Thai Journal of Mathematics Volume 17 (2019) Number 1 : 205-216
http://thaijmath.in.cmu.ac.th

On Ćirić Type φ-Geraghty Contractions

Badr Alqahtani ${ }^{\dagger}$, Andreea Fulga ${ }^{\ddagger}$ and Erdal Karapınar ${ }^{\S}, £, 1$
${ }^{\dagger}$ Department of Mathematics, King Saud University
Riyadh, Saudi Arabia
e-mail : balqahtani1@ksu.edu.sa
${ }^{\ddagger}$ Department of Mathematics and Computer Science
Transilvania University of Brasov, Brasov, Romania
e-mail: afulga@unitbv.ro
${ }^{\text {§ Atilim }}$ University, Department of Mathematics 06836, İncek, Ankara, Turkey
${ }^{£}$ Department of Medical Research, China Medical University Hospital
China Medical University, 40402, Taichung, Taiwan
e-mail : erdalkarapinar@yahoo.com; karapinar@mail.cmuh.org.tw

Abstract

In this paper we introduce the notions of φ-Geraghty contractions and Ćirić type φ-Geraghty contractions. We also investigate under which conditions such mappings posses a unique fixed point in the framework of complete metric spaces. We consider examples to show the validity of our main results.

Keywords : fixed point; metric space; Geraghty contraction; Ćirić contraction. 2010 Mathematics Subject Classification : 46T99; 47H10; 54H25.

1 Introduction and Preliminaries

Let (X, d) be a complete metric space. A map T is a contraction if there exists a constant $k \in(0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y) \text { for each } x, y \in X \tag{1.1}
\end{equation*}
$$

[^0]Let \mathcal{F} be the family of all functions $\beta:[0, \infty) \rightarrow[0,1)$ which satisfies the condition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta\left(t_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0 . \tag{1.2}
\end{equation*}
$$

An operator $T: X \rightarrow X$ is called a Geraghty contraction 1 if there exists a function $\beta \in \mathcal{F}$ which satisfies the condition

$$
\begin{equation*}
d(T x, T y) \leq \beta(d(x, y)) d(x, y) \text { for each } x, y \in X \tag{1.3}
\end{equation*}
$$

In 1973, Geraghty 1 successfully obtained a unique fixed point for such contractions.

Theorem 1.1. 1] Suppose that T is a self-mapping on the complete metric space (X, d). If T is a Geraghty contraction, then it posses a unique fixed point $x^{*} \in X$. Moreover, for any initial point $x_{0} \in X$, the iterative sequence $\left\{T^{n} x_{0}\right\}_{n=1}^{\infty}$ converges to x^{*}.

It is an undoubted generalization of the most celebrated result in the metric fixed point theory, the Banach contraction principle. Indeed, it is sufficient to take $\beta(t)=k$ for all $t \in[0, \infty)$. This idea has been appreciated and improved in several ways by many authors, see e.g. 212 and the related references therein.

Very recently, Suzuki (13] proved the following fixed point theorem that was inspired from the well-known results of Meir-Keeler 14 .
Theorem 1.2. [13] Let (X, d) be a complete metric space and a mapping $T: X \rightarrow$ X. Define a function L from $X \times X$ into $[0, \infty)$ by

$$
\begin{equation*}
L(x, y)=\max \left\{d(x, y), \frac{d(x, T y)+d(T x, y)}{2}, d(x, T x), d(y, T y)\right\} . \tag{1.4}
\end{equation*}
$$

Assume that there exists a function φ from $[0, \infty)$ into itself satisfying the following:
($\varphi 1$) $\varphi(t)<t$ for any $t \in(0, \infty)$.
(φ 2) For any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\epsilon<t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon .
$$

($\varphi 3$) $d(T x, T y) \leq \varphi \circ L(x, y)$.
Then T has a unique fixed point z. Moreover $\left\{T^{n} x\right\}$ converges to z for all $x \in X$.
Remark 1.3. By $(\varphi 1)$, is easy to see that $(\varphi 2)$ is equivalent to the following
$\left(\varphi 2^{\prime}\right)$ For any $\varepsilon>0$ there exists $\delta>0$ such that

$$
t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon .
$$

Indeed, if $0<t \leq \varepsilon$ from ($\varphi 1$) we have $\varphi(t)<t \leq \varepsilon$.
In this paper we revisit the notion of Geraghty contraction and propose a concept of φ-Geraghty contraction by inspired by the results of Suzuki 13]. Moreover, we observe a unique fixed point for such contractions. We also consider an example to indicate the validity of our results.

2 Main Results

We shall start this section by introducing the notion of φ-Geraghty contraction which is contraction by using the auxiliary functions defined in the first section.

Definition 2.1. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a function and $\beta \in \mathcal{F}$. A self-mapping T on a complete metric space (X, d) is called φ-Geraghty contraction if it satisfies the following conditions:
$(\varphi 1) \varphi(t)<t$ for any $t \in(0, \infty)$.
($\varphi 2$) For any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\epsilon<t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon
$$

$(\varphi 3) d(T x, T y) \leq \beta(d(x, y))(\varphi \circ d(x, y))$.
In what follows, we shall state and prove our first main result.
Theorem 2.2. Let (X, d) be a complete metric space. If a self-mapping $T: X \rightarrow$ X forms a φ-Geraghty contraction, then T has a unique fixed point u. Moreover $\left\{T^{n} x\right\}$ converges to u for all $x \in X$.

Proof. Let $x_{0} \in X$. We shall build an iterative sequence $\left\{x_{n}\right\} \subset X$ by $x_{n}=T x_{n-1}$ for $n \in \mathbb{N}$. As a first step, we shall show that the adjacent terms of the sequence $\left\{x_{n}\right\} \subset X$ should be distinct for a meaningful proof. Suppose on the contrary, that $x_{n_{0}}=x_{n_{0}+1}$ for some $n_{0} \in \mathbb{N}$. In this case, the point $x_{n_{0}}$ forms a fixed point of T that completes the proof. From now on, we suppose that

$$
x_{n} \neq x_{n+1} \text { for all } n \in \mathbb{N} \cup\{0\} .
$$

Consequently, we have $d\left(x_{n}, x_{n+1}\right)>0$ for all $n \in \mathbb{N} \cup\{0\}$. Therefore, from $(\varphi 3)$ and $(\varphi 1)$ we conclude that

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \leq \beta\left(d\left(x_{n-1}, x_{n}\right) \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)\right. \\
& <\varphi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right) \text { for all } n \in \mathbb{N} \cup\{0\} .
\end{aligned}
$$

Hence, the non-negative sequence $\left\{d\left(x_{n-1}, x_{n}\right)\right\}$ is non-increasing in \mathbb{R}_{+}. Accordingly, it is convergent to some non-negative real number ℓ. We assert that $\ell=0$. We shall prove our assertion by the method of "reductio to absurdum". So, we suppose on the contrary, that $\ell>0$. Hence, we have

$$
0<\ell<d\left(x_{n}, x_{n+1}\right) \text { for all } n \in \mathbb{N} \cup\{0\} .
$$

Set $\varepsilon=\ell>0$. From $\left(\varphi 2^{\prime}\right)$ there exists $\delta>0$ such that

$$
t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon
$$

On the other hand, from the definition of ε we can choose $n_{0} \in \mathbb{N}$ such that

$$
\varepsilon<d\left(x_{n_{0}}, x_{n_{0}+1}\right)<\varepsilon+\delta
$$

and taking into account the property ($\varphi 2$) we have

$$
\begin{aligned}
\varepsilon & <d\left(x_{n_{0}+2}, x_{n_{0}+3}\right)<d\left(x_{n_{0}+1}, x_{n_{0}+2}\right)=d\left(T x_{n_{0}}, T x_{n_{0}+1}\right) \\
& \leq \beta\left(d\left(x_{n_{0}}, x_{n_{0}+1}\right) \varphi\left(d\left(x_{n_{0}}, x_{n_{0}+1}\right)\right)\right) \\
& \left.<\varphi\left(d\left(x_{n_{0}}, x_{n_{0}+1}\right)\right)\right) \leq \varepsilon
\end{aligned}
$$

which is a contradiction. Hence,

$$
\begin{equation*}
\ell=\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{2.1}
\end{equation*}
$$

As a next step, we shall indicate that the sequence $\left\{x_{n}\right\}$ is Cauchy. Fix $\varepsilon_{1}>0$. Then, by the hypothesis, there exists a $\delta_{1}>0$ such that

$$
\begin{equation*}
t<\varepsilon_{1}+\delta_{1} \text { implies } \varphi(t) \leq \varepsilon_{1} . \tag{2.2}
\end{equation*}
$$

Without loss of generality, we assume $\delta_{1}<\varepsilon_{1}$. Due to (2.1), there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\delta_{1}, \text { for all } n \geq N . \tag{2.3}
\end{equation*}
$$

We will show that for any fixed $k \geq N$,

$$
\begin{equation*}
d\left(x_{k}, x_{k+l}\right)<\varepsilon_{1}+\delta_{1} \tag{2.4}
\end{equation*}
$$

for all $l \in \mathbb{N}$. The inequality trivially holds for $l=1$ by (2.3). We assume that the condition (2.4) is satisfied for some $j \in \mathbb{N}$. We shall show that it holds for $l=j+1$. From (2.2), we get

$$
\begin{aligned}
d\left(x_{k}, x_{k+j+1}\right) & \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+j+1}\right) \\
& =d\left(x_{k}, x_{k+1}\right)+d\left(T x_{k}, T x_{k+j}\right) \\
& \leq d\left(x_{k}, x_{k+1}\right)+\beta\left(d\left(x_{k}, x_{k+j}\right)\right) \varphi\left(d\left(x_{k}, x_{k+j}\right)\right) \\
& <\varepsilon_{1}+\delta_{1} .
\end{aligned}
$$

Consequently, (2.4) holds for $l=j+1$. Hence we derive that

$$
d\left(x_{k}, x_{k+l}\right)<\varepsilon_{1}+\delta_{1} \text { for all } k \geq N \text { and } l \geq 1 .
$$

Since ε_{1} is arbitrary, we conclude that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 .
$$

Thus the sequence $\left\{x_{n}\right\}$ is Cauchy. Since (X, d) is complete, there exists $u \in X$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$.

Arguing by contradiction, we assume that $T u \neq u$, so there exists $r>0$ such that $d(u, T u)=r$. Since $\left\{x_{n}\right\}$ converges at u, we can choose $n_{0} \in \mathbb{N}$ such that $d\left(x_{l}, u\right)<\frac{r}{2}$ for all $l \geq n_{0}$. Then, from ($\varphi 3$), we get that

$$
\begin{aligned}
r=d(u, T u) & \leq d\left(u, x_{l+1}\right)+d\left(x_{l+1}, T u\right)=d\left(u, x_{l+1}\right)+d\left(T x_{l}, T u\right) \\
& \leq d\left(u, x_{l+1}\right)+\beta\left(d\left(u, x_{l}\right) \varphi\left(d\left(u, x_{l}\right)\right)\right. \\
& <d\left(u, x_{l+1}\right)+\varphi\left(d\left(u, x_{l}\right)\right) \\
& <d\left(u, x_{l+1}\right)+d\left(u, x_{l}\right)<r,
\end{aligned}
$$

which is a contradiction. Therefore we have shown that u is a fixed point of T. Suppose that $u \neq v$ are two fixed points of T. We then have

$$
d(u, v)=d(T u, T v) \leq \beta(d(u, v)) \varphi(d(u, v))<\varphi(d(u, v))<d(u, v)
$$

which implies that $u=v$.
Example 2.3. Let $X=\left[0, \frac{3}{4}\right] \cup\{1\}$ equipped with a standard metric $d(x, y)=$ $|x-y|$ for all $x, y \in X$. We define a self-mapping $T: X \rightarrow X$ as follows

$$
T x= \begin{cases}\frac{x}{8}, & \text { if } x \in\left[0, \frac{3}{4}\right] \\ \frac{1}{16}, & \text { if } x=1\end{cases}
$$

Moreover, the auxiliary functions β and φ are defined as follows:

$$
\beta(t)=\left\{\begin{array}{ll}
\frac{1}{4}, & \text { if } t \in[0,2), \tag{2.5}\\
\frac{1}{2}, & \text { if } t \geq 2,
\end{array} \quad \text { and } \quad \varphi(t)=\left\{\begin{aligned}
\frac{t}{2}, & \text { if } t \in[0,2) \\
\frac{3}{2}, & \text { if } t=2 \\
\frac{1}{t}+1, & \text { if } t \in(2, \infty)
\end{aligned}\right.\right.
$$

If $x, y \in\left[0, \frac{3}{4}\right]$, then

$$
d(T x, T y)=\frac{|x-y|}{8} \leq \frac{1}{8}|x-y|=\beta(d(x, y)) \varphi(d(x, y))
$$

If If $x \in\left[0, \frac{3}{4}\right]$ and $y=1$, then $(\varphi 3)$ becomes

$$
d(T x, T y)=\frac{|2 x-1|}{16} \leq \frac{1}{8}|1-x|=\beta(d(x, y)) \varphi(d(x, y))
$$

or, equivalent

$$
|2 x-1| \leq 2-2 x
$$

which implies that $x \leq \frac{3}{4}$.
Therefore, for any $x, y \in X$ all the conditions of Theorem 2.2 are satisfied. Moreover, $u=0$ is a fixed point of T.

In what follows we introduce the family of refined Geraghty functions as follows: Let \mathcal{F}^{\prime} be the family of all functions $\beta:[0, \infty) \rightarrow[0,1)$ which satisfies the condition:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \beta\left(t_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0 \tag{2.6}
\end{equation*}
$$

On the account of the very well-known Ćirić theorem, we extend the notion of φ-Geraghty contraction in the next definition.

Definition 2.4. Suppose that $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a function and $\beta \in \mathcal{F}^{\prime}$. A self-mapping T on a complete metric space (X, d) is called Ćirić type φ-Geraghty contraction if it satisfies the following conditions:
$(\varphi 0) \varphi$ is upper semicontinuous.
$(\varphi 1) \varphi(t)<t$ for any $t \in(0, \infty)$.
($\varphi 2$) For any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\varepsilon<t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon
$$

$\left(\varphi 3^{\prime}\right) d(T x, T y) \leq \beta(L(x, y))(\varphi \circ L(x, y))$,
where

$$
\begin{equation*}
L(x, y)=\max \left\{d(x, y), \frac{d(x, T y)+d(T x, y)}{2}, d(x, T x), d(y, T y)\right\} \tag{2.7}
\end{equation*}
$$

Theorem 2.5. Let (X, d) be a complete metric space and $\beta \in \mathcal{F}^{\prime}$. If a selfmapping $T: X \rightarrow X$ forms a Ćirić type φ-Geraghty contraction, then T has a fixed point u. Moreover, $\left\{T^{n} x\right\}$ converges to u for any initial value $x \in X$.

Proof. We shall use the same steps in the proof of Theorem 2.2. We begin by constructing an iterative sequence $\left\{x_{n}\right\}$ for an arbitrary initial value $x \in X$, as follows:

$$
\begin{equation*}
x_{0}:=x \text { and } x_{n}=T x_{n-1} \text { for all } n \in \mathbb{N} \cup\{0\} \tag{2.8}
\end{equation*}
$$

Regarding the discussion on the adjacent terms of the iterative sequence in the proof of Theorem 2.2 , we can suppose that

$$
\begin{equation*}
x_{n} \neq x_{n-1} \text { for all } n \in \mathbb{N} \cup\{0\} \tag{2.9}
\end{equation*}
$$

Thus, we have $d\left(x_{n}, x_{n+1}\right)>0$ and consequently $L\left(x_{n}, x_{n+1}\right)>0$. By $\left(\varphi 3^{\prime}\right)$ together with $(\varphi 1)$ and the definition of function β, we have

$$
\begin{align*}
d\left(x_{n+1}, x_{n+2}\right) & =d\left(T x_{n}, T x_{n+1}\right) \leq \beta\left(L\left(x_{n}, x_{n+1}\right)\right) \varphi\left(L\left(x_{n}, x_{n+1}\right)\right) \tag{2.10}\\
& <\varphi\left(L\left(x_{n}, x_{n+1}\right)\right)<L\left(x_{n}, x_{n+1}\right)
\end{align*}
$$

where

$$
\begin{aligned}
L\left(x_{n}, x_{n+1}\right) & =\max \left\{d\left(x_{n}, T x_{n}\right), \frac{d\left(x_{n}, T x_{n+1}\right)+d\left(T x_{n}, T x_{n}\right)}{2}\right. \\
& =\max \left\{d\left(x_{n}, T x_{n}\right), \frac{d\left(x_{n}, T x_{n+1}\right)}{2}, d\left(T x_{n}, T x_{n+1}\right)\right\} \\
& =\max \left\{d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n}, x_{n+2}\right)}{2}, d\left(x_{n+1}, x_{n+2}\right)\right\}
\end{aligned}
$$

Taking the triangle inequality into account, we find that

$$
\frac{d\left(x_{n}, x_{n+2}\right)}{2} \leq \frac{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)}{2} \leq \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}
$$

Consequently, we derive that

$$
L\left(x_{n}, x_{n+1}\right)=\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}
$$

and 2.10 becomes

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right)=d\left(T x_{n}, T x_{n+1}\right)<\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} \tag{2.11}
\end{equation*}
$$

It is clear that the case where $\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}=d\left(x_{n+1}, x_{n+2}\right)$ is impossible due to 2.11. Indeed, by 2.11, this case yields

$$
d\left(x_{n+1}, x_{n+2}\right)<d\left(x_{n+1}, x_{n+2}\right)
$$

a contradiction. Accordingly, we have

$$
\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}=d\left(x_{n}, x_{n+1}\right)
$$

and by (2.11) we get

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right)=d\left(T x_{n}, T x_{n+1}\right)<L\left(x_{n}, x_{n+1}\right)=d\left(x_{n}, x_{n+1}\right) \tag{2.12}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$. Hence the non-negative real number sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is non-increasing. Consequently, this sequence converges to some $\varepsilon \geq 0$.

We claim that $\varepsilon=0$. Firstly we note $\varepsilon<d\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N} \cup\{0\}$. Arguing by contradiction, we assume $\varepsilon>0$. Then, by $\left(\varphi 2^{\prime}\right)$ from Remark 1.3 there exists $\delta>0$ such that

$$
t<\varepsilon+\delta \text { implies } \varphi(t) \leq \varepsilon
$$

On the other hand, for sufficiently large $N \in \mathbb{N}$, we have

$$
0<\varepsilon<L\left(x_{N}, x_{N+1}\right)=d\left(x_{N}, x_{N+1}\right)<\varepsilon+\delta .
$$

Using (2.12) and $\left(\varphi 2^{\prime}\right)$ we get

$$
\begin{aligned}
0 & <\varepsilon \leq d\left(x_{N+1}, x_{N+2}\right)<d\left(x_{N+2}, x_{N+3}\right) \leq \beta\left(L\left(x_{N}, x_{N+1}\right)\right) \varphi\left(L\left(x_{N}, x_{N+1}\right)\right) \\
& <\varphi\left(L\left(x_{N}, x_{N+1}\right)\right) \leq \varepsilon
\end{aligned}
$$

a contradiction. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{2.13}
\end{equation*}
$$

Now we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Let $\varepsilon_{1}>0$ fixed. Then, there exists $\delta_{1}>0$ which satisfies the following:

$$
\begin{equation*}
t<\varepsilon_{1}+2 \delta_{1} \Longrightarrow \varphi(t) \leq \varepsilon_{1} \tag{2.14}
\end{equation*}
$$

From (2.13), we can choose $k \in \mathbb{N}$ large enough to satisfy $d\left(x_{k}, x_{k+1}\right)<\delta_{1}(\varepsilon)=$ δ_{1}. We will show by induction that

$$
\begin{equation*}
d\left(x_{k}, x_{k+l}\right)<\varepsilon_{1}+\delta_{1}, \tag{2.15}
\end{equation*}
$$

for all $k \in \mathbb{N}$. (Without loss of generality, we assume that $\delta_{1}=\delta_{1}(\varepsilon)<\varepsilon$.) We have already proved for $k=1$, so we suppose the condition 2.15 is satisfied for some $j \in \mathbb{N}$. For $l=j+1$, we get

$$
\begin{align*}
L\left(x_{k}, x_{k+j}\right) & =\max \left\{d\left(x_{k}, x_{k+j}\right), d\left(x_{k}, x_{k+1}\right), d\left(x_{k+j}, x_{k+j+1}\right),\right. \\
& \left.\frac{d\left(x_{k}, x_{k+j+1}\right)+d\left(x_{k+j}, x_{k+1}\right)}{2}\right\} \\
& \leq \max \left\{d\left(x_{k}, x_{k+j}\right), d\left(x_{k}, x_{k+1}\right), d\left(x_{k+j}, x_{k+j+1}\right),\right. \\
& <\max \left\{\varepsilon_{1}, \delta_{1}, \delta_{1}, \frac{d\left(x_{k}, x_{k+j}\right)+d\left(x_{k+j}, x_{k+j+1}\right)+d\left(x_{k+j}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right)}{2}\right\}=\varepsilon_{1}+2 \delta_{1} .
\end{align*}
$$

Then, by $\left(\varphi 3^{\prime}\right)$ and 2.14 we obtain

$$
\begin{align*}
d\left(x_{k}, x_{k+j+1}\right) & \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+j+1}\right)=d\left(x_{k}, x_{k+1}\right)+d\left(T x_{k}, T x_{k+j}\right) \\
& \leq d\left(x_{k}, x_{k+1}\right)+\beta\left(L\left(x_{k}, x_{k+j}\right)\right) \varphi\left(L\left(x_{k}, x_{k+j}\right)\right)<\varepsilon_{1}+\delta_{1} . \tag{2.17}
\end{align*}
$$

Consequently, 2.15 holds for $l=j+1$. Hence, $\left.d\left(x_{k}, x_{k+l}\right)\right)<\varepsilon_{1}$ for all $k \in \mathbb{N}$ and $l \leq 1$, which means $\lim _{n \rightarrow \infty} \sup _{m>n} d\left(x_{n}, x_{m}\right)=0$. Hence the sequence $\left\{x_{n}\right\}$ is Cauchy. Since (X, d) is complete, there exists $u \in X$ such that $x_{n} \rightarrow u$ when $n \rightarrow \infty$.

As a next step, we shall show that $T u=u$. Suppose on the contrary, that there exists $r>0$ such that $r:=d(u, T u)>0$. Note that, due to the fact that the sequence $\left\{x_{n}\right\}$ is convergent to u, we can choose $l \in \mathbb{N}$ such that $d\left(u, x_{n}\right)<\frac{r}{2}$, for all $n \geq l$. So, we have the following estimation for $n \geq l$:

$$
\begin{aligned}
L\left(x_{n}, u\right) & =\max \left\{d\left(x_{n}, u\right), \frac{d\left(x_{n}, T u\right)+d\left(T x_{n}, u\right)}{2}, d\left(x_{n}, T x_{n}\right), d(u, T u)\right\} \\
& \leq \max \left\{d\left(x_{n}, u\right), \frac{d\left(x_{n}, u\right)+d(u, T u)+d\left(x_{n+1}, u\right)}{2}, d\left(x_{n}, x_{n+1}\right), d(u, T u)\right\} \\
& <\left\{\frac{r}{2}, \frac{\frac{r}{2}+r+\frac{r}{2}}{2}, \frac{r}{2}, r\right\} \\
& =r .
\end{aligned}
$$

It yields that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} L\left(x_{n}, u\right)=r \tag{2.18}
\end{equation*}
$$

By the triangle inequality together with $(\varphi 3)$ we derive that
$0<r<d(u, T u) \leq d\left(u, x_{n+1}\right)+d\left(T x_{n}, T u\right) \leq d\left(u, x_{n+1}\right)+\beta\left(L\left(x_{n}, u\right)\right) \varphi\left(L\left(x_{n}, u\right)\right)$.
Letting $n \rightarrow \infty$ in the previous inequality, together with $(\varphi 0)$ and $(\varphi 1)$ we get

$$
\begin{aligned}
0< & r=d(u, T u) \leq \limsup _{n \rightarrow \infty}\left[d\left(u, x_{n+1}\right)+\beta\left(L\left(x_{n}, u\right)\right) \varphi\left(L\left(x_{n}, u\right)\right)\right] \\
& =\limsup _{n \rightarrow \infty} \beta\left(L\left(x_{n}, u\right)\right) \lim \sup _{n \rightarrow \infty} \varphi\left(L\left(x_{n}, u\right)\right) \\
& \leq \limsup _{n \rightarrow \infty} \beta\left(L\left(x_{n}, u\right)\right) \varphi(r) \\
& <\varphi(r)<r .
\end{aligned}
$$

Thus, $\limsup _{n \rightarrow \infty}\left(\beta\left(L\left(x_{n}, u\right)\right)=1\right.$. Since $\beta \in \mathcal{F}^{\prime}$ we have $\limsup _{n \rightarrow \infty} L\left(x_{n}, u\right)=0$.
Accordingly we have $d(u, T u)=r=0$, that is, u is a fixed point of T.
As a last step, we indicate that the limit point u of the iterative sequence $\left\{x_{n}\right\}$ is unique. Suppose on the contrary, that v is another fixed point of T, with $u \neq v$. It is clear that $L(u, v)=d(u, v)$. Thus, we have

$$
0<d(u, v)=d(T u, T v) \leq \beta(L(u, v)) \varphi(L(u, v))=\beta(d(u, v)) \varphi(d(u, v))<d(u, v)
$$

a contradiction.
Example 2.6. Let $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $d: X \times X \rightarrow[0, \infty)$ defined by:

$$
\begin{aligned}
& d\left(a_{1}, a_{2}\right)=d\left(a_{2}, a_{1}\right)=1, d\left(a_{3}, a_{4}\right)=d\left(a_{4}, a_{3}\right)=10 \\
& d\left(a_{1}, a_{4}\right)=d\left(a_{4}, a_{1}\right)=d\left(a_{2}, a_{4}\right)=d\left(a_{4}, a_{2}\right)=6 \\
& d\left(a_{1}, a_{3}\right)=d\left(a_{3}, a_{1}\right)=d\left(a_{2}, a_{3}\right)=d\left(a_{3}, a_{2}\right)=8 \\
& d\left(a_{i}, a_{i}\right)=0, \text { for any } i=1,2,3,4
\end{aligned}
$$

It is easy to see that the pair (X, d) forms a metric space. Assume $T: X \rightarrow X$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be defined by

$$
T a_{1}=T a_{2}=a_{1}, T a_{3}=T a_{4}=a_{2}
$$

and

$$
\varphi(t)=\left\{\begin{aligned}
\frac{t}{5}, & \text { if } t \in[0,4) \\
\frac{1}{t}+3, & \text { if } t \in[4, \infty)
\end{aligned}\right.
$$

Let $\beta:[0, \infty) \rightarrow[0,1)$ be defined by $\beta(t)=\frac{1}{1+\frac{t}{4}}$. On the other hand, because $d\left(T a_{1}, T a_{2}\right)=d\left(T a_{3}, T a_{4}\right)=0$ and $\left(\varphi 3^{\prime}\right)$ is obviously satisfied, relevant for our study only is only the set $\left\{\left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{4}\right)\right\}$. For this reason, we consider the following cases:
Case (i) If $x=a_{1}, y=a_{3}$ then

$$
\begin{aligned}
& d\left(a_{1}, T a_{1}\right)=d\left(a_{1}, a_{1}\right)=0, d\left(a_{3}, T a_{3}\right)=d\left(a_{3}, a_{2}\right)=8, d\left(T a_{1}, T a_{3}\right)=d\left(a_{1}, a_{2}\right)=1 \\
& d\left(a_{1}, T a_{3}\right)=d\left(a_{1}, a_{2}\right)=1, d\left(a_{3}, T a_{1}\right)=d\left(a_{3}, a_{1}\right)=8, d\left(a_{1}, a_{3}\right)=8
\end{aligned}
$$

and

$$
\begin{gathered}
L\left(a_{1}, a_{3}\right)=\max \left\{8, \frac{1+8}{2}, 0,8\right\}=8, \beta\left(L\left(a_{1}, a_{3}\right)\right)=\beta(8)=\frac{1}{3} \\
\varphi\left(L\left(a_{1}, a_{3}\right)\right)=\varphi(8)=\frac{25}{8}
\end{gathered}
$$

In this case,

$$
d\left(T a_{1}, T a_{3}\right)=1 \leq \frac{25}{24}=\frac{1}{3} \cdot \frac{25}{8}=\beta\left(L\left(a_{1}, a_{3}\right)\right) \varphi\left(L\left(a_{1}, a_{3}\right)\right)
$$

Case(ii) If $x=a_{1}, y=a_{4}$ then

$$
\begin{aligned}
d\left(a_{1}, T a_{1}\right) & =d\left(a_{1}, a_{1}\right)=0, d\left(a_{4}, T a_{4}\right)=d\left(a_{4}, a_{2}\right)=6, d\left(T a_{1}, T a_{4}\right)=d\left(a_{1}, a_{2}\right)=1 \\
d\left(a_{1}, T a_{4}\right) & =d\left(a_{1}, a_{2}\right)=1, d\left(a_{4}, T a_{1}\right)=d\left(a_{4}, a_{1}\right)=6
\end{aligned}
$$

and

$$
\begin{gathered}
L\left(a_{1}, a_{4}\right)=\max \left\{1, \frac{1+6}{2}, 0,6\right\}=6, \beta\left(L\left(a_{1}, a_{4}\right)\right)=\beta(6)=\frac{2}{5} \\
\varphi\left(L\left(a_{1}, a_{4}\right)\right)=\varphi(6)=\frac{19}{6}
\end{gathered}
$$

In this case,

$$
d\left(T a_{1}, T a_{4}\right)=1 \leq \frac{38}{30}=\frac{2}{5} \cdot \frac{19}{6}=\beta\left(L\left(a_{1}, a_{4}\right)\right) \varphi\left(L\left(a_{1}, a_{4}\right)\right)
$$

Case(iii) If $x=a_{2}, y=a_{3}$ then

$$
\begin{aligned}
& d\left(a_{2}, T a_{2}\right)=d\left(a_{2}, a_{1}\right)=1, d\left(a_{3}, T a_{3}\right)=d\left(a_{3}, a_{2}\right)=8, d\left(T a_{2}, T a_{3}\right)=d\left(a_{1}, a_{2}\right)=1 \\
& d\left(a_{2}, T a_{3}\right)=d\left(a_{2}, a_{2}\right)=0, d\left(a_{3}, T a_{2}\right)=d\left(a_{3}, a_{1}\right)=8, d\left(a_{2}, a_{3}\right)=8 .
\end{aligned}
$$

and

$$
\begin{gathered}
L\left(a_{2}, a_{3}\right)=\max \left\{8, \frac{0+8}{2}, 1,8\right\}=8, \beta\left(L\left(a_{2}, a_{3}\right)\right)=\beta(8)=\frac{1}{3} \\
\varphi\left(L\left(a_{2}, a_{3}\right)\right)=\varphi(8)=\frac{25}{8}
\end{gathered}
$$

In this case,

$$
d\left(T a_{2}, T a_{3}\right)=1 \leq \frac{25}{24}=\frac{1}{3} \cdot \frac{25}{8}=\beta\left(L\left(a_{2}, a_{3}\right)\right) \varphi\left(L\left(a_{2}, a_{3}\right)\right)
$$

Case(iv) If $x=a_{2}, y=a_{4}$ then

$$
\begin{aligned}
d\left(a_{2}, T a_{2}\right) & =d\left(a_{2}, a_{1}\right)=1, d\left(a_{4}, T a_{4}\right)=d\left(a_{4}, a_{2}\right)=6, d\left(T a_{2}, T a_{4}\right)=d\left(a_{1}, a_{2}\right)=1 \\
d\left(a_{2}, T a_{4}\right) & =d\left(a_{2}, a_{2}\right)=0, d\left(a_{4}, T a_{2}\right)=d\left(a_{4}, a_{1}\right)=6, d\left(a_{2}, a_{4}\right)=6
\end{aligned}
$$

and

$$
\begin{gathered}
L\left(a_{2}, a_{4}\right)=\max \left\{6, \frac{0+6}{2}, 1,6\right\}=6, \beta\left(L\left(a_{2}, a_{4}\right)\right)=\beta(6)=\frac{2}{5} \\
\varphi\left(L\left(a_{2}, a_{4}\right)\right)=\varphi(6)=\frac{19}{6}
\end{gathered}
$$

In this case,

$$
d\left(T a_{2}, T a_{4}\right)=1 \leq \frac{38}{30}=\frac{2}{5} \cdot \frac{19}{6}=\beta\left(L\left(a_{2}, a_{4}\right)\right) \varphi\left(L\left(a_{2}, a_{4}\right)\right)
$$

Thus, all the conditions of Theorem 2.5 are satisfied. Moreover, $u=a_{1}$ is a fixed point of T.

Competing Interests : The authors declare that they have no competing interests.

Authors Contributions : All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

References

[1] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604-608.
[2] H. Afshari, H. Aydi, E. Karapinar, On generalized $\alpha-\psi$-geraghty contractions on b-metric spaces, Georgian Math. Journal (2017) https://doi.org/10.1515/gmj-2017-0063.
[3] H. Afshari, H.H. Alsulam, E. Karapinar, On the extended multivalued Geraghty type contractions, The Journal of Nonlinear Science and Applications 9 (6) (2016) 4695-4706.
[4] M. Asadi, E. Karapinar, A. Kumar, $\alpha-\psi$-Geraghty contractions on generalized metric spaces, Journal of Inequalities and Applications (2014) https://doi.org/10.1186/1029-242X-2014-423.
[5] H. Aydi, E. Karapinar, I.M. Erhan, P. Salimi, Best proximity points of generalized almost $-\psi$ Geraghty contractive non-self mappings, Fixed Point Theory and Applications (2014) https://doi.org/10.1186/1687-1812-2014-32.
[6] S.-H. Cho, J.-S. Bae, E. Karapinar, Fixed point theorems for alpha-Geraghty contraction type maps in metric spaces, Fixed Point Theory and Applications (2013) https://doi.org/10.1186/1687-1812-2013-329.
[7] E. Karapinar, $\alpha-\psi$-Geraghty contraction type mappings and some related fixed point results, Filomat 28 (2014) 37-48.
[8] E. Karapinar, On best proximity point of psi-Geraghty contractions, Fixed Point Theory and Applications (2013) https://doi.org/10.1186/1687-1812-2013-200.
[9] E. Karapinar, A. Pitea, On alpha-psi-Geraghty contraction type mappings on quasi-Branciari metric spaces, Journal of Nonlinear and Convex Analysis 17 (7) (2016) 1291-1301.
[10] E. Karapinar, A discussion on alpha-psi-Geraghty contraction type mappings, Filomat 28 (2014) 761-766.
[11] E. Karapinar, B. Samet, A note on psi-Geraghty type contractions, Fixed Point Theory and Applications (2014)
[12] O. Popescu, Some new fixed point theorems for α-Geraghty-contraction type maps in metric spaces, Fixed Point Theory and Applications (2014) https://doi.org/10.1186/1687-1812-2014-190.
[13] T. Suzuki, Fixed point theorem for a kind of Ćirić type contractions in complete metric spaces, Advances in the Theory of Nonlinear Analysis and its Applications 2 (1) (2018) 33-41.
[14] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969) 326-329.
(Received 15 May 2018)
(Accepted 13 September 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2019 by the Mathematical Association of Thailand. All rights reserved.

