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Abstract : An optimal control problem is studied in a discrete time model de-

scribing the dynamics of Tuberculosis transmission in which treatments in both

latency and infectious periods are considered. Objectives include maximising the

susceptible population at the final observational time and minimising the cost

induced from the controls. The controls are characterised using Pontryagin’s Op-

timality Principle, and are solved numerically, together with the state equations,

using a forward-backward sweep method.
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1 Introduction

Background of the Study. Being among the top ten epidemic causes of
death globally, Tubercolosis (TB) has been a great focus of study in the field
of epidemic diseases. It is caused by a bacteria called Mycobacterium Tu-
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berculosis which is transmitted through air. In fact, almost thirty percent
of the world’s entire population is infected with the disease, albeit majority
do not exhibit symptoms [1]. In line with this, TB has been proven to be
curable and preventable, and even now, various efforts are being made to
deal with the threat of the disease.

On the other hand, mathematical modelling have been of great help in
studying disease transmission dynamics over the years, particularly that
of communicable diseases. These models describe the dynamics as sim-
ple as possible while retaining a certain level of complexity just enough so
as to account for the underlying processes governing it. Among the pio-
neers of mathematical modelling for epidemic diseases are Kermack and
McKendrick [2], who divided the population into three compartments– the
Susceptible, the Infected, and the Removed classes– commonly known as
the SIR epidemic model. The susceptible class is composed of the members
of the population who are vulnerable and may contract the disease under
scrutiny via interaction with members of the infected class, while those in
the removed class are the ones who have recovered from the disease, be it
due to treatment or natural recovery. From then on, several models have
been developed to further understand the dynamics of different diseases
such as TB. One example, Tracy Atkins studied the transmission of Tuber-
culosis in her Master’s thesis [3], dividing the population not only into the
three such compartments, but also considered those infected individuals
who have yet to exhibit symptoms and are non-infectious— that which was
assigned as the Latent class.

Aparicio and Castillo-Chavez [4] studied the same epidemic but con-
sidered different levels of risks for contracting the disease in both infected
classes. In this, Aparacio, et al. took into account the detail that there are
individuals who could transmit the infection faster than the normal rate of
transmission. They also took note of the portion of the population which
develops pulmonary TB and those which do not. With that, the authors
divided the population into seven classes instead.

Furthermore, in addition to using mathematical modelling for the study
of epidemic diseases, several mathematicians also delved into the field of op-
timal controls applied to these models. Some of these focused on optimising
the amount of treatment— or vaccination as a form of prevention— certain
classes should get, given some certain, reasonable constraints. Lee, Chow-
ell, and Castillo-Chavez [5] studied a variation of such problem, in which
they considered a model of a pandemic influenza, with the treatment and
interaction between classes as the control variables. Another similar model
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was studied by Tchuenche, et al., [6], but they instead considered treatment
and vaccination as the control variables.

Description of the Model. In this study, the researchers are interested
in an epidemic model developed by Cao and Tan [7]. As such, the authors
considered a discrete time tuberculosis model given as follows:

St+1 = Λ + p

(
1− βIt

Nt

)
St + pkmLt + pγIt,

Lt+1 = q
pβStIt
Nt

+ p(1− α)(1−m)Lt + p(1− k)mLt,

It+1 = (1− q)pβStIt
Nt

+ pα(1−m)Lt + p(1− γ)It,

where S0, L0, I0 ≥ 0, along with the following properties:

(i.) the entire population is compartmentalized into three classes: the
Susceptible, the Latently infected, and the Infectiously infected, with
their corresponding populations at time t denoted by St, Lt, and It,
respectively;

(ii.) interaction between the members of the infectious and the susceptible
classes may cause the susceptible individuals to contract the disease
and get infected;

(iii.) the surviving members of the latent class may either get treatment
from the disease or naturally progress into the infectious class, with m
denoting the probability for getting treatment, and (1−m) denoting
the probability for natural progression;

(iv.) the parameter Λ denotes the recruitment rate into the population;

(v.) p is the survival probability;

(vi.) k is the probability that a latent individual recovers from the disease
given that they received treatment;

(vii.) α denotes the probability that a member of the latent class becomes
infectious;

(viii.) γ is the rate of recovery of an infectious individual;

(ix.) β is the probabilty of transmitting the disease; and
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(x.) q is the probability that an infected individual enters the latently in-
fected class, while (1−q) is the probability that an infected individual
enters the infectiously infected class.

Objective. The goal of this paper is to study an optimal control problem
at a finite time period t = 0, 1, . . . , T , applied to the model investigated by
Cao et.al. [7]. The controls that will be considered in this model are the
treatments for both of the infected classes. The aim is to maximise the
population of the susceptible class at the final time T . Due to the possible
scarcity of resources on implementing both treatments, the problem will
also be formulated as to minimise the cost induced from applying these
controls. This study, unlike the optimal control problems that makes use
of models of differential equations cited before, deals with a discrete time
model. The reason behind this is the fact that the data used for estimating
the parameters in the model are usually collected periodically, which makes
a discrete time model a natural candidate for describing such phenomena.

This paper is organized as follows. In the next section, the formulation
of the optimal control problem will be shown, and the optimal controls
will be characterised using Pontryagin’s Optimality Principle. In the third
section, using the characterisation of the controls, numerical examples using
a forward-backward sweep method will be illustrated, and the results will be
discussed. Lastly, conclusions and possible future works will be discussed.

2 Formulation of the Optimal Control Problem

Going back to the Discrete Tuberculosis Model (cf. [7]), we have

St+1 = Λ + p

(
1− βIt

Nt

)
St + pkmLt + pγIt,

Lt+1 = q
pβStIt
Nt

+ p(1− α)(1−m)Lt + p(1− k)mLt,

It+1 = (1− q)pβStIt
Nt

+ pα(1−m)Lt + p(1− γ)It,

for t = 0, 1 . . . , T − 1, where the parameters are defined as in [7]. The
solutions for the model are established to be bounded, making it possible
for us to apply controls.

For each t = 0, 1, . . . , T − 1, we consider controls u1,t, u2,t such that
ui,t ∈ [0, bi], where bi ≤ 1, for each i = 1, 2. These control variables are
considered to be treatments for the disease. Meaning to say, instead of the
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parameters k and γ we shall respectively use the control variables u1,t and
u2,t for each t = 0, 1, . . . , T − 1. This, in turn, results in to making the
treatment rates dependent on time t = 0, 1, . . . , T − 1.

Hence, the controlled model (state equations), satisfied for each t =
0, 1, . . . , T − 1, is given as follows.

St+1 = Λ + p
(

1− βIt
Nt

)
St + pu1,tmLt + pu2,tIt,

Lt+1 = q pβStIt
Nt

+ p(1− α)(1−m)Lt + p(1− u1,t)mLt,

It+1 = (1− q)pβStIt
Nt

+ pα(1−m)Lt + p(1− u2,t)It,

(2.1)

with initial states S0, L0, I0 ≥ 0, and 0 ≤ ui,t ≤ bi for all i = 1, 2. (2.2)

Note that the parameters b1 and b2 depend on the highest effectivity
rate of treatment among various TB medicines.

The goals, which are to maximise the population of the susceptible class
at the final time T and to minimise the cost induced from applying both
controls, will be realised by maximising the objective functional

J(ui,t) := ST −
1

2

T−1∑
t=0

[Au21,t +Bu22,t].

In summary, the formulated optimal control problem can be written as

max
u,v∈U

J(ui,t) subject to (2.1) and (2.2). (P)

3 Characterisation of the Controls

To characterise the optimal controls of the problem (P), we will be em-
ploying Pontryagin’s Optimality Principle (POP). This characterisation is
done by devising the necessary conditions for the optimal controls u∗1,t, u

∗
2,t

presented in [8]. The POP presents a way of translating problem (P) into
maximising the Hamiltonian with respect to u∗1,t, u

∗
2,t, where the hamilto-

nian is defined as

Ht(u1,t, u2,t, St, Lt, It) = −1

2
(Au1,t +Bu2,t)+Γt+1 ·Gt, t = 0, 1, . . . , T−1.

where Γt = (λ1,t, λ2,t, λ3,t)
T is the adjoint vector, with λi,t known to be

the adjoint variables, and Gt = (f1,t, f2,t, f3,t)
T is a vector with variables
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fi,t denoting the right hand side of the state equations, for each i = 1, 2, 3.
The existence of the optimal controls is established, and are characterised
through the theorem below.

Theorem 3.1. There exists u∗1,t, u
∗
2,t, with the corresponding state variables

S∗t , L
∗
t and I∗t , such that J(ui,t) is maximised for all t = 0, 1, . . . , T −

1. Furthermore, there exists an adjoint vector, Γt, with adjoint variables
satisfying the following:

λ1,t = λ1,t+1p
(

1− βIt
Nt

)
+ λ2,t+1q

pβIt
Nt

+ λ3,t+1(1− q)pβItNt
,

λ2,t = λ1,t+1pu1,tm+ λ2,t+1[p{(1− α)(1−m) + (1− u1,t)}]

+λ3,t+1pα(1−m),

λ3,t = λ3,t+1

[
p
(
(1−q)βSt

Nt
+ (1− u2,t)

)]
+ λ2,t+1p

qβSt

Nt

+λ1,t+1

[
p
(
u2,t − βSt

Nt

)]
,

(3.1)

with transversality conditions λ1,T = 1, and λ2,T = λ3,T = 0. And, the
optimal controls are characterised for each t = 0, 1, . . . , T − 1 as

u1,t = max

(
0,min

(
b1,

pmLt(λ1,t+1 − λ2,t+1)

A

))
, (3.2)

and

u2,t = max

(
0,min

(
b1,

pIt(λ1,t+1 − λ3,t+1)

B

))
. (3.3)

Proof. Notice that −1
2

(
Ax2 +By2

)
is convex, that the Lipschitz property

is satisfied by the state system, and that it has been established in [7] that
the solutions of the state equations are bounded. These facts assure us of
the existence of the optimal controls u∗1,t and u∗2,t for problem (P), through
Corollary 4.1 of [9]. Moreover, the objective functional can also be easily
shown to be strictly convex which establishes the unique existence of both
controls.

The derivation of the adjoint equations, and the characterisation of the
controls are standard and are based on the computations in [8]. The adjoint
equations satisfy the following conditions:

λ1,t = ∂StH

λ2,t = ∂LtH

λ3,t = ∂ItH
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To solve for the equations above, let J = (∂StGt ∂LtGt ∂ItGt) denote
the Jacobian of the state system (2.1). Where the resulting components
are solved as

∂StGt =


p
(

1− βIt
Nt

)
q pβItNt

(1− q)pβItNt

 , ∂ItGt =


p
(
u2,t − βSt

Nt

)
p qβSt

Nt

p
(
(1−q)βSt

Nt
+ (1− u2,t)

)


and

∂LtGt =

 pu1,tm

p{(1− α)(1−m) + (1− u1,t)}
pα(1−m)

 .

And thus,
Γt = ΓTt+1 · J,

which results into the system (3.1).
Now, for the characterisation of the controls, the optimality condition

derived by Lenhart et al. [8] will again be used, i.e.,
ui,t = 0 if ∂ui,tHt < 0,

ui,t ∈ [0, bi] if ∂ui,tHt = 0,

ui,t = bi if ∂ui,tHt > 0,

(3.4)

for all i = 1, 2, and t = 0, 1, . . . , T − 1. Computing for ∂ui,tHt for both
i = 1, 2, yields

∂u1,tH = −Au1,t + pmLt(λ1,t+1 − λ2,t+1),

and
∂u2,tH = −Bu2,t + pIt(λ1,t+1 − λ3,t+1).

Thus, the characterisation (3.4) results into

u1,t =


0 if ∂u1,tH < 0,
pmLt(λ1,t+1−λ2,t+1)

A if ∂u1,tH = 0,
1 if ∂u1,tH > 0,

and

u2,t =


0 if ∂u2,tH < 0,
pIt(λ1,t+1−λ3,t+1)

B if ∂u2,tH = 0,
1 if ∂u2,tH > 0.

Therefore, we get the characterisations (3.2) and (3.3).
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4 Numerical Results and Discussion

Here, the first order necessary conditions derived from the previous
section are used to illustrate several scenarios numerically, i.e., with varied
values of certain chosen parameters. This is done using a forward-backward
sweep method on the conditions.

Using the discrete timeline t = 0, 1, 2, . . . , 20, we first show the effect
of changing the values of the weight parameters A and B on the strategy
of applying the controls. Here, the parameter values are taken from the
endemic equilibrium analysed by Cao et.al. in [7], except of course for
the parameters k and γ, which were altered as the controls u1 and u2,
respectively.

For convergence’s sake, the values A = B = 10 are initially simulated, as
shown in Figure 1. Figure 2, shows a scenario where the weight parameter
B is increased, i.e. B = 15. While in Figure 3, the weight parameter A is
changed from A = 10 to A = 15.

Evidently, since increasing the weight parameter B is equivalent to in-
creasing the price for the treatment u2, Fig. 2 shows a decrease in appli-
cation between the interval [10, 20] as compared to the application of u2
in Fig. 1. Similarly, the application of treatment u1 is affected when the
weight paramater A is changed, i.e., from having u1,t = 0.5 for t = 1, 2, 3
when A = 10 to u1,t = 0.5 only for t = 1, 2, and u1,3 ∈ [0.4, 0.45] when
A = 15.
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Figure 1: A=10, B =10
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Figure 2: A = 10, B = 15
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Figure 3: A = 15, B = 10

The next simulation shows the effect of using varied values for the pa-
rameter α on both controls. For convergence’s sake, we take A = B = 1
and T = 10 (Note: The variation of α is of increasing order, i.e., α1 <
α2 < α3 < α4). As can be observed (cf. Figure 4), the control u1 is
more sensitive to the variation relative to the control u2. This could be
attributed to the fact that an increase in α increases the rate of trans-
mission from the latent class to the infectious class. Meaning to say, the
control u1 need not be focused on treating the members of the latent class.
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Meanwhile, varying the values of β, as shown in Figure 5 (with β1 <
β2 < β3 < β4), we see noticeable increases in both controls u1 and u2. This
is expected as β represents the transmission rate of the disease. An increase
in the value of the transmission rate would naturally cause a decrease in
the susceptible population while increasing both of the infected popula-
tions. This would, in turn, result into a greater need for better quality of
treatments in both classes.
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Figure 5: Simulations for varied values of β

In the next simulation (cf. Figure 6), we vary the values of q, or the
probability that an infected individual from the susceptible class enters the
latently infected class, in an increasing manner. This would then mean that
the probability of an infected individual entering the infectious class, which
is (1−q), is changed in a decreasing manner. And so, as can be seen in Fig.
6, both controls are affected, although differently. The control u1 shows an
increasing trend, implying the need for better treatments in the latent class
as q increases. On the other hand, the control in our infectious class, u2,
decreases as q increases, or 1− q decreases, which is reasonable, since there
would be lower transmission rates from the susceptible population into the
infectious population.
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Figure 6: Simulations for varied values of q
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Lastly, Figure 7 shows simulations when m is varied (m1 < m2 < m3 <
m4). There is a very slight change in the control u2 (less than 0.0001) as
the parameter m denotes the probability of an individual from the latent
class getting treatment. Hence, treatments in the infectious class are not
prioritized. However, there is a significant increase in the control u1 for all
t = 0, 1, . . . , 20. This is due to the fact that an increase in the number of
treatments in the latent class requires better treatment success rates, which
is the control u1, in order for us to maximize the susceptible population
and, at the same time, minimize the cost induced from implementing the
controls.
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5 Conclusion

Both of the optimal controls were characterised using the first order nec-
essary conditions which were solved with the aid of Pontryagin’s Optimality
Principle. Furthermore, the sufficient conditions were shown, proving that
the characterised controls are indeed optimal for the given control prob-
lem. With simulations done by varying the parameters— so as to consider
different scenarios— maximisation of the susceptible population by using
cost-effective control programs was done through a forward-backward sweep
method on the equations derived from the necessary conditions. Maximi-
sation of the susceptible population— while minimising the cost induced
from applying both controls– in turn, effectively reduces both the latent
TB and the infectious TB populations.

The authors recommend the reader to consider different control strate-
gies. In particular, one may use a separating control for the problem, i.e.,
isolation or confinement of the members of the infectious class from the rest
of the population.
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