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1 Introduction and Preliminaries

Let (X, d) be a complete metric space. A map T is a contraction if there exists
a constant k € (0, 1) such that

d(Tx,Ty) < kd(z,y) for each x,y € X. (1.1)
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Let F be the family of all functions 8 : [0,00) — [0,1) which satisfies the
condition:
lim B(t,)=1= lim ¢, =0. (1.2)
n—oo

n—oo
An operator T : X — X is called a Geraghty contraction [1] if there exists a
function g € F which satisfies the condition

d(Tz, Ty) < B(d(z,y))d(z,y) for each z,y € X. (1.3)

In 1973, Geraghty [1] successfully obtained a unique fixed point for such con-
tractions.

Theorem 1.1. [1] Suppose that T is a self-mapping on the complete metric space
(X,d). If T is a Geraghty contraction, then it posses a unique fized point z* € X.
Moreover, for any initial point zo € X, the iterative sequence {T"xo} _, converges
to x*.

It is an undoubted generalization of the most celebrated result in the metric
fixed point theory, the Banach contraction principle. Indeed, it is sufficient to take
B(t) =k for all ¢t € [0,00). This idea has been appreciated and improved in several
ways by many authors, see e.g. [2-12] and the related references therein.

Very recently, Suzuki [13] proved the following fixed point theorem that was
inspired from the well-known results of Meir-Keeler [14].

Theorem 1.2. [13] Let (X, d) be a complete metric space and a mapping T : X —
X. Define a function L from X x X into [0,00) by

d(z,Ty) + d(Tz,y)
2

L(z,y) = max {d(m,y), ,d(z, Tx), d(y,Ty)} . (1.4)

Assume that there exists a function ¢ from [0,00) into itself satisfying the follow-
ing:
(pl) () <t for any t € (0,00).
(¢p2) For any e > 0, there exists a 0 > 0 such that

€ <t <e+ 0 implies p(t) <e.
(¢3) d(Tz,Ty) < po L(x,y).
Then T has a unique fized point z. Moreover {T™x} converges to z for all x € X.
Remark 1.3. By (pl), is easy to see that (¢2) is equivalent to the following
(p2') For any € > 0 there exists & > 0 such that

t < e+ implies p(t) <e.

Indeed, if 0 < t < e from (1) we have p(t) <t <e.

In this paper we revisit the notion of Geraghty contraction and propose a con-
cept of p-Geraghty contraction by inspired by the results of Suzuki [13]. Moreover,
we observe a unique fixed point for such contractions. We also consider an example
to indicate the validity of our results.



On Ciri¢ Type (p-Geraghty Contractions 207

2 Main Results

We shall start this section by introducing the notion of p-Geraghty contraction
which is contraction by using the auxiliary functions defined in the first section.

Definition 2.1. Suppose that ¢ : [0,00) — [0,00) is a function and g € F. A
self-mapping T on a complete metric space (X, d) is called p-Geraghty contraction
if it satisfies the following conditions:

(pl) p(t) <t for any t € (0, 00).
(¢2) For any € > 0, there exists a § > 0 such that

e <t <e+Jdimplies p(t) <e.

(¥3) d(Tz,Ty) < B(d(z,y))(p o d(z,y)).
In what follows, we shall state and prove our first main result.

Theorem 2.2. Let (X,d) be a complete metric space. If a self-mapping T : X —
X forms a p-Geraghty contraction, then T has a unique fized point uw. Moreover
{T™zx} converges to u for all z € X.

Proof. Let ¢ € X. We shall build an iterative sequence {x,,} C X by x,, = Txp—1
for n € N. As a first step, we shall show that the adjacent terms of the sequence
{zn} C X should be distinct for a meaningful proof. Suppose on the contrary,
that z,, = Xn,+1 for some ny € N. In this case, the point z,, forms a fixed point
of T that completes the proof. From now on, we suppose that

Xy # e for all n € NU {0}.

Consequently, we have d(zy,zp4+1) > 0 for all n € NU {0}. Therefore, from (¢3)
and (1) we conclude that

d(zna xn+l) = d(Txn—la Txn) < ﬂ(d(zn—la xn)%p (d(xn—la xn))
< (d(zp—1,2,)) < d(Tp-1,zy) for all n € NU{0}.

Hence, the non-negative sequence {d(z,—_1,x,)} is non-increasing in R;. Accord-
ingly, it is convergent to some non-negative real number /. We assert that £ = 0.
We shall prove our assertion by the method of “reductio to absurdum”. So, we
suppose on the contrary, that ¢ > 0. Hence, we have

0 <l <d(xp,znyr) for all n € NU{0}.
Set e = £ > 0. From (¢2') there exists § > 0 such that
t < e+ 0 implies p(t) <e.
On the other hand, from the definition of € we can choose ng € N such that

€ < d(Xngs Tng+1) <€+
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and taking into account the property (¢2) we have

e < d(xno+27xno+3) < d(xno-i-lvxno-i-?) = d(TxnoaTxno-‘rl)
< B(d(Tngs Tng+1)@ (A(Tngs Tng+1)))
< (d($n0,$n0+1))) <g,

which is a contradiction. Hence,

¢= lim d(xn,Tn41) =0. (2.1)

n—oo

As a next step, we shall indicate that the sequence {z,} is Cauchy. Fix ; > 0.
Then, by the hypothesis, there exists a d; > 0 such that

t < &1+ 61 implies p(t) < e. (2.2)

Without loss of generality, we assume ¢; < £1. Due to (2.1), there exists N € N
such that
d(xp, Tpt1) < 01, for all m > N. (2.3)

We will show that for any fixed k > N,
d(.’bk,l’k+l) <er+6d (24)

for all [ € N. The inequality trivially holds for [ = 1 by (2.3). We assume that
the condition (2.4]) is satisfied for some j € N. We shall show that it holds for
=74+ 1. From (2.2), we get

d(wp, Thyjr1) < d(@g, Tpy1) + d(Thtr, Thrjrn)
= d(xk,xkﬂ) + d(Txk,Tkarj)
< d(@p, Thy1) + B(d(@k, Tt )@ (AT, Thsj))
< g1+ 07.

Consequently, (2.4) holds for | = j 4+ 1. Hence we derive that
d(xp,xp1) <e1+ 6 forall k> N and I > 1.
Since €7 is arbitrary, we conclude that

lim d(xy,,zm,) = 0.
n—oo
Thus the sequence {z,} is Cauchy. Since (X, d) is complete, there exists u € X
such that x,, — u as n — oo.
Arguing by contradiction, we assume that Tu # u, so there exists r > 0 such
that d(u,Tu) = r. Since {z,} converges at u, we can choose ng € N such that
d(z,u) < § for all [ > ng. Then, from (¢3), we get that

r=d(u,Tu) <d(u,z;41)+ d(zi41,Tu) = d(u,2141) + d(T2;, Tu)
d(u, wrg1) + Bld(u, 20 (d(u, 21))
d(u, wr11) + ¢ (d(u, 21))
d(u, xi41) + d(u, ;) <,
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which is a contradiction. Therefore we have shown that v is a fixed point of T'.

Suppose that u # v are two fixed points of T. We then have

d(u,v) = d(Tu, Tv) < B(d(u, v))p (d(u, v)) < @(d(u,v)) < d(u,v)

which implies that u = v.

O

Example 2.3. Let X = [0, %} U {1} equipped with a standard metric d(x,y) =

|z — y| for all z,y € X. We define a self-mapping T : X — X as follows

L ifzel0,?]
Ty =
&, ifz=1

Moreover, the auxiliary functions 5 and ¢ are defined as follows:

L iftelo,2),

1, ifte0,2),
B(t) = and  ¢(t) =

i, ift>2,

[S][9N)

. ift=2,

T4+1, ifte(2,00).

If z,y € [O, %], then

lz—yl _

e, 7o) = U < S =y = B, )l ).

If If # € [0,3] and y = 1, then (3) becomes

(T, 7y) = P22 < L1 -l = )t ),

or, equivalent
22 — 1] <2 —2z.

which implies that z < %.

Therefore, for any z,y € X all the conditions of Theorem are satisfied.

Moreover, u = 0 is a fixed point of T

In what follows we introduce the family of refined Geraghty functions as fol-
lows: Let F’ be the family of all functions £ : [0,00) — [0,1) which satisfies the

condition:
limsup B(t,) =1 = lim ¢, =0.
n— oo

n— oo

(2.6)

On the account of the very well-known Ciri¢ theorem, we extend the notion of

p-Geraghty contraction in the next definition.
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Definition 2.4. Suppose that ¢ : [0,00) — [0,00) is a function and 8 € F'. A
self-mapping T on a complete metric space (X, d) is called Ciri¢ type ¢-Geraghty
contraction if it satisfies the following conditions:

(¢0)  is upper semicontinuous.
(pl) p(t) <t for any t € (0, 00).
(¢2) For any € > 0, there exists a 6 > 0 such that

e <t<e+dimplies (t) < e.

(¢3) d(Tz,Ty) < B(L(z,y))(po L(z,y)),

where

d(z,Ty) + d(Tz,y)
2

L(z,y) = max {d(aﬁ,y), ,d(z, Tx), d(y,Ty)} . (2.7)

Theorem 2.5. Let (X,d) be a complete metric space and B € F'. If a self-
mapping T : X — X forms a Ciri¢ type p-Geraghty contraction, then T has a
fized point w. Moreover, {T™xz} converges to u for any initial value © € X.

Proof. We shall use the same steps in the proof of Theorem We begin by
constructing an iterative sequence {z,} for an arbitrary initial value x € X, as
follows:

xo :=z and x, = Tz, for all n € NU {0}. (2.8)

Regarding the discussion on the adjacent terms of the iterative sequence in
the proof of Theorem we can suppose that

Xy # -1 for all n € NU{0}. (2.9)

Thus, we have d(x,,x,+1) > 0 and consequently L(z,,z,+1) > 0. By (¢3')
together with (¢1) and the definition of function 8, we have

d(xn+17xn+2) = d(Txanxn—H) < B(L(xnvxn—kl))w (L(wixn-i-l)) (2 10)
< o(L(wn, Tnt1)) < L(Tn, Totr), .
where

d(xn, Txpy1) + d(Txn, Tay)
2 b

L(%p,Tpe1) = max {d(axn, Tx,),

d(Txp, Tani1)}
d(xpn, TTpy1)
2

d mnH n
= max d(l‘n, In+1); w7 d($n+1; xn+2)} .

=max < d(x,, Txy,), 7d(Tacn,T:vnH)}

Taking the triangle inequality into account, we find that

d(In, mn+2) < d(.’L‘n, $n+1) + d(l‘n+1; xn+2)
2 - 2

S max {d(l’n, $n+1)7 d($n+17 xn+2)} .
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Consequently, we derive that
L(zp, Tny1) = max {d(zn, Tni1), d(Tnt1, Tny2)}
and becomes
d(xns1, Tnye) = d(Txp, Tepe1) < max {d(z,, Tpt1), d(Tnr1, Tni2)t  (2.11)

It is clear that the case where max {d(zn, Znt1), d(Tnt1, Tni2)} = d(Tpi1, Tniz)
is impossible due to (2.11)). Indeed, by (2.11)), this case yields

AT g1, Tny2) < d(Tni, Tnia),
a contradiction. Accordingly, we have
max {d(Tn, Tnt1), d(Tni1, Tnt2)} = d(Tn, Tny1)
and by we get
d(Tnt1, Tnye) = d(Txn, Trpi1) < L(p, Tnt1) = d(Tn, Tni1), (2.12)

for all n € NU {0}. Hence the non-negative real number sequence {d(xy, Tnt+1)}
is non-increasing. Consequently, this sequence converges to some € > 0.

We claim that e = 0. Firstly we note ¢ < d(xy,z,41) for all n € N U {0}.
Arguing by contradiction, we assume ¢ > 0. Then, by (¢2’) from Remark
there exists 6 > 0 such that

t < e+ implies p(t) < e.
On the other hand, for sufficiently large N € N, we have
O0<e< Llzy,zn+1) =d(zn,TNs1) < E+0.
Using and (p2') we get

0 <e<d(@nir,on+2) <d(@niz,2n43) < B(L(zn, on41))e (L(zn, Tr1))
<p(Llzn,zn41)) <&,

a contradiction. Thus, we have

lim d(xn,zp41) = 0. (2.13)

n—oo

Now we show that {x,} is a Cauchy sequence. Let €1 > 0 fixed. Then, there
exists §; > 0 which satisfies the following;:

t<er+20, :>(p(t) <e1. (214)

From ([2.13)), we can choose k € N large enough to satisfy d(xg, xxy1) < d1(e) =
01. We will show by induction that

d(xg, Try) < €1+ 61, (2.15)
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for all k¥ € N. (Without loss of generality, we assume that §; = J1(¢) < €.) We
have already proved for k = 1, so we suppose the condition (2.15)) is satisfied for
some j € N. For [ =j 4+ 1, we get

Lz, xrry) = max{d(@k, To;), d(@k, Tpt1), d(@hy s Thyjr1),
Az, Trtj+1)+d(Thtj,Tr41)
2

< max {d(k, Tptj), @k, Tpt1), ATty Thvjr1),
A(@k,Thot )+ A @45, Thtj+1)+d(Tr5,06)+d(Tk,Tr41) }
2

< max {517(51,(51, %} =1 + 241.
(2.16)
Then, by (¢3') and (2.14) we obtain

d(@k, Trtjr1) < d(@p, Tir1) + d(Tpt1, Trgjrr) = d(@p, Tr1) + ATz, Topy ;)
< d(wg, Tt1) + B(L(Tk, Thtj)) P (L(Tk, Thtj)) < €1+ 1.
(2.17)
Consequently, holds for [ = j+1. Hence, d(xy, zp41)) < €1 forall k € N
and [ < 1, which means lim,,_, o sUp,,~,, d(Tn, zm) = 0. Hence the sequence {z, }
is Cauchy. Since (X,d) is complete, there exists u € X such that z, — u when
n — 00.
As a next step, we shall show that Tu = w. Suppose on the contrary, that
there exists r > 0 such that r := d(u, Tu) > 0. Note that, due to the fact that the
sequence {z,} is convergent to u, we can choose [ € N such that d(u,z,) < %, for

all n > [. So, we have the following estimation for n > I:

L(zp,u) = maxqd(zn,u), w,d(xn,Txn), d(u,Tu)}
< max {d(z,, u), Aot AT 0 Gy ), d(u, Tu) )

r r
r 3trts r
< {Ev 2 2 275771}

=7

It yields that
limsup L(zy,, u) = r. (2.18)

n— oo

By the triangle inequality together with (¢3) we derive that
0 <r<duTu) <duzys1) +dTx,,Tu) < du,xne1) + B(L(xn,u))e (L(x,,u)).
Letting n — oo in the previous inequality, together with (¢0) and (¢1) we get

0< = d(u Tu) < Hmsup [d(u 2041) + B 1) (L)
L(zp,w)) lim nsggo o(L(xp,u))
L(zy,

w))p(r)

= lim sup j(

n—oo
< limsup B(
n—oo

< (r)<r.
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Thus, limsup(8(L(zy,u)) = 1. Since f € F' we have limsup L(z,,u) = 0.
n—oo n—oo
Accordingly we have d(u, Tu) = r = 0, that is, u is a fixed point of T
As a last step, we indicate that the limit point u of the iterative sequence {x,, }
is unique. Suppose on the contrary, that v is another fixed point of T', with u # v.

It is clear that L(u,v) = d(u,v). Thus, we have
0 < d(u,v) = d(Tu, Tv) < B(L(u,v))e (L(u,v)) = B(d(u,v))e(d(u,v)) < d(u,v),
a contradiction. O

Example 2.6. Let X = {a1,a2,a3,a4} and d: X x X — [0,00) defined by:
d(a1,a2) = d(az,a1) =1, d(as, aq) = d(aq, a3) = 10,
d(a1,a4) = d(ag,a1) = d(az,aq4) = d(aq,az) = 6,
d(ay,a3) = d(as,a1) = d(ag, a3) = d(as,az) =8,
d(a;,a;) =0, for any i = 1,2, 3, 4.

It is easy to see that the pair (X, d) forms a metric space. Assume T : X — X
and ¢ : [0,00) — [0,00) be defined by

Ta1 = Tag = al,Tag = TCL4 = a2

and

Lo iftel0,4)
_ 5y 1 s
20 _{ 143 ifte[d, o).

Let 8 : [0,00) — [0,1) be defined by 5(¢) = 1-%% On the other hand, because
4

d(Tay,Taz) = d(Tas,Tas) = 0 and (p3') is obviously satisfied, relevant for our

study only is only the set {(a1,as), (a1, a4), (a2, a3), (az,a4)}. For this reason, we

consider the following cases:

Case(i) If x = a1, y = ag then

d(al, Tal) = d(al,al) = 07d(a3,Ta3) = d(a37a2) = 87d(Ta17Ta3) = d(al, ag) =1
1,d d =38,d

d(a]_,Ta,?)) = d(al,a2> =1, (ag,Ta]_) — (a3)a1) , (a1)a3) =8
and
L(a1,a3) = max {8, 1;870,8} =8,8(L(a1,a3)) = B(8) = é,

In this case,

d(Tal,Tag) =1< ==
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Case(ii) If © = ay, y = a4 then

d(al,Tal) = d(al,al) = 0, d(a4,Ta4) = d(a47a2) = 6, d(TCL17T(l4) = d(al,CLg): 1
d(al,Ta4) = d(al,ag) = 1, d(a4,Ta1) = d(a4,a1) =6

and - )
L(a17a4) - max{l, ;vOaG} = 67 /B(L(a17a4)) - B(6) = ga
19
p(L(ar, as)) = ¢(6) = .
In this case,
38 2 19
d(Tay,Tay) =1< — =—- — = p(L(a1,a4))p(L(a1,a4)).
30 5 6
Case(iit) If © = ag, y = ag then
d(GQ,TGQ) = d(a27a1) = ]., d(ag,Tag) = d(ag,(lg) = 8, d(T(l27Ta3) = d(al,ag) :].
d(ag,Tag) = d(a27a2) = 0, d(a37Ta2) = d(a37a1) = 8, d(a27a3) = 8.
and
+8 1
L(ag,a3) = maX{S, 5 71,8} =8, 8(L(az,a3)) = B(8) = 3
25
p(L(az,a3)) = ¢(8) = 3
In this case,
25 1 25
d(Tas,Taz) =1< M3 8" B(L(as, a3))p(L(asz, as)).

Case(iv) If x = ag, y = a4 then

d(az,Taz) = d(ag,al) = 1, d(a4,Ta4) = d(a4,a2) = 6, d(Ta2,Ta4) = d(al,ag) =1
d(az,Taq) = d(az,az2) = 0,d(as, Tag) = d(as,a1) = 6,d

and 046 )
L(a27a4) = max {67 %7 176} = 675(‘[/(0'270'4)) = 5(6) = 57
19
p(Llaz, 1)) = 9(6) = -
In this case,
38 2 19
d(Taz,Tay) =1< -5 6" B(L(az,a4))p(L(ag, aq)).

Thus, all the conditions of Theorem are satisfied. Moreover, u = a7 is a fixed
point of T
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