G under the system of norm

$$||f||_{p,w} = \left(\int_{G} |f(x)|^{p} w(x) dx\right)^{\frac{1}{p}} < \infty.$$

We represent by $L_{w}^{\infty}(G)$ the Banach space of all measurable functions f on G such that

$$\left\|f\right\|_{\infty,w} = \operatorname{ess\,sup}_{x \in G} \left\{\left|f\left(x\right)\right| w\left(x\right)\right\}$$

We express by l_w^p the discrete version of $L_w^p(G)$. Again we have the space

$$M_{w}(G) = \left\{ \mu : \mu \text{ is a bounded measure and } \|\mu\|_{w} = \int w |\mu| < \infty \right\}.$$

All these spaces are Banach spaces. One can find more about these spaces in [2-6].

Let E and F be two Banach spaces of measurable functions and assume that E and F are stable by translations. A multiplier on E to F is a bounded linear operator commuting with all translations. We denote by M(E, F) the space of all multipliers on E to F. It is known that a translation operator is an isometry on $L^{p}(G)$, while it is not in general an isometry on $L^{p}_{w}(G)$. This fact is closely related to multiplier problems for $L^{p}_{w}(G)$, [6–9].

The conjugate space of $L_w^p(G)$ is the $L_{w'}^{p'}(G)$, where $w' = w^{1-p'}$ and $\frac{1}{p} + \frac{1}{p'} = 1$ or $p' = \frac{p}{p-1}$.

It can be easily seen that $L^p_w(G)$ is a reflexive Banach space. $L^1_w(G)$ is a Banach algebra under convolution,

$$L^p_w * L^1_w \subset L^p_w,$$

and by [7,9] there exists the inequality

$$|g * f||_{p,w} \le ||g||_{1,w} ||f||_{p,w}.$$

2 Main Results

2.1 Multipliers Space of $\left(L_{w'}^{p'}\left(G\right), L_{w'}^{\infty}\left(G\right)\right), p' > 1$

In this section, we will give the space of multipliers acting on some Beurling weighted spaces. We denote by $M(L_w^p(G), L_w^q(G))$ the space of all multipliers of $(L_w^p(G), L_w^q(G))$ and $||T||_{p,q,w}$ the operator norm of each $T \in M(L_w^p(G), L_w^q(G))$. Furthermore we denote by $M(L_w^1(G))$ the space of all multipliers on $L_w^1(G)$ and $||T||_{1,w}$ the operator norm of each $T \in M(L_w^1(G))$. Denote $\langle f, g \rangle_w = \int_G f(t) \overline{g(t)}w(t) dt$ for $f \in L_w^p(G), g \in L_{w'}^q(G)$. If $\mu \in M_w(G)$, then we write $||\mu||_w = \int w |\mu|$ (see [3] for the definition of $|\mu|$). Before starting to define multipliers spaces, we will give the following definition and theorems, whose proofs can be found in [5]. A Note on Multipliers of Weighted Lebesgue Spaces

Definition 2.1. Let $T: L^p_w(G) \to L^q_w(G)$ be a bounded linear transformation, where $1 \leq p, q \leq \infty$. T is said to be a multiplier of $(L^p_w(G), L^q_w(G))$ if T commutes with every translation operator.

Theorem 2.2. Let $T : L^1_w(G) \to L^p_w(G)$ be a bounded linear transformation with p > 1. Then

- (i) $T \in M(L_w^1(G), L_w^p(G))$ if and only if there exists a unique function $g \in L_w^p(G)$ such that $T = T_g : f \to g * f, f \in L_w^1(G)$.
- (ii) There exists a constant $c \ge 1$ dependent only on the weight function w such that

$$||Tg||_{1,p,w} \le ||g||_{p,w} \le c ||Tg||_{1,p,w}$$

(iii) $M\left(L_{w}^{1}\left(G\right),L_{w}^{p}\left(G\right)\right)$ and $L_{w}^{p}\left(G\right)$ are topologically and algebraically identified by the mapping of part (i).

Theorem 2.3. Assume that the weight w is continuous. Let T be a bounded linear operator on $L^1_w(G)$. Then

(i) $T \in M(L^1_w(G))$ if and only if there exists a unique measure μ such that $T = T_{\mu} : f \to \mu * f, f \in L^1_w(G).$

(*ii*)
$$w(e) \|\mu\|_w = \|T_\mu\|.$$

(iii) $M(L_{w}^{1}(G))$ and $M_{w}(G)$ are topologically and algebraically identified.

The proofs can be found [5].

A characterization of the elements in $M\left(L_w^{p'}(G), L_w^{\infty}(G)\right)$ can be readily obtained by examing the adjoints of these multipliers in the light of the results of the previous two theorem.

Lemma 2.4. Let G be a noncompact, locally compact Abelian group. Then

- (i) If $f \in L^p_w(G)$, $1 \le p < \infty$, then $\lim_{s \to \infty} ||f + L_s f||_{p,w} = 2^{\frac{1}{p}} ||f||_{p,w}$,
- (*ii*) If $f \in C_{0,w'}(G)$, then $\lim_{s \to \infty} ||f + L_s f||_{\infty,w} = ||f||_{\infty,w}$.

Proof. Let f be in $L_w^p(G)$. Then $fw^{\frac{1}{p}} \in L_p$ and since $\overline{C_c(G)} = L^p(G)$, for all $\varepsilon > 0$, there exists $g_{\varepsilon} \in C_c(G)$ such that

$$\left\| f w^{\frac{1}{p}} - g_{\varepsilon} \right\|_{p} < \frac{\varepsilon}{2 + 2^{\frac{1}{p}}}.$$
(1)

If $\sup pg = K$ is said, then since K is compact, so is KK^{-1} . Thus using that $C_c(G)$ is translation invariant, we have $L_sg \in C_c(G)$ and hence $K \cap K_s = \emptyset$, where $\sup pL_sg = sK = K_s$ for $s \notin KK^{-1}$. Indeed if $K \cap K_s \neq \emptyset$, then there exists a $t \in K \cap K_s$ such that $t = k_1$ and $t = sk_2$ with $k_1, k_2 \in K$. Thus $k_1 = sk_2$

and hence $s=k_1k_2^{-1},$ and we have $s\in KK^{-1}$ as a contradiction by choosing of s. It is again known that

$$\|g + L_s g\|_p = 2^{\frac{1}{p}} \|g\|_p \tag{2}$$

for all $g \in C_c(G)$ [10]. Using that the space $L^p(G)$ is translation invariant and (1), (2), we obtain

$$\begin{split} \left\| \left\| f w^{\frac{1}{p}} + L_s \left(f w^{\frac{1}{p}} \right) \right\|_p - \left\| g + L_s g \right\|_p \right\| &\leq \left\| f w^{\frac{1}{p}} + L_s \left(f w^{\frac{1}{p}} \right) - g - L_s g \right\|_p \\ &\leq \left\| f w^{\frac{1}{p}} - g \right\|_p + \left\| L_s \left(f w^{\frac{1}{p}} - g \right) \right\|_p \\ &= 2 \left\| f w^{\frac{1}{p}} - g \right\|_p < 2 \frac{\varepsilon}{2 + 2^{\frac{1}{p}}}, \end{split}$$

and for $s \notin KK^{-1}$, using this last inequality and (2)

$$\begin{aligned} \left| \left\| f w^{\frac{1}{p}} + L_s \left(f w^{\frac{1}{p}} \right) \right\|_p &- 2^{\frac{1}{p}} \left\| f w^{\frac{1}{p}} \right\|_p \right| &\leq \left| \left\| f w^{\frac{1}{p}} + L_s \left(f w^{\frac{1}{p}} \right) \right\|_p - \left\| g + L_s g \right\|_p \right| \\ &+ \left| \left\| g + L_s g \right\|_p - 2^{\frac{1}{p}} \left\| g \right\|_p \right| \\ &+ \left| 2^{\frac{1}{p}} \left\| g \right\|_p - 2^{\frac{1}{p}} \left\| f w^{\frac{1}{p}} \right\|_p \right| \\ &< 2 \frac{\varepsilon}{2 + 2^{\frac{1}{p}}} + 2^{\frac{1}{p}} \left\| f w^{\frac{1}{p}} - g \right\|_p \\ &< 2 \frac{\varepsilon}{2 + 2^{\frac{1}{p}}} + 2^{\frac{1}{p}} \frac{\varepsilon}{2 + 2^{\frac{1}{p}}} = \varepsilon. \end{aligned}$$

Lemma 2.5. If $f \in L^{p}_{w}(G)$ and $g \in L^{p'}_{w'}(G)$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and $w' = w^{1-p'}$, then

$$\|f * g\|_{\infty, w'} \le \|f\|_{p, w} \|g\|_{p', w'}.$$
(3)

Proof. If we show that

$$\|f * g\|_{\infty, w'} \le \left\| |f| w^{\frac{1}{p}} * |g| \left(w' \right)^{\frac{1}{p'}} \right\|_{\infty}, \tag{4}$$

then one can easily seen (3). Let $x \in G$ be abritrary and fixed. Then, for $y \in G$

we have

$$\begin{split} \left| f * g\left(x \right) w^{/} \left(x \right) \right| &= \left| \int_{G} f\left(x - y \right) w^{\frac{1}{p}} \left(x - y \right) \frac{w^{1 - p^{/} \left(x \right)}}{w^{\frac{1}{p}} \left(x - y \right)} g\left(y \right) dy \right| \\ &\leq \int_{G} \left(\left(\left| f \right| w^{\frac{1}{p}} \right) \left(x - y \right) w^{1 - p^{/} \left(x \right)} \frac{w^{\frac{1}{p}} \left(x \right)}{w^{\frac{1}{p}} \left(y \right)} \left| g \right| \left(y \right) \right) dy \\ &= \int_{G} \left(\left(\left| f \right| w^{\frac{1}{p}} \right) \left(x - y \right) \left| g \right| \left(y \right) w^{-\frac{1}{p}} \left(y \right) w^{1 - p^{/}} \left(x \right) w^{\frac{1}{p}} \left(x \right) \right) dy \\ &= \int_{G} \left(\left(\left| f \right| w^{\frac{1}{p}} \right) \left(x - y \right) \left(\left(\left| g \right| w^{-\frac{1}{p}} \right) \left(y \right) \right) w^{2 - \left(p^{/} + \frac{1}{p^{/}} \right)} \right) dy \\ &\leq \int_{G} \left(\left(\left| f \right| w^{\frac{1}{p}} \right) \left(x - y \right) \left(\left(\left| g \right| w^{-\frac{1}{p}} \right) \left(y \right) \right) \right) dy \\ &= \int_{G} \left(\left(\left| f \right| w^{\frac{1}{p}} \right) * \left(\left| g \right| w^{-\frac{1}{p}} \right) \right) dy. \end{split}$$

This satisfies (4). Finally (3) can be easily obtained from (4).

Theorem 2.6. Let $T: L_{w'}^{p'}(G) \to L_{w'}^{\infty}(G)$ be a bounded linear transformation, where $p > 1, \frac{1}{p} + \frac{1}{p'} = 1$, w is a Beurling weight function and $w' = w^{1-p'}$. Then

- (a) $T: L_{w'}^{p'}(G) \to L_{w'}^{\infty}(G)$ if and only if there exists a unique function $g \in L_{w}^{p}(G)$ such that $T = T_{g}: f \to g * f$, $f \in L_{w'}^{p'}(G)$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and $w' = w^{1-p'}$,
- (b) There exists a constant $c \ge 1$ dependent only on the weight function w such that

$$|T_g||_{p',\infty,w'} \le ||g||_{p,w} \le c ||T_g||_{p',\infty,w'},$$

(c) $M\left(L_{w'}^{p'}(G), L_{w'}^{\infty}(G)\right)$ and $L_{w}^{p}(G)$ are topologically and algeabrically identified by the mapping of part (a).

Proof. If $g \in L^p_w(G)$ and we set Tf = g * f for each $f \in L^{p'}_{w'}(G)$, then by using Lemma 2.2 we obtain $\|g * f\|_{\infty,w'} \leq \|g\|_{p,w} \|f\|_{p',w'}$. Therefore $T \in M(L^{p'}_{w'}(G), L^{\infty}_{w'}(G))$ and

$$||T||_{p',\infty,w'} \le ||g||_{p,w}.$$
 (5)

Conversely suppose $T \in M\left(L_{w'}^{p'}(G), L_{w'}^{\infty}(G)\right)$ and denote by T^* the adjoint of T, that is, the continuous linear transformation from $L_{w'}^{\infty}(G)^*$ to $L_{w'}^{p'}(G)^* = L_w^p(G), \frac{1}{p} + \frac{1}{p'} = 1, w' = w^{1-p'}$. Since $L_w^1(G) \subset L_{w'}^{\infty}(G)^*$ we can write

 $\langle Tf,h\rangle_w=\langle f,T^*h\rangle_w$ for each $f\in L^{p'}_{w'}(G)\,,\ h\in L^1_w(G).$ Moreover, for each $s\in G$ we have

where $f \in L_{w'}^{p'}(G)$, $h \in L_{w}^{1}(G)$. Consequently, by Theorem 2.1, there exists a unique $g \in L_{w}^{p}(G)$ such that $T^{*}h = g * h$ for each $h \in L_{w}^{1}(G)$. An elementary computation reveals for each $f \in L_{w'}^{p'}(G)$ and $h \in L_{w}^{1}(G)$ that

$$\langle Tf,h\rangle_w=\langle f,T^*h\rangle_w=\langle f,g*h\rangle_w=\langle g*f,h\rangle_w$$

Therefore Tf = g * f for each $f \in L_{w'}^{p'}(G)$. On the other hand from the form of T^* and Theorem 2.1, we see that

$$\|g\|_{p,w} \le c \, \|T^*\|_{1,w} \le c \, \|T^*\|_{w^{/},\infty} = c \, \|T\|_{p^{/},\infty,w^{/}} \,,$$

where $||T^*||_{1,w}$ denotes the norm of T^* restricted to $L^1_w(G)$. Thus

$$\|g\|_{p,w} \le c \, \|T\|_{p',\infty,w'} \,. \tag{6}$$

This combined with (5) and (6) completes the proof. of Theorem 2.3. \Box

2.2 Multipliers of $(L^1_w(G) \cap L^p_w(G), L^1_w(G))$.

Note that $L_w^1(G) \cap L_w^p(G)$ is a Banach space with the norm $\|\cdot\|_{1,p,w} = \|\cdot\|_{1,w} + \|\cdot\|_{p,w}$ [8]. Now we denote by $M\left(L_w^1(G) \cap L_w^p(G), L_w^1(G)\right)$ the space of all multipliers from $L_w^1(G) \cap L_w^p(G)$ to $L_w^1(G)$ and $\|T\|$ the operator norm of each $M\left(L_w^1(G) \cap L_w^p(G), L_w^1(G)\right)$. If $\mu \in M_w(G)$, then we define $\|\mu\|_w = \int_G w |\mu|$, and if w = 1, then we use the symbol $\|\mu\| = \int_G |\mu|$.

The following theorem is a generalized version of the Theorem 3.5.1 in [8].

Theorem 2.7. Let G be a noncompact locally compact Abelian group, $1 , w is continuous at the unit e of G and w (e) = 1. If <math>T : L_w^1(G) \cap L_w^p(G) \to L_w^1(G)$ is a continuous linear transformation, then the following are equivalent:

- (i) $T \in M(L^{1}_{w}(G) \cap L^{p}_{w}(G), L^{1}_{w}(G)),$
- (ii) There exists a unique measure $\mu \in M_w(G)$ such that $Tf = \mu * f$ for each $f \in L^1_w(G) \cap L^p_w(G)$.

Moreover the correspondece between T and μ defines an isometric algebra isomorphism of $M\left(L_{w}^{1}\left(G\right)\cap L_{w}^{p}\left(G\right),L_{w}^{1}\left(G\right)\right)$ onto $M_{w}\left(G\right)$.

A Note on Multipliers of Weighted Lebesgue Spaces

Proof. If $\mu \in M_w(G)$ and $Tf = \mu * f$ for each $f \in L^1_w(G) \cap L^p_w(G)$, then

$$\begin{split} \|Tf\|_{1,w} &= \|\mu * f\|_{1,w} = \int_{G} \left| \int_{G} f(t-s) \, \mu(s) \, ds \right| \, w(t) \, dt \\ &\leq \int_{G} \left(\int_{G} |f(t-s)| \, |\mu(s)| \, ds \right) \, w(t) \, dt \\ &\leq \int_{G} \left(\int_{G} |f(t)| \, |\mu(s)| \, ds \right) \, w(t+s) \, dt \\ &\leq \int_{G} \left(\int_{G} |f(t)| \, w(t) \, dt \right) \, w(s) \, |\mu(s)| \, ds \\ &\leq \|f\|_{1,w} \, \|\mu\|_{w} \leq \|f\|_{1,p,w} \, \|\mu\|_{w} \, . \end{split}$$

Thus $T \in M\left(L_w^1(G) \cap L_w^p(G), L_w^1(G)\right)$ and $||T|| \leq ||\mu||_w$.

Conversely, suppose that $T \in M(L^1_w(G) \cap L^p_w(G), L^1_w(G))$. Then for each $f \in L^1_w(G) \cap L^p_w(G)$ we have $||Tf||_{1,w} \leq ||T|| (||f||_{1,w} + ||f||_{p,w})$. Combining this estimate with Lemma 2.1 (i), we deduce that

$$2 \|Tf\|_{1,w} = \lim_{s \to \infty} \|Tf + L_s Tf\|_{1,w} = \lim_{s \to \infty} \|T(f + L_s f)\|_{1,w}$$

$$\leq \lim_{s \to \infty} \|T\| \left(\|f + L_s f\|_{1,w} + \|f + L_s f\|_{p,w} \right)$$

$$= \|T\| \left(2 \|f\|_{1,w} + 2^{\frac{1}{p}} \|f\|_{p,w} \right)$$

for each $f \in L^1_w(G) \cap L^p_w(G)$. Thus

$$\|Tf\|_{1,w} \le \|T\| \left(\|f\|_{1,w} + 2^{\frac{1}{p}-1} \|f\|_{p,w} \right), \ f \in L^1_w \left(G \right) \cap L^p_w \left(G \right).$$

Repeating this process n times, we see that

$$||Tf||_{1,w} \le ||T|| \left(||f||_{1,w} + 2^{n\left(\frac{1}{p}-1\right)} ||f||_{p,w} \right).$$

Since p > 1 we have $\lim_{n} 2^{n\left(\frac{1}{p}-1\right)} = 0$, and so we conclude that

$$||Tf||_{1,w} \le ||T|| \, ||f||_{1,w}$$

Hence T is continuous on $L^1_w(G) \cap L^p_w(G)$, considered as a subspace of $L^1_w(G)$. Thus T defines a continuous linear transformation from $L^1_w(G) \cap L^p_w(G)$ as a subspace of $L^1_w(G)$ to $L^1_w(G)$ which commutes with translation. Since $L^1_w(G) \cap L^p_w(G)$ is dense in $L^1_w(G)$, T determines a unique element T' of $M\left(L^1_w(G)\right)$ and $||T'|| \leq ||T||$. By Theorem 2.2 in [5], there exists a unique a element $\mu \in M_w(G)$ such that $T'f = \mu * f$ for each $f \in L^1_w(G) \cap L^p_w(G)$ and $||\mu||_w \leq ||T||$. Consequently $Tf = \mu * f$ for each $f \in L^1_w(G) \cap L^p_w(G)$ and $||\mu||_w \leq ||T||$. Hence (i) and (ii) are equivalent. It is evident that the correspondence between T and μ defines isometric algebra isomorphism from $M\left(L^1_w(G) \cap L^p_w(G), L^1_w(G)\right)$ onto $M_w(G)$.

235

The spaces $M(L_w^p(G), L_w^q(G))$ are Banach spaces of continuous linear transformations from $L_w^p(G)$ to $L_w^q(G)$. The norm of an element $T \in M(L_w^p(G), L_w^q(G))$ will be denoted by $||T||_{p,q,w}$. Our first result shows that certain of these spaces may be identified with each other.

Theorem 2.8. Let G be a locally compact Abelian group and suppose that $1 \le p < \infty$, $1 < q \le \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$, that w is a weight function on G, $w' = w^{1-p'}$. Then there exists an isometric linear isomorphism of $M(L_w^p(G), L_w^q(G))$ onto $M\left(L_{w'}^{q'}(G), L_{w'}^{p'}(G)\right)$.

Proof. Let $T \in M(L_w^p(G), L_w^q(G))$. If $1 < p, q < \infty$, then we define $T^* : L_{w'}^{q'}(G) \to L_{w'}^{p'}(G)$ to be the operator adjoint to T, that is, the linear operator determined by the equation

$$\langle f,T^{*}g\rangle_{w}=\langle Tf,g\rangle_{w} \quad \left(f\in L^{p}_{w}\left(G
ight),g\in L^{q^{/}}_{w^{/}}\left(G
ight)
ight).$$

Clearly T^* is continuous. Morever, $T^*L_s = L_sT^*$ for each $s \in G$, since as usual we have for $f \in L^p_w(G)$ and $g \in L^{q'}_{w'}(G)$ that

$$\langle f, T^*L_sg \rangle_w = \langle Tf, L_sg \rangle_w = \langle L_sTf, g \rangle_w = \langle TL_sf, g \rangle_w = \langle L_sf, T^*g \rangle_w = \langle f, L_sT^*g \rangle_w .$$

Thus $T^* \in M\left(L_{w'}^{q'}(G), L_{w'}^{p'}(G)\right)$ and $\|T\|_{p,q,w} = \|T^*\|_{q',p',w}$. The reflexivity of $L_w^p(G)$ and $L_w^q(G)$ shows immediately that the mapping $T \to T^*$ is surjective. Hence this mapping defines an isometric linear isomorphism from $M(L_w^p(G), L_w^q(G))$ onto $M\left(L_{w'}^{q'}(G), L_{w'}^{p'}(G)\right)$, when $1 < p, q < \infty$.

The assertion of the theorem for the cases $p = 1, 1 < q \le \infty$ and $1 \le q < \infty$, $q = \infty$, follows immediately from Theorem 2.1 and Theorem 2.3.

References

- E. Hewit, K.A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin, 1963.
- [2] H. Rieter, J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society, New Sreies, Oxford Science Publication, 2000.
- [3] W. Rudin, Fourier Analysis on Groups, Interscience Publisheri in Pure and Applied Mathematics (Second Printing), 1966.
- [4] J.J. Benedetto, Harmonic Analysis and Applications, Boca Raton, Florida: CRC Press, 1997.

A Note on Multipliers of Weighted Lebesgue Spaces

- [5] A. Bourouihiya, Beurling Weighted Spaces, Product-Convolution Operators, and the Tensor Product of Frames, P.h.D. Thesis, University of Maryland, 2006.
- [6] G.I. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc. London Math. Soc. 19 (1969) 327-340.
- [7] C.E. Heil, Wiener Amalgam Space in Generalized Harmonic Analysis and Wavelet Theory, P.h.D. Thesis, University of Maryland, 1990.
- [8] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen wissenschaften, 1971.
- [9] G.N.K. Murthy, K.R. Unni, Multipliers on weighted spaces, Func. Analysis and its Applications, Lecture Notes in Math. 399, Springer-Verlag, Berlin (1973), 273-291.
- [10] L. Hörmander, Estimates for translation invariant operators in L^p -spaces, Acta Math. 104 (1960) 93-140.

(Received 17 March 2014) (Accepted 7 July 2016)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th