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1 Introduction

In 1947, Some results concerning topological algebras had been published by
R. Arens [1]. It was in 1952 that Arens and Michael independently published the
first systematic study on locally m-convex algebras, which constitutes an impor-
tant class of non-normed topological algebras, see [1]. The notion of fundamental
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topological spaces (also algebras) has been introduced in [2] in 1990 extending the
meaning of both local convexity and local boundedness. Also in [3] a topological
structure is defined on the algebraic dual space of an FLM algebra to make it a
normed space, and some of the famous theorems of Banach algebras are extended
for complete metrizable FLM algebras. Continuity of the spectrum and spectral
radius functions play a crucial role in automatic continuity. In this paper we
present some results about radius of boundedness, FLM algebras and automatic
continuity of homomorphisms between FLM algebras. We first recall some notions
in topological algebras.

Definition 1.1. [2, 2.1] A topological linear space A is said to be a fundamental
one if there exists b > 1 such that for every sequence (xn)n of A, the convergence
of bn(xn − xn−1) to zero in A implies that (xn)n is Cauchy.

A fundamental topological algebra is an algebra whose underlying topological
linear space is fundamental.

Definition 1.2. [3, 4.2] A fundamental topological algebra is said to be locally
multiplicative if there exists a neighborhood U0 of zero such that for every neigh-
borhood V of zero, the sufficiently large powers of U0 lie in V . Such an algebra is
known as an FLM algebra.

Example 1.3. Let R be equipped with its Euclidean topology. If (xn)n be a
sequence in R such that limn→∞ 2n(xn−xn−1) = 0, then (xn)n is Cauchy sequence
in R.

Example 1.4. [2] Non-fundamental topological vector spaces
There are many topological vector spaces which are not fundamental. For

example, the space M([0,∞)) of all measurable functions on [0,∞), with the
convergence in measure topology is not fundamental.

Definition 1.5. [4] Let x be an element of a topological algebra A. We say that x
is bounded if there exists some λ ∈ C−{0} such that the sequence (x

n

λn )n converges
to zero. We denote

BA(x) = {λ ∈ C− {0} :
xn

λn
→ 0}.

The radius of boundedness of x with respect to A is denoted by βA(x) and defined
by

βA(x) = inf{|λ| : λ ∈ BA(x)},

with the convention, if BA(x) = ∅, then βA(x) = +∞. We denoted

B(A) = {x ∈ A : βA(x) = 0}.

We now define another important class of topological algebras, called Q-
algebras. Let A be an algebra. An element x ∈ A is called quasi-invertible if
there exists y ∈ A such that x � y = x + y − xy = 0 and y � x = y + x − yx = 0.
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we denote the quasi inverse of x by y = (x�)
−1. The set of all quasi-invertible ele-

ments of A is denoted by q − InvA. A topological algebra A is called a Q-algebra
if q − InvA is open, or equivalently, if q − InvA has an interior point in A [5,
Lemma E2].
Note that, every complete metrizable FLM algebra is Q-algebra [2, Theorem 4.3].
For a unital algebra A with the unit eA, the spectrum of an element x ∈ A, de-
noted by σA(x), is the set of all λ ∈ C such that λeA − x is not invertible in
A. For a non-unital algebra A, the spectrum of x ∈ A is σA(x) = {0} ∪ {λ ∈
C : λ 6= 0 and x

λ /∈ q − InvA}. The spectral radius of an element x ∈ A is
rA(x) = sup{|λ| : λ ∈ σA(x)}. If σA(x) = ∅, we define rA(x) = 0. The element
x is quasi-nilpotent if rA(x) = 0, i.e., σA(x) = {0} or σA(x) = ∅. The set of all
quasi-nilpotents in A is denoted by

Q(A) = {x ∈ A : rA(x) = 0}.

The (Jacobson) radical of an algebra A, radA, is the intersection of all maximal
left (right) ideals in A. The algebra A is called semisimple if radA = {0}. In the
case that A is a Banach algebra we have

rA(x) = lim
n→∞

‖xn‖1/n.

We now recall a property of radA, which will be used in the sequel.

Remark 1.6. It is known that for any algebra A,

radA = {x ∈ A : rA(xy) = 0, for every y ∈ A}.

Also, in the case where A is unital

radA = {x ∈ A : eA − xy ∈ InvA, for every y ∈ A},

in particular, eA + rad A ⊂ InvA.

If A is a commutative Banach algebra, then radA =
⋂
ϕ∈M(A) kerϕ, where

M(A) is the continuous character space of A, i.e. the space of all continuous
non-zero multiplicative linear functionals on A. See, for example, [6, Proposition
8.1.2].

We recall that automatic continuity of linear mappings, homomorphisms and
almost multiplicative linear maps are very important in advanced studies on topo-
logical algebras and mathematical analysis. The following theorem is a well-known
result, due to Šilov, concerning the automatic continuity of multiplicative linear
maps (homomorphisms) between Banach algebras.

Theorem 1.7. [7, Theorem 2.3.3] Let A and B be Banach algebras such that
B is commutative and semisimple. Then, every homomorphism T : A → B is
automatically continuous.
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By the above Theorem, every commutative semisimple Banach algebra has a
unique complete norm. It was a historically important question, raised by Rickart
in 1950, whether or not each semisimple Banach algebra has a unique complete
norm.This was eventually proved in 1967 by B. E. Johnson [7, Corollary 5.1.6],
and as a consequence of this result, it was shown that if T : A→ B is a surjective
homomorphism between a Banach algebra A and a semisimple Banach algebra B,
then T is automatically continuous.

Many authors have investigated automatic continuity of homomorphisms be-
tween Banach algebras and Fréchet algebras, and there are many open questions
in this area. For example, in 1952 [5], E. A. Michael posed the question as whether
each multiplicative linear functional on a (commutative semisimple) Fréchet alge-
bra is automatically continuous. This question, known as the Michael’s problem,
has been intensively studied, but only partial answers have been obtained so far.
For further results on automatic continuity of homomorphisms between certain
classes of Fréchet algebras, or partial answers to Michael’s problem, one may re-
fer, for example, to [8, 9] and the references therein.

Next, some results for automatic continuity in the area of Banach and Frechet
algebras have been obtained by Aupetit [10], Ghasemi-Honary [9], and Omidi
[11, 12].

2 Main Results

We now present the following result, which is essential and it plays a crucial
role in this section. Also it is similar to [13, Theorem 10.3] and generalize some
item of it. Therefore some of the famous theorems of Banach algebras are extended
for complete metrizable FLM algebras.

Theorem 2.1. Let A be a complete metrizable fundamental topological algebra
and x ∈ A. Then

(i) If βA(x) < 1, then x ∈ q − InvA and (x�)
−1 = −

∑∞
n=1 x

n.

(ii) βA(αx) = |α|βA(x) and βA(xN ) = βA(x)N , for α ∈ C and N ∈ N.

(iii) rA(x) ≤ βA(x).

Proof. (i) Let λ > 1, βA(x) < 1
λ < 1, then λnxn → 0 and xn → 0 as n → ∞.

Take sn =
∑n
k=1 x

k, then λn(sn− sn−1)→ 0, as n→∞. By Definition 1.1,
(sn)n is a Cauchy sequence. Let limn→∞ sn = s. Then

x � sn = x+ sn − xsn = x+ x− xn+1,

therefore x+ s− xs = x+ x and so x � −s = 0. Thus

(x�)
−1 = −s = −

∞∑
n=1

xn.
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(ii) The proof is straightforward.

(iii) Let 0 6= λ ∈ SpA(x), then x
λ /∈ q− InvA. Therefore βA(xλ ) ≥ 1, by applying

(i). Hence βA(x) ≥ |λ|. We conclude that rA(x) ≤ βA(x).

We recall that Continuity of the spectrum and spectral radius functions play
a crucial role in automatic continuity. Now we have the following theorem.

Theorem 2.2. Let A be a complete metrizable FLM algebra. Then βA : A →
[0,+∞) is continuous at zero.

Proof. Let (an)n be a sequence in A such that limn→∞ an = 0 and U0 be a
neighborhood of zero in A satisfying Definition 1.2. Then for ε > 0, 2ε−1an → 0,
so there exists N0 ∈ N such that 2ε−1an ∈ U0 for every n ≥ N0. Let V be an
arbitrary neighborhood of zero in A. Hence there exists K0 ∈ N such that Uk0 ⊆ V
for every k ≥ K0. Therefore for every n ≥ N0 and for each k ≥ K0, (2ε−1an)k ∈ V .
This means that (2ε−1an)k → 0, as k →∞ and so

|βA(an)− βA(0)| = |βA(an)| 6 ε

2
< ε,

for every n ≥ N0.

Corollary 2.3. Let A be a complete metrizable FLM algebra. Then rA : A →
[0,+∞) is continuous at zero.

Proof. By applying Theorem 2.1 and Theorem 2.2, we conclude that rA is contin-
uous at zero.

Remark 2.4. Let A be a topological linear normed algebra and x ∈ A. Then
BA(x) 6= ∅, that is, x is bounded. If r > 0 and ‖x‖ < r, then

‖(x
r

)n‖ ≤ ‖x
r
‖n → 0,

as n→∞. Hence r ∈ BA(x).

Example 2.1. The algebra C(R) consisting of all continuous complex-valued
functions on the real line R with the sequence (pn)n of seminorms denoted by
pn(f) = sup|x|≤n |f(x)| is a complete metrizable fundamental topological algebra,
but not a complete metrizable FLM algebra. It can be readily concluded that the
spectral radius function is not continuous at zero. In general, this example shows
that the spectral radius function may be discontinuous at zero.

We know that if A is a Banach algebra we have

rA(x) = lim
n→∞

‖xn‖1/n.

we generalized it as follow.



160 Thai J. Math. 17 (2019)/ M. R. Omidi et al.

Theorem 2.5. Let A be a topological linear normed algebra. Then

βA(x) = lim
n→∞

‖xn‖ 1
n ,

for every x ∈ A.

Proof. Let ε > 0 and x ∈ A. We know that xn

(βA(x)+ε)n → 0 as n → ∞. Then

‖ xn

(βA(x)+ε)n ‖ → 0, so there exists N0 ∈ N such that

‖ xn

(βA(x) + ε)n
‖ < 1,

for n ≥ N0. Then
‖xn‖ 1

n < βA(x) + ε,

for n ≥ N0. Therefore
lim sup
n→∞

‖xn‖ 1
n ≤ βA(x).

On the other hand, take ‖x‖+ ε = λ, then ‖x‖ < λ and

‖(x
λ

)n‖ ≤ ‖x
λ
‖n → 0,

as n→∞. Thus βA(x) ≤ λ. Since ε is arbitrary, it follows that βA(x) ≤ ‖x‖. By
applying Theorem 2.1, we have

βA(x) = βA(xn)
1
n ≤ ‖xn‖ 1

n ,

hence
βA(x) ≤ lim inf

n→∞
‖xn‖ 1

n .

Therefore
βA(x) = lim

n→∞
‖xn‖ 1

n .

This complete the proof.

Now, by introducing the new notion of sub-multiplicative metrizable topo-
logical algebra, we generalize some well known properties of Banach algebras to
complete metrizable FLM algebras.

Definition 2.6. Let (A, d) be a metrizable topological algebra. We say A is a
sub-multiplicative metrizable topological algebra if

d(0, xy) ≤ d(0, x)d(0, y)

for each x, y ∈ A.

Lemma 2.7. Let (A, d) be a sub-multiplicative metrizable topological algebra and
x ∈ A. Then

βA(x) = lim
n→∞

d(0, xn)
1
n
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Proof. The proof is similar to Theorem 2.5.

The following theorem is proved for Banach algebras, it follows from [7, Propo-
sition 2.3.27], and we give for the sake of reader, its proof for FLM algebras.

Theorem 2.8. Let A be a topological linear normed algebra or sub-multiplicative
metrizable topological algebra and x, y ∈ A, such that xy = yx. Then

(i) βA(xy) ≤ βA(x)βA(y).

(ii) βA(x+ y) ≤ βA(x) + βA(y).

Proof. (i) Let x, y ∈ A, then

βA(xy) = lim
n→∞

‖(xy)n‖ 1
n = lim

n→∞
‖xnyn‖ 1

n

≤ lim
n→∞

‖xn‖ 1
n lim
n→∞

‖yn‖ 1
n = βA(x)βA(y).

(ii) Let x, y ∈ A, βA(x) < α and βA(y) < β. Set x
α = a and y

β = b. By applying
Theorem 2.5, there exists N0 ∈ N such that

‖an‖ ≤ 1

and

‖bn‖ ≤ 1,

for each n ≥ N0. Then

‖(x+ y)n‖ 1
n = ‖

n∑
k=0

(
n

k

)
xkyn−k‖ 1

n ≤ (

n∑
k=0

(
n

k

)
αkβn−k‖a‖k‖b‖n−k)

1
n

≤ (

n∑
k=0

(
n

k

)
αkβn−kcn)

1
n

= (α+ β)(cn)
1
n ,

for each n ≥ N0, where cn = max
0≤k≤n

‖a‖k‖b‖n−k and

lim sup
n→∞

(cn)
1
n = 1,

then

βA(x+ y) = lim
n→∞

‖(x+ y)n‖ 1
n ≤ α+ β.

Therefore βA(x+ y) ≤ βA(x) + βA(y).

Corollary 2.9. Let (A, d) be a commutative sub-multiplicative metrizable topolog-
ical algebra, then βA is continuous on A.
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Lemma 2.10. Let (A, d) be a commutative sub-multiplicative metrizable topolog-
ical algebra. Then

B(A) ⊂ rad(A).

Proof. Let x ∈ B(A) and y be an arbitrary element in A, then

rA(xy) ≤ βA(xy) ≤ βA(x)βA(y) = 0,

hence rA(xy) = 0, so x ∈ rad(A).

In the sequel, we study the automatic continuity of linear maps or homomor-
phisms between complete metrizable FLM algebras. We note that if A and B are
topological algebras and T : A→ B is a continuous homomorphism, then

βB(Tx) ≤ βA(x),

for every x ∈ A.

Theorem 2.11. Let A be complete metrizable FLM algebra and B a commutative,
semisimple sub-multiplicative complete metrizable FLM algebra. Let T : A→ B be
a linear map such that βB(Tx) ≤ βA(x), for every x ∈ A. Then T is continuous.

Proof. Let xn → 0 in A and T (xn) → b in B. Since βA is continuous at zero, by
Theorem 2.2, then βA(xn)→ βA(0) = 0. Also βB is continuous on B, by Corollary
2.9, then βB(T (xn))→ βA(b). On the other hand

βB(T (xn)) ≤ βA(xn)→ 0.

Then βB(b) = 0 and by using Lemma 2.10, we conclude that

b ∈ rad B = {0}.

Therefore T is continuous.

Corollary 2.12. Let A be complete metrizable FLM algebra and B a commutative,
semisimple sub-multiplicative complete metrizable FLM algebra. Let T : A→ B be
a linear map such that rB(Tx) ≤ rA(x), for every x ∈ A. Then T is continuous.

Proof. Using a similar method as in Theorem 2.11, we conclude that T is contin-
uous.

Corollary 2.13. Let A be complete metrizable FLM algebra, B a commutative,
semisimple sub-multiplicative complete metrizable FLM algebra and T : A→ B be
a homomorphism. Then T is continuous.

Proof. Let T : A → B be a homomorphism, then rB(Tx) ≤ rA(x), for every
x ∈ A. By applying Corollary 2.12, T is continuous.

Theorem 2.14. Let A be a complete metrizable FLM algebra, x ∈ A, βA(x) < 1
and T : A→ C be a homomorphism. Then |T (x)| < 1.



Automatic Continuity on Fundamental Locally Multiplicative ... 163

Proof. Let βA(x) < 1, so there exists b > 1 such that bnxn → 0, as n → ∞.
First, we prove that T (x) 6= 1. Set sn =

∑n
k=1 x

k, now λn(sn − sn−1) → 0, as
n→∞. By Definition 1.1, (sn)n is a Cauchy sequence. Let limn→∞ sn = s, using
a similar method as in Theorem 2.1, we conclude that x � −s = x − s + xs = 0.
Thus x = s − xs. If T (x) = 1, then 1 = 0, hence T (x) 6= 1. Let |T (x)| > 1, take
x0 = x

T (x) . We know that T (x0) = 1, on the other hand

bnxn0 =
1

T (x)n
bnxn → 0,

by the above argument it follows that T (x0) 6= 1, which is impossible. Therefore
|T (x)| < 1.

Theorem 2.15. [3, Theorem 4.5] Let A be a complete metrizable FLM algebra
and T : A→ C be a homomorphism. Then T is continuous.

We now extend Theorem 2.15 as follows.

Theorem 2.16. Let A be a complete metrizable FLM algebra, B be a commuta-
tive semi simple Banach algebra and T : A → B be a homomorphism.Then T is
continuous.

Proof. Let T be a homomorphism and ϕ ∈ M(B). Then, ϕ ◦ T : A → C is a
continuous homomorphism by Theorem 2.15. Now, suppose that an → 0 in A and
Tan → b in B. Then, by the continuity of ϕ ◦ T , we have (ϕ ◦ T )(an) → 0. On
the other hand, by the continuity of ϕ : B → C, (ϕ ◦ T )(an) = ϕ(Tan) → ϕ(b).
Consequently, ϕ(b) = 0 and since ϕ ∈M(B) was arbitrary, we get

b ∈
⋂

ϕ∈M(B)

kerϕ = radB = {0}.

Therefore, by the Closed Graph Theorem, T is continuous.
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