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1 Introduction

In the fields of sciences and engineering such as atmospheric flow, forest insects
are often described in the forms of differential equations [1–3]. To understand the
behavior or physical properties of these problems, researchers often assume some
assumptions to simplify the problems; for example, assuming that the atmospheric
flows having small amplitude and linear so that flows can be modeled by Boussinesq
approximation [1,2,4]. Along with mathematical models, finite-time synchroniza-
tion is of interests rather than the one over infinite time. The dynamic manners,
such as the existence of the equilibrium points, the stability and boundedness of
results, have drawn the wide attention and attracted research opportunities of
many scholars.

Some systems may allow state variables to oscillate and finally reach their
equilibrium states. In many practical circumstants, however, system may need
to attain its state values to be within some certain threshold for a short or finite
period of time. This situation is commonly known as finite-time stability (FTS)
as proposed by Dorato [5]. This FTS concept can be considered as one of the
practical situations for real world problems such as in environmental, industrial
and sciences. In many system, a desired controller is required to maintain the
values of state variables within their required values. This concept is called finite-
time stabilization (FTU). Thus, many researchers have been paid attention to the
FTS and FTU of the dynamical system.

During the last few decades, researchers have been proposing criteria that
guarantee FTS of various systems by finding the smallest upper bound of the norm
square of state variables or finding maximum time that guarantees state variables
to be within the given bounds for a certain period of time. Some examples of FTS
of linear system with constant delay are studied in [6–12]; FTS of linear system
with time-varying delays in [13–16]; and FTS on other systems in [5, 9, 17–21].

The past studies of FTS on linear system with time-varying delay are mostly
limited to the delay differentiable functions which lead to conservative conditions.
Moreover, some FTU criteria based on Lyapunov-Krasovski functional (LKF) may
need to define new variables for taking care of nonlinear terms occurring in their
formulations that lead to some conservativeness (see [10,12,13,16,22]).

Another source that can cause the stability of systems is delay effect. In
various scientific topics such as electrical engineering, neural networks, and chem-
ical systems, time delay which is well observed that will deteriorate the systems
performance and even make the system unstable are frequently confronted. The
artificial neural network which has powerful scientific application background and
great research capability is a very active framework for algorithm. However, it
unavoidably causes to the emergence of diverse time-delays in the procedure of
using large-scale integrated circuits to form a neural network. The synchronous
discharge of neurons, in actuality, is a universal phenomenon. For example, in
various synchronizations: local brain regions in patients with Parkinsons disease,
the visual cortex of conscious monkeys, the hippocampus and the cerebral cortex
during the maze task, neurons in circadian clock, etc. Therefore, many reseachers
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have paid attention to stabilize the systems using various methods. Lyapunov the-
ory is one of the common method to investigate the stability of dynamical systems
dealing with delays.

In formulating the stability criterion of the systems with time delay via Lya-
punov theory, ones must deal with derivative of the proposed LKF. Ones can
improve the stability condition by applying a better bound to the derivative of
the LKF. Examples of well-known inequalities used in the control theory are
free-matrix-based inequality described in [23, 24] and Jensen’s inequality [25].
During the past decade, Seuret and Gouaisbaut have developed an improved
inequality commonly known as Wirting-based integral inequality for bounding∫ b
a
ẋT (s)Rẋ(s) ds (see [26–28]). Lately, Stojanovic [29] proposed an integral in-

equality for bounding an integral inequality with exponential function.
As mentioned above, FTS is one of the important topics that should have

been further investigated. Thus, in this study, we will formulate less conservative
stability criteria for guaranteeing FTS and FTU of the linear systems with interval
time-varying delay that does not need to be differentiable. To do so, we first
develop two new inequalities in the form of free-matrix based for bounding the

integral of the form −
∫ t−d1
t−d2 e

α(t−s)ẋT (s)Rẋ(s) ds. By choosing an appropriated

Lyapunov-Krasovski functional and desiring a proper state-feedback controller u(t)
to control the system, our criteria are derived without defining new variables for
non-linear terms that can lead to conservative condition.

This article is organized as follow: the considered system and important lem-
mas, propositions and definition are introduced in section 2, follow by the deriva-
tion of FTS and FTU criteria in section 3. Section 4 is devoted to show the
effectiveness of the proposed criteria. The last section is concluded the work.

Notations: The following notations will be used throughout this article. Rn
is the n-dimensional space with the scalar product xT y; Rn×m denotes the set
of n × m real-valued matrices; AT denotes the transpose of the matrix A; λ(A)
are eigenvalues of A; λmax(A) (λmin(A)) maximum (minimum) real part of λ(A);
xt := {x(t + s) : s ∈ [−τM , 0]}; ||xt|| := sups∈[−τM ,0]{||x(t + s)||, ||ẋ(t + s)||};
A > 0 (< 0) means A is positive (negative) definite; A ≥ 0 (≤ 0) means A
is positive (negative) semi-definite; lower entries of any symmetric matrix are
represented by ∗.

2 Preliminaries

Consider the following linear time-varying delay system:

ẋ(t) = A0x(t) +A1x(t− τ(t)) +Bu(t) (2.1)

where t > 0, x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is the state vector of the system.
u(t) ∈ Rm is the control input. A0, A1 ∈ Rn×n and B ∈ Rn×m are known
constant matrices. The time-varying delay τ(t) is a continuous function satisfying
0 ≤ τm ≤ τ(t) ≤ τM , τm 6= τM . An initial condition x(t) = φ(t) is defined to
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be a differentiable vector-valued function on [−τM , 0] with its norm defined by
‖φ(t)‖ := supτm≤t≤τM

{
‖φ(t)‖, ‖φ̇(t)‖

}
. Here we use a state-feedback control law

in the form of u(t) = BTKx(t), where K is a designed parameter that will be
determined later.

To formulate the finite-time stabilization, we first introduce useful lemmas and
definitions as following.

Lemma 2.1. [30] For any symmetric matrix M ∈ Rn×n and nonsingular matrix
A ∈ Rn×n. The matrix M is positive definite if and only if ATMA is positive
definite. Similarly, M is negative definite matrix if and only if ATMA is negative
definite.

Proposition 2.2. For any symmetric matrix M ∈ Rn×n and any real matrix
A ∈ Rn×n. If the matrix M is positive definite then ATMA is positive semi-
definite.

Proof. Let M is positive definite then vTMv > 0, ∀v 6= 0. If Av 6= 0 then
vTATMAv = (Av)TMAv > 0. If Av = 0 then vTATMAv = (Av)TMAv = 0.
As a results, vTATMAv ≥ 0, ∀v 6= 0. Thus, ATMA ≥ 0.

Proposition 2.3. For any real symmetric matrices A, Σ ∈ Rn×n with Σ > 0, the
following inequality holds:

−ATΣ−1A ≤ −2A+ Σ.

Proof. Since Σ > 0, this implies that Σ−1 > 0. From Proposition 2.2, Σ−1 > 0
implies Y TΣ−1Y ≥ 0, for any real matrix Y . Let Y = A − Σ. We obtain
−ATΣ−1A ≤ −2A+ Σ. So, the proof is complete.

Proposition 2.4. For any symmetric positive definite matrix R ∈ Rn×n and
scalars α > 0, d1, d2 ≥ 0 with d = d2 − d1 > 0, the following inequality holds:

−
∫ t−d1

t−d2
eα(t−s)ẋT (s)Rẋ(s) ds ≤

[
xT (t− d1)
xT (t− d2)

]T [−r1R r2R
r2R −r3R

] [
x(t− d1)
x(t− d2)

]
,

where ε =
e−αd1 − e−αd2

α
, r1 = 2

(
α

2
+

1

d

)
eαd1 − ε

(
α

2
+

1

d

)2

e2αd1 ,

r2 =

(
α

2
+

1

d

)
eαd1 −

(
α

2
− 1

d

)
eαd2 + ε

(
α2

4
− 1

d2

)
eα(d1+d2),

r3 =− 2

(
α

2
− 1

d

)
eαd2 − ε

(
α

2
− 1

d

)2

e2αd2 .

Proof. Define the function z as

z(s) = eα(t−s)ẋ(s)− eαd1x(t− d1)

(
α

2
+

1

d

)
− eαd2x(t− d2)

(
α

2
− 1

d

)
.
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Since R > 0, we have 0 ≤
∫ t−d1

t−d2
e−α(t−s)zT (s)Rz(s)ds. Substituting z(s) into the

integral, we obtain

0 ≤
∫ t−d1

t−d2
eα(t−s)ẋT (s)Rẋ(s) ds

−2

(∫ t−d1

t−d2
ẋ(s) ds

)T
R

(
eαd1x(t− d1)

(
α

2
+

1

d

)
+ eαd2x(t− d2)

(
α

2
− 1

d

))

+

(∫ t−d1

t−d2
e−α(t−s) ds

)(
eαd1x(t− d1)

(
α

2
+

1

d

)
+ eαd2x(t− d2)

(
α

2
− 1

d

))T
×R

(
eαd1x(t− d1)

(
α

2
+

1

d

)
+ eαd2x(t− d2)

(
α

2
− 1

d

))
.

Because
∫ t−d1
t−d2 ẋ(s) ds = x(t − d1) − x(t − d2) and

∫ t−d1
t−d2 e

−α(t−s) ds = (e−αd1 −
e−αd2)/α, substituting these terms into the above inequality then rearranging the
inequality, we obtain

−
∫ t−d1

t−d2
eα(t−s)ẋT (s)Rẋ(s) ds ≤

[
xT (t− d1)
xT (t− d2)

]T [−r1R r2R
r2R −r3R

] [
xT (t− d1)
xT (t− d2)

]
.

The proof is completed.

Proposition 2.5. For any symmetric positive definite matrix R ∈ Rn×n and
scalars α > 0, τm, τM , d1, d2 with 0 ≤ τm ≤ d1 ≤ d2 ≤ τM and τ12 = τM − τm > 0,
the following inequality holds:

−
∫ t−d1

t−d2
eα(t−s)ẋT (s)Rẋ(s) ds ≤

[
xT (t− d1)
xT (t− d2)

]T [−u1R u2R
u2R −u3R

] [
x(t− d1)
x(t− d2)

]
,

where

u1 =2

(
α

2
+

1

τ12

)
eατm − ε2

(
α

2
+

1

τ12

)2

e2ατm ,

u2 =

(
α

2
+

1

τ12

)
eατm −

(
α

2
− 1

τ12

)
eατM + ε2

(
α2

4
− 1

τ212

)
eα(τm+τM ),

u3 =− 2

(
α

2
− 1

τ12

)
eατM − ε2

(
α

2
− 1

τ12

)2

e2ατM ,

ε2 =
e−ατm − e−ατM

α
.

Proof. Because 0 ≤ τm ≤ d1 ≤ d2 ≤ τM , we obtain∫ t−d1

t−d2
e−α(t−s)ds ≤

∫ t−τm

t−τM
e−α(t−s)ds =

e−ατm − e−ατM
α

. (2.2)
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By defining function z as

z(s) = eα(t−s)ẋ(s)− eατmx(t− d1)

(
α

2
+

1

τ12

)
− eατMx(t− d2)

(
α

2
− 1

τ12

)
.

The proof is similar to the one in Proposition 2.4 but applying inequality (2.2)

for bounding the integral
∫ t−d1
t−d2 e

−α(t−s)ds instead of
∫ t−d1
t−d2 e

−α(t−s) ds = (e−αd1 −
e−αd2)/α. Thus, the proof is complete.

Remark 2.6. Inequalities in Propositions 2.4 and 2.5 are similar except that
the value of d1, d2, d are replaced by τm, τM , τ12; respectively. In this research,
moreover, the inequality in Proposition 2.5 is suitable for applying to the integral
with interval time delay such as 0 ≤ τm ≤ τ(t) ≤ τM .

Remark 2.7. One can notice that the well-known Jensen’s inequality is a special
case of our new inequalities when α = 0.

Lemma 2.8. [12] Given constant matrices, X,Y, Z with appropriate dimensions
satisfying X = XT , Y = Y T > 0, then X + ZTY −1Z < 0 if and only if

[
X ZT

Z −Y

]
< 0 or

[
−Y Z
ZT X

]
< 0.

Definition 2.9. [12] The system is said to be finite-time stability (FTS) with
respect to (c1, c2, T ), where c1, c2 ≥ 0 if

‖φ(t)‖2 ≤ c1, ∀t ∈ [−τM , 0] =⇒ ‖x(t)‖2 < c2, ∀t ∈ [0, T ]. (2.3)

Remark 2.10. It is important to point out that finite-time stability is totally
different from Lyapunov asymptotic stability, and they are independent of each
other.

In the next section, we first formulate the finite-time stability condition for
the linear systems without controller (u(t) = 0) follow by deriving the finite-
time stabilization of the linear system (2.1). The use of the inequalities stated
in Propositions 2.4 and 2.5 play important roles in obtaining less conservative
FTS and finite-time stabilization conditions in this research as will be seen in the
following theorem.
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3 Main Results

To formulate the finite-time stability and stabilization criteria, we first define
the following constants: 0 ≤ τm ≤ τ(t) ≤ τM , τm 6= τM , τ12 = τM − τm, and

ε1 =
1− e−ατm

α
, ε2 =

e−ατm − e−ατM
α

, (3.1)

r1 = 2

(
α

2
+

1

τm

)
− ε1

(
α

2
+

1

τm

)2

, (3.2)

r2 =

(
α

2
+

1

τm

)
−
(
α

2
− 1

τm

)
eατm + ε1

(
α2

4
− 1

τ2m

)
eατm , (3.3)

r3 = −2

(
α

2
− 1

τm

)
eατm − ε1

(
α

2
− 1

τm

)2

e2ατm , (3.4)

u1 = 2

(
α

2
+

1

τ12

)
eατm − ε2

(
α

2
+

1

τ12

)2

e2ατm , (3.5)

u2 =

(
α

2
+

1

τ12

)
eατm −

(
α

2
− 1

τ12

)
eατM + ε2

(
α2

4
− 1

τ212

)
eα(τm+τM ), (3.6)

u3 = −2

(
α

2
− 1

τ12

)
eατM − ε2

(
α

2
− 1

τ12

)2

e2ατM . (3.7)

We begin the section by formulating the FTS condition for the linear system with
time-varying delay (2.1) with u(t) = 0 as stated in the following theorem.

Theorem 3.1. The linear system with time-varying delay as in Eq. (2.1) without
controller (u(t) = 0) is finite-time stable with respect to (c1, c2, T ) if there exist pos-
itive scalars λ1, λ2, λ3, λ4, α, and symmetric positive definite matrices P,Q1, Q2, R,
such that the following inequalities hold:

∆ :≡


−e−αT c2c1 1

√
eατm − 1

√
eατM − 1

√
eατM − ατM − 1

∗ −λ1 0 0 0
∗ ∗ −λ2α 0 0
∗ ∗ ∗ −λ3α 0
∗ ∗ ∗ ∗ −λ4α2

 < 0,

(3.8)

λ1I < P < I, λ2I < Q1, λ3I < Q2, λ4I < R, (3.9)

Ω∗ :≡



τMPA
T
0 r2P P P

[Ω] 0 r2Q1 0 0
τMRA

T
1 0 0 0

0 0 0 0
∗ ∗ ∗ ∗ −τMR 0 0 0
∗ ∗ ∗ ∗ ∗ −r2R 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2


< 0, (3.10)
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where

[Ω] =


Ω11 0 A1R 0
∗ Ω22 u2Q1 0
∗ ∗ −(u3 + u1)R u2Q2

∗ ∗ ∗ Ω44

 (3.11)

with Ω11 = A0P +PAT0 − (α+ 2r1 + 2r2)P + (r1 + r2)R, Ω22 = −eατmQ1− (r2 +
r3 + u1)(2Q1 −R) and Ω44 = −(eατM + 2u3)Q2 + u3R.

Proof. Define ξT =
[
xT (t) xT (t− τm) xT (t− τ(t)) xT (t− τM )

]
. Choose

Lyapunov-Krasovskii functional (LKF) V (x(t)) = V1 + V2 + V3 + V4 where

V1 = xT (t)P−1x(t), V2 =

∫ t

t−τm
eα(t−s)xT (s)Q−11 x(s) ds,

V3 =

∫ t

t−τM
eα(t−s)xT (s)Q−12 x(s) ds, V4 =

∫ 0

−τM

∫ t

t+θ

eα(t−θ)ẋT (θ)R−1ẋ(θ) dθ ds.

Differentiating the proposed LKF along the system (2.1), we obtain

V̇1 = 2xT (t)P−1ẋ(t)− αxT (t)P−1x(t) + αV1,

V̇2 = xT (t)Q−11 x(t)− eατmxT (t− τm)Q−11 x(t− τm) + αV2,

V̇3 = xT (t)Q−12 x(t)− eατMxT (t− τM )Q−12 x(t− τM ) + αV3,

V̇4 =

∫ 0

−τM

[
ẋT (t)R−1ẋ(t)− e−αsẋT (t+ s)R−1ẋ(t+ s)

+ α

∫ t

t+s

eα(t−θ)ẋT (θ)R−1ẋ(θ) dθ
]
ds

= τM ẋ
T (t)R−1ẋ(t)−

∫ t

t−τM
eα(t−s)ẋT (s)R−1ẋ(s) ds + αV4.

Defining Ψ11 = P−1A0 +AT0 P
−1 +Q−11 +Q−12 − αP−1. Thus, we have

V̇ − αV = ξT


Ψ11 0 P−1A1 0

0 −eατmQ−11 0 0
AT1 P

−1 0 0 0
0 0 0 −eατMQ−12

 ξ

+ τMξ
T


AT0
0
AT1
0

R−1 [A0 0 A1 0
]
ξ −

∫ t

t−τM
eα(t−s)ẋT (s)R−1ẋ(s) ds,

(3.12)
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From Propositions 2.4 and 2.5, we have

−
∫ t

t−τm
eα(t−s)ẋT (s)R−1ẋ(s) ds ≤ ξT


−r1R−1 r2R

−1 0 0
r2R

−1 −r3R−1 0 0
0 0 0 0
0 0 0 0

 ξ, (3.13)

−
∫ t−τm

t−τ(t)
eα(t−s)ẋT (s)R−1ẋ(s) ds ≤ ξT


0 0 0 0
0 −u1R−1 u2R

−1 0
0 u2R

−1 −u3R−1 0
0 0 0 0

 ξ, (3.14)

−
∫ t−τ(t)

t−τM
eα(t−s)ẋT (s)R−1ẋ(s) ds ≤ ξT


0 0 0 0
0 0 0 0
0 0 −u1R−1 u2R

−1

0 0 u2R
−1 −u3R−1

 ξ. (3.15)

Applying inequalities (3.13) - (3.15), we have

−
∫ t

t−τM
eα(t−s)ẋT (s)R−1ẋ(s) ds

= −
(∫ t

t−τm
+

∫ t−τm

t−τ(t)
+

∫ t−τ(t)

t−τM

){
eα(t−s)ẋT (s)R−1ẋ(s) ds

}

≤ ξT


−r2R−1 r2R

−1 0 0
r2R

−1 (−r3 − u1)R−1 u2R
−1 0

0 u2R
−1 (−u3 − u1)R−1 u2R

−1

0 0 u2R
−1 −u3R−1

 ξ.

Thus, we can rewrite the relation (3.12) as

V̇ − αV ≤ ξT


Ψ11 0 P−1A1 0

0 −eατmQ−11 0 0
AT1 P

−1 0 0 0
0 0 0 −eατMQ−12

 ξ
+ τMξ

T
[
AT0 0 AT1 0

]T
R−1

[
A0 0 A1 0

]
ξ

+ ξT


−r2R−1 r2R

−1 0 0
r2R

−1 (−r3 − u1)R−1 u2R
−1 0

0 u2R
−1 (−u3 − u1)R−1 u2R

−1

0 0 u2R
−1 −u3R−1

 ξ,
≤ ξTΨξ,
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where

Ψ =


Ψ11 0 P−1A1 0

0 −eατmQ−11 0 0
AT1 P

−1 0 0 0
0 0 0 −eατMQ−12

+ τM


AT0
0
AT1
0

R−1 [A0 0 A1 0
]

+


−r2R−1 r2R

−1 0 0
r2R

−1 (−r3 − u1)R−1 u2R
−1 0

0 u2R
−1 (−u3 − u1)R−1 u2R

−1

0 0 u2R
−1 −u3R−1

 .
Pre- and post-multiplying the matrix Ψ by H = diag(P,Q1, R,Q2), we obtain

HTΨH = Π +


Ψ̂11 0 A1R 0

0 −eατmQ1 0 0
RAT1 0 0 0

0 0 0 −eατMQ2



+ τM


PAT0

0
RAT1

0

R−1 [A0P 0 A1R 0
]

where Ψ̂11 = A0P + PAT0 + P (Q−11 +Q−12 )P − αP and

Π =


−r1PR−1P r2PR

−1Q1 0 0
r2Q1R

−1P (−r3 − u1)Q1R
−1Q1 u2Q1 0

0 u2Q1 (−u3 − u1)R u2Q2

0 0 u2Q2 −u3Q2R
−1Q2

 .
Since r2PR

−1P − r2PR−1P = 0 and r2Q1R
−1Q1 − r2Q1R

−1Q1 = 0, we have

Π=


−(r1+r2)PR−1P 0 0 0

0 −(r3+r2+u1)Q1R
−1Q1 u2Q1 0

0 u2Q1 (−u3−u1)R u2Q2

0 0 u2Q2 −u3Q2R
−1Q2


+
[
r2P r2Q1 0 0

]T
(r2R)−1

[
r2P r2Q1 0 0

]
.

Using Proposition 2.3, we have

−(r3 + r2 + u1)Q1R
−1Q1 ≤ −2(r3 + r2 + u1)Q1 + (r3 + r2 + u1)R,

−u3Q2R
−1Q2 ≤ −2u3Q2 + u3R,

−(r1 + r2)PR−1P ≤ −2(r1 + r2)P + (r1 + r2)R.
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Thus, we have

Π ≤


−2(r1+r2)P+(r1+r2)R 0 0 0

0 −(r3+r2+u1)(2Q1−R) u2Q1 0
0 u2Q1 (−u3−u1)R u2Q2

0 0 u2Q2 −2u3Q2+u3R


+
[
r2P r2Q1 0 0

]T
(r2R)−1

[
r2P r2Q1 0 0

]
.

Let Ω11 = A0P +PAT0 −(α+2r1+2r2)P +(r1+r2)R and Ω22 = −eατmQ1−
(r2 + r3 + u1)(2Q1 −R). Thus, we obtain

HTΨH ≤


Ω11 0 A1R 0
0 Ω22 u2Q1 0

RAT1 u2Q1 −(u3 + u1)R u2Q2

0 0 u2Q2 −(eατM + 2u3)Q2 + u3R



+ τM


PAT0

0
RAT1

0

R−1 [A0P 0 A1R 0
]

+


r2P
r2Q1

0
0

 (r2R)−1
[
r2P r2Q1 0 0

]

+


P (Q−11 +Q−12 )P 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


= [Ω] + ΥTχΥ,

where [Ω] is defined in Eq. (3.11), χ = diag( 1
τM
R−1, 1

r2
R−1, Q−11 , Q−12 ), and

Υ =


τMA0P 0 τMA1R 0
r2P r2Q1 0 0
P 0 0 0
P 0 0 0

 .
From LMI (3.10), we have Ω∗ < 0. By Schur’s complement (Lemma 2.8),

Ω∗ < 0 is equivalent to HTΨH < 0. Using Proposition 2.1, it implies that Ψ < 0.
Therefore, V̇ −αV < 0. Multiplying this inequality by e−αt then integrating from
0 to t, with t ∈ [0, T ], we have

V (x(t)) < eαtV (x(0)).

From relations (3.9), these inequalities imply that I < P−1, P−1 <
1

λ1
I, Q−11 <

1

λ2
I, Q−12 <

1

λ3
I, and R−1 <

1

λ4
I. Thus, we have

V (x(t)) ≥ xT (t)P−1x(t) > xT (t)x(t) = ‖x(t)‖2,
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and

V (x(0)) = xT (0)P−1x(0) +

∫ 0

−τm
e−αsxT (s)Q−11 x(s) ds

+

∫ 0

−τM
e−αsxT (s)Q−12 x(s) ds+

∫ 0

−τM

∫ 0

θ

e−αsẋT (s)R−1ẋ(s) ds dθ

≤ 1

λ1
‖φ‖2 +

eατm − 1

αλ2
‖φ‖2 +

eατM − 1

αλ3
‖φ‖2 +

eατM − ατM − 1

α2λ4
‖φ‖2 .

From LMI (3.8), we have ∆ < 0, by applying Schur’s complement, this LMI is
equivalent to(

1

λ1
+
eατM − 1

αλ2
+
eατm − 1

αλ3
+
eατM − ατM − 1

α2λ4

)
− e−αT c2

c1
< 0.

Because the initial condtion ‖φ‖2 < c1, thus, we obtain

‖x(t)‖2 < eαT c1

(
1

λ1
+
eατM − 1

αλ2
+
eατm − 1

αλ3
+
eατM − ατM − 1

α2λ4

)
< c2.

Therefore, the linear system (2.1) without controller is finite-time stable.

Based on the finite-time stability condition in Theorem 3.1, we next formulate
finite-time stabilization condition of the linear system (2.1) with time-varying de-
lays. Here we desire a feedback controller in the form of u(t) = BTKx(t) where
K = Y P−1. The finite-time stabilization of the system is formulated as follow.

Theorem 3.2. The linear system (2.1) under the controller u(t) = BTKx(t)
with K = Y P−1 is finite-time stabilization with respect to (c1, c2, T ) if there exist
positive scalars λ1, λ2, λ3, λ4, α and symmetric positive definite matrices P,Q1, Q2,
R and matrix Y such that LMIs (3.8) - (3.9) hold and

Σ∗ :≡



τM (PAT0 + Y TBBT ) r2P P P
[Σ] 0 r2Q1 0 0

τMRA
T
1 0 0 0

0 0 0 0
∗ ∗ ∗ ∗ −τMR 0 0 0
∗ ∗ ∗ ∗ ∗ −r2R 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2


< 0 (3.16)

where

Σ =


Σ̄11 0 A1R 0
∗ Σ22 u2Q1 0
∗ ∗ −(u3 + u1)R u2Q2

∗ ∗ ∗ −(eατM + 2u3)Q2 + u3R

 (3.17)

with Σ11 = A0P +BBTY +PAT0 + Y TBBT − (α+ 2r1 + 2r2)P + (r1 + r2)R and
Σ22 = −eατmQ1 − (r2 + r3 + u1)(2Q1 −R).
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Proof. Replacing A0 in LMIs (3.10) by A0 + BBTK then using the fact that
KP = Y , then the finite-time stabilization with controller u(t) = BTKx(t) is
obtained.

Remark 3.3. In the derivations of our finite-time stability and stabilization cri-
teria, we overcome the process of defnining new variables for non-linear terms
occuring in the derivation by desiring proper controller and Lyapunov-Krasovskii
functional. Unlike the derivations in other works (see [10, 12, 13, 16, 22]) their
proposed finite-time stability conditions required to find new variables for the oc-
curing non-linear terms. Thus, solving the required LMIs will need extra care for
assuring the consistency of the feasible solutions regarding the non-linear terms.

4 Numerical Examples

In this section, we present two numerical examples to show the effectiveness
of our proposed stability conditions by investigating the FTS (example 4.1) and
FTU (example 4.2) of the linear system (2.1) of the form

ẋ(t) = A0x(t) +A1x(t− τ(t)) +Bu(t).

Example 4.1. Consider the linear system with time-varying delay (2.1) with:

A0 =

[
−0.2 2
−1 −0.2

]
, A1 =

[
−0.1 −0.1
−0.1 0.1

]
, τm ≤ τ(t) ≤ τM . (4.1)

Note that the linear system (2.1) with given constant matrices in (4.1) and u(t) =
0 is asymtotically stable with initial condition φT (t) =

[
0.1t+ 0.2,−0.1t− 0.2

]
,

t ∈ [−τM , 0]. However, in this example, we aim to compare the smallest values
of c2 guaranteeing FTS with respect to (c1, c2, T ) of our proposed FTS condition
in theorem 3.1 with some existing conditions. With the initial given above, we
choose ‖φ(t)‖2 = c1 = 0.18.

Case i: Comparing the smallest value of c2 guarantees FTS with criteria proposed
in [16] and [29]. For τm = 1 ≤ τ(t) ≤ 1.5 = τM , c1 = 0.18, we solve LMIs (3.8) -
(3.10) using standard LMI solver and obtain the smallest c2 for different final time
T = 1, 2, 3, 4, 5 as seen in Table 1. Results show that our conditon gives smaller
value of c2 than those from [16] but larger than [29].

Case ii: Investigating the effect of range of interval time delay (τM − τm) to the
the value of c2 guaranteeing FTS with respect to (0.18, c2, 2). First, we investigate
the effect of the interval time delay of range τM − τm = 0.5 for different values
of τm. Applying Theorem 3.1, results show that the smallest values of c2 increase
as τm increases (see Table 2). Next, we further investigate the range of interval
time delay affecting the smallest value of c2 guaranteeing FTS. We observe that
increasing the range of time delay (τM − τm) requires larger values of the smallest
value of c2 guaranteering FTS (results not shown).
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Table 1: Comparing smallest values of c2 for τ(t) ∈ [1, 1.5] with various T .
T 1 2 3 4 5

[29] 0.33 0.33 0.33 0.33 0.33

[16] 759.5 1.21× 106 1.79×109 2.58×1012 3.72×1015

Theorem 3.1 20.68 151.99 1089 7733 54894

Table 2: Smallest values of c2 for interval time delay with τM − τm = 0.5.
τm 0.1 0.2 0.3 0.4 0.6 0.8 1.0

τM 0.6 0.7 0.8 0.9 1.1 1.3 1.5

c2 4.96 7.89 11.87 17.34 35.61 72.67 151.99

Remark 4.1. The FTS condition proposed in [29] requires delay to be differen-
tiable function but our Theorem 3.1 and condition in [16] do not. Moreover, the
condition in [29] is formulated using one more term of single integral and one more
term of double integral in their LKF than ours; while the condition in [16] used
two more terms of double integral in their LKF than ours.

Next, we investigate the FTU of the linear system with interval time-varying
delay (2.1) with τ(t) = 0.1 + 0.01| cos(t)|,

A0 =

−1.7 1.7 0
1.3 −1 0.7
0.7 1 −0.6

 , A1 =

 1.5 −1.7 0.1
−1.3 1 −0.5
−0.7 1 0.6

 , B =

−1
10
20

 . (4.2)

Remark 4.2. The linear system (2.1) with given constant matrices defined in Eq.
(4.2) and u(t) = 0 is not asymtotically stable (see Figure 1). This figure reveals
that the state variables xi(t) → ∞, i = 1, 2, 3 as t → ∞ with initial condition
φT (t) =

[
0.4, 0.2, 0.4

]
.

Example 4.2. Consider the FTU of the linear system (2.1) with respect to
(c1, c2, T ) = (0.36, 5, 10) of linear system (2.1) with nonzero feedback controller
u(t) = BTKx(t) to control the norm of the solution to be within c2 = 5 during
0 ≤ t ≤ 10.

From Figure 1, it is easy to observe that, for t → 10, the largest value of
the state variables reach above 2000 that yields the norm of the state variables
reach very high value of about 106. With the initial condition above satifying
‖φ(t)‖2 = 0.36 = c1, we want to control the norm of the state variables to be
within the value of c2 = 5 for t ∈ [0, 10]. By solving LMIs (3.8), (3.9) and
(3.16) as required in Theorem 3.2, result shows that for α = 0.2, we obtain the
set of feasible solutions guaranteeing finite-time stabilization as follows: λ1 =



Finite-Time Stabilization of Linear Systems ... 187

0.6851, λ2 = 0.5628, λ3 = 0.5802, λ4 = 0.4874 and

P =

 0.9447 5.0022× 10−4 −0.0035
5.0022× 10−4 0.9302 −0.0032
−0.0035 −0.0032 0.9328

 ,
Q1 =

 0.9932 −0.0534 −0.0916
−0.0534 1.4371 0.5322
−0.0916 0.5322 2.2782

 , Q2 =

 0.9976 −0.0467 −0.0878
−0.0467 1.4763 0.5641
−0.0878 0.5641 2.3534

 ,
R =

 0.9909 −0.0544 −0.0869
−0.0544 1.3427 0.4300
−0.0869 0.4300 2.0441

 , Y = −

330.3973 704.3972 882.5567
5.3727 20.8157 25.6198
13.8299 24.8350 31.3583

 .
Here, the state-feedback controller guaranteeing finite-time stabilization of the
linear system (2.1) is designed by u(t) =

[
0.0736,−0.4971,−0.8678

]
x(t).

With this controller, we have the lower value of c2 = 4.8581 and the solution
of closed loop system with the initial condition φT = [0.4, 0.2, 0.4] is shown in
Figure 2. We notice that the state variables oscillate for short period of time then
converge to zero; while its norm is stay below c2 = 5 as expected.
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Figure 1: State trajectories of the linear system (2.1) with initial φT (t) =
[0.4, 0.2, 0.4] for T = 10.
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Figure 2: State (top) and norm (bottom) of the state trajectories of the
closed loop system as in Eq. (2.1) with controller.

Conclusion

In this research, we propose two new integral inequalities for bounding an inte-
gral found in the derivative of LKF. Then the finite-time stability and stabilization
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criteria are formulated in the form of LMIs. Two numerical examples are given to
show that our proposed FTS and FTU criteria are practicle and can be applied to
non-differentiable continuous delay function.
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