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Abstract : In this paper, we develop a mathematical model for retrieving the
positions and the rates of the emission of the pollutant sources. We begin by
measuring the pollutant concentrations from pollutant sensors and then we apply
particle swarm optimization (PSO) minimizing the differences between the theo-
retical and the measured concentration. The results of the test cases show that
the mathematical model is capable of retrieving the positions and the rates of
the emissions of the pollutant sources. We also design the placement of pollutant
sensors for the pollutant detecting system to be able to retrieve the positions and
the emission rates of the pollutant sources effectively.

Keywords : particle swarm optimization; atmospheric model.

2010 Mathematics Subject Classification : 47H09; 47H10.

! Corresponding author.

Copyright © 2019 by the Mathematical Association of Thailand.
All rights reserved.



126 Thai J. Math. 17 (2019)/ W. Chaiwino and T. Mouktonglang

1 Introduction

An air pollution problem is one of the most significant problems in the high-
technology era |1]. A lot of industrial developments could turn factories into the
pollutant sources which release chemical substances into the atmosphere. By using
results from scientific technique to detect location sources of chemical substances,
the local authorities could use these informations to initiate an initial warning to
the factories and/or begin further investigation.

Even in the developing country, the burning of rice and cone residues after
harvest, in stead of alternatives such as burying the stubble or residues back into
the ground, has a number of negative consequences and effects on the environment.
The smoke from this particular burning could produce a toxic cloud of particulates
diffusing into the city.

The aim of this paper is to propose an optimization technique based on an
approximated solution of a diffusion equation to determines the emission rates and
source locations accurately. It is a standard optimization application [2H4] which
is quite important in a certain practical pollutant situation where the emission
locations or rates cannot be measured directly at the sources, but rather only can
be measured indirectly at a distance from the sources.

In the next section, the particle swarm optimization (PSO), the probabilistic
optimization technique, is briefly discussed. The construction of the approximated
solution of the atmospheric model is derived in the third section. The algorithm
for detecting the emission rates and source locations are explained in the fourth
section. Then, the results of numerical experiments are presented in the fifth
section. We also propose where to place air pollution sensors around the city
of Chiang Mai, Thailand, to monitor the air quality effectively. Finally, the last
section is concluding remark.

2 Particle Swarm Optimization (PSO)

PSO is an evolutionary computation technique using individual improvement
together with population competition, which is based on the simulation of sim-
plified social models, such as bird flocking or fish schooling [5H7]. The particle
swarm conception is originally motivated from the simulation of social behavior.
PSO requires only basic mathematical operators, which are computationally in-
expensive in terms of both memory requirements and time. The technique has a
characteristic of fast convergence to local and global optimal position for within
small number of iterations. A swarm in PSO consists of particles. Each parti-
cle represents a feasible or candidate solution to the optimization problem. Each
particle moves to a new position according to the new velocity which includes its
previous velocity, and the moving vectors according to the past best solution and
global best solution. The best solution is then kept; each particle accelerates in
the directions of not only the local best solution but also the global best position.
If a particle discovers a new probable solution, other particles will move closer
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to it in order to explore the region. In general, there are three attributes, the
particles current position, current velocity, and past best position, for particles in
the search space to present their features. Each particle in the swarm is updated
according to the aforementioned attributes. Currently, a commonly used version
is the one proposed by Shi [23], in which an adaptive parameter, named inertia
weight, is used in order to enhance the performance of the original version of PSO.

In the PSO iteration, each feasible solution is presented as a particle with a
vector x, and a moving velocity represented as v. As for an n dimensional opti-
mization, the feasible solution and velocity of the i th particle can be represented as
x; = (i1, T2, %iyn) and v; = (V51,2 , V), respectively. After the first
iteration as for ¢t > 0, each particle has its best position with respect to objective
value obtained so far at time ¢t. We refer this particle 2P as pbest. Similarly, the
global best (gbest) particle is denoted by x9, which represents the best particle so
far up to time t in the entire swarm. The new velocity of the ¢ particle is updated
by

vi(t+ 1) = wv;(t) + rier (2 (1) — zi(t)) + raca (2 (t) — xi(t)), (2.1)

where w; is called an inertia weight, v;(t) is the old velocity of the particle ¢ at time
t. The acceleration constants ¢y and ¢, in the above equation are adjustable. They
represent the amount of tension in PSO system. Usually low values of acceleration
constants allow particles to travel from target regions to other target regions. On
the other hand, high values result in a sudden movement toward, or past, target
regions. The acceleration constants are therefore referred as the cognitive and
social rates. They represent the weighting of the acceleration terms that pull the
individual particle toward the personal best and global best positions.

3 Derivation of the Gaussian Plume

As for the use of air quality models, it is well-known that the gaussian plume
model is one of the state of-the-art mathematical models and it is recommended
for inert pollutants. In this paper, since the deficiency of data, we assume that
the concentration of the pollutants can be estimated be the Gaussian plume.

In order to derive and understand the Gaussian Plume, there are a few assumptions
be made for mathematically and physically clear.

The equation is brought to calculate the steady state concentration of a pollu-
tant at a point (z,y, z) downwind of a point source at (z’,y’) with height H and
mass emission rate (), and under the situation of a constant wind of speed u and
standard deviations in concentrations of o, (2’ —x) and o, (2’ — ) in the crosswind
and vertical directions.

The Gaussian Plume is derived from a diffusion equation under appropriate
limiting, initial and boundary conditions [8-10]. The limitations on the diffusion
equation and its particular solution for a typical urban situation, and the tech-
niques for reducing the solution to the gaussian plume equation are not obvious.
By applying some reasonable physical assumptions and mathematical techniques,
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one can derive other gaussian plume equations. For more details, see [11]. Con-
sider the diffusion of a non-reacting pollutant in the atmosphere. It is described
by

oC

§+v~(0u):v~(Kv0)+S, (3.1)
where C'is the concentration, K is the diffusivity tensor, u is the average wind ve-
locity, and S is a source function. This partial differential equation is derived
from the conservation of mass in a bounded volume. The diffusion by turbulent
eddies is not strictly Fickian. However, the equation can be applicable with
empirically variable coefficients.

We need to make a few simplifying assumptions that allow us to derive a

closed-form of analytic solution:

e The source is emitted at a constant rate Q [kg/s| from a single point source
X = (0,0, H) located at H above the ground surface. For a steady state
point source with emission rate Q,

S(x,y,2) = Qo(x)d(y)o(z — H),
where, ¢ is the Dirac delta function.
e Constant wind in one direction (u = constant, v = w = 0)

e Crosswind and vertical diffusion vary with downwind distance only (K, (z) =
Ky(z) = K.(z) = K.(z) = K(z) ,

e The wind velocity is sufficiently large that diffusion in the x-direction is
much smaller than advection; then the term K,02C can be neglected

With these assumptions, the equation (3.1)) reduces to

0?C 0?C 0*C

Ugy = K a9 +K 5.2 +Q(x)d(y)d(z — H). (3.2)

Here, the considered domain is {(z,y, z) € [0,00) X (—00,+00) x [0,00)}. Finally,
the boundary conditions of this PDE are:

C(0,y,2) =0, lim C(z,9,2)=0, lim C(z,y,2)=0, lim C(z,y,2)=0,

and

oC
K—~ (z,y,0) =0.
9 (&Y 0)
This PDE (3.2)) together with the above boundary conditions represents a well-
posed problem for a steady-state contaminate concentration, see [11] for details.
It is common practice to replace the independent variable z with the new
independent variable
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1 x
r= | E@a

which has a unit of m?. When the reflecting boundary condition is imposed and
K is a constant, then we have

2 2
y (z —H)
exp(=—)exp(———
drur p(47") p( 4dr
Here, by direct calculation, it is easy the see that

(2 — H)?
4r

C(r,y,2) = )-

) — exp(—

r=Kz/u.

4 Inverse Model

The recognition of the locations and the emission rate of unknown sources,
starting from the detecting of the concentration of the pollutants, is known as
inverse model [3}/4]. This mathematical technique could be used to identify the
most relevant pollution sources which release the illegal chemical substance in the
atmosphere.

In this inverse model, we apply a least square formulation technique mini-
mizing the square of the difference between concentration measurements from the
sensors and the theoretical concentrations which in this case we use the gaus-
sian plume model. By starting from a finite set of concentration measurements,
i =1,2,---n where n is the number of sensors, the least square method used to
estimate parameters of sources (locations and emission rate) from n observations
of concentration measurements of p; and from m unknowns of sources is based on
the minimization of the sum of square of residuals represented by the function J.

Let X; = (zi,yi,%), ¢ = 1,2,--- ,m be vectors of location coordinates of
pollutant sources and @ = (q1, - ,¢m) be a vector of emission rates of each
source. X; and @) are decision variables.

2
1 |— _
J(X1,~~Xm7Q)=§ Zui—OT(Xi,Xl,me,Q) : (4.1)

i=1

where X; = (Z,9i, Zi), 1 =1,2,--- ,n are vectors of location coordinates of pollu-
tant sensors. These vectors are given data and

CT(Xi;Xla o XmaQ) = Zé(XhXjaql)a

with

C(Xi, Xj,qi)= 477;](in exp [—u(y—lyj)? [exp [_u('z_zm}i— exp [W” .



130 Thai J. Math. 17 (2019)/ W. Chaiwino and T. Mouktonglang

5 Numerical Experiment: Identification of the
Pollution Sources

In this section, the algorithm is tested on a number of examples, ranging from
10 kilometers to 50 kilometers in north of Chiang Mai area. The artificial con-
centration data is employed from the Gaussian Plume. On each measurement by
sensors, we utilize the reading from the Gaussian Plume. Therefore, theoretically
the optimal value could be as low as zero. At first,we put 5x5 and 5x 10 imaginary
grids on the domain that we consider for possible locations p;j,¢,7 = 1,2,3,4 of
pollutant sensors as shown in figures[I] and [2] A rectangular coordinating system
is also imposed to locate the exact locations of studied objects. A unit is in meter.

Figure 2: 5 by 10 grids and possible locations of sensors

One of our goals is to find an optimal location to place 4 air pollution sensors
around the city of Chiang Mai, Thailand, to monitor the air quality effectively.

First, we place the exact location of the contamination source at the coordinate
(288, 77). We then place 4 sensors on a 5 x 5 grids, and measure the performance
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of our algorithm. We assume that the contamination coincides with the Gaussian
plume. There are 625 different ways to place 4 sensors on possible location p;;.
On each setting, we execute the algorithm 5 times, measure the errors and then
take the average of the errors. With respect to average errors, the top 10 setting

are listed in table [I] along with the predicted location as in table

No. | TYPE 1st 2nd 3rd 4th 5th AVG
1 189 0.96 1.10 0.47 2.05 0.04 0.93
2 558 0.48 1.38 3.92 0.25 0.14 1.23
3 303 0.69 2.87 1.56 0.47 1.70 1.46
4 363 0.89 0.29 8.66 2.45 3.10 3.08
5 283 2.18 17.43 | 2.36 0.34 4.27 5.32
6 62 148.78 0.25 2.05 0.15 0.28 30.30
7 436 0.59 148.10 | 1.26 0.55 0.50 30.38
8 187 1.29 0.44 0.40 1.54 148.49 | 30.43
9 338 0.64 1.53 0.56 1.39 149.10 | 30.82
10 564 0.49 1.08 3.67 | 149.52 0.22 30.10

Table 1: Top 10 average distances error between exact and predicted loca-

tions in meters with 4 sensors on 5 by 5 grid

No. | Location 1st 2nd 3rd 4th 5th
1 T 287.70 | 288.51 | 287.72 | 286.91 | 288.04
y 76.09 77.98 76.62 75.26 77.01
2 x 288.29 | 287.35 | 290.27 | 287.89 | 288.09
Y 77.38 | 75.785 | 80.19 76.78 77.11
3 x 288.52 | 290.12 | 286.97 | 288.34 | 286.84
y 77.45 78.94 75.83 77.32 75.76
4 x 288.66 | 287.78 | 294.35 | 289.87 | 290.34
Y 77.60 76.80 82.90 78.59 79.04
5 x 289.58 | 301.03 | 286.36 | 287.80 | 284.90
Y 78.50 88.58 75.30 76.71 74.07
6 x 284.87 | 288.15 | 286.83 | 287.90 | 288.00
y -71.75 | 77.20 75.32 76.89 76.72
7 x 288.35 | 284.94 | 287.37 | 288.44 | 287.75
y 7747 | -71.97 | 75.94 77.33 76.56
8 x 287.49 | 288.36 | 287.84 | 287.03 | 284.78
Y 75.81 77.26 76.64 75.81 | -71.46
9 x 288.41 | 287.00 | 288.40 | 287.01 | 283.97
y 77.49 75.85 77.39 76.03 | -72.94
10 x 288.16 | 288.61 | 286.07 | 285.28 | 287.89
y 77.47 77.89 73.88 | -72.49 | 76.81

Table 2: Top 10 results of the coordinate of the predicted location of the
source using 4 sensors on 5 by 5 grid.




132 Thai J. Math. 17 (2019)/ W. Chaiwino and T. Mouktonglang

By considering only the top 10 candidate settings, we wish to determine which
of the top 10 settings can predict the location of the source more accurately if
the source get moved. Therefore, we consider the pollutant sources at coordinate
(288,8750) and (288, —8750) and repeat the experiments. Table [3|presents average
errors for each setting on two locations of the sources.

Rank. | TYPE | AVG Error (288,8750) | TYPE | AVG Error (288,-8750)

1 436 741.74 283 2.51

2 564 1463.70 558 7.11

3 189 3494.40 187 13.53
4 283 3711.88 436 405.67
5 338 4143.90 189 1612.70
6 62 4499.88 62 1820.24
7 558 6524.12 564 3234.91
8 187 6994.36 363 17190.58
9 363 10701.26 338 17664.22
10 303 11132.55 303 24645.90

Table 3: The table shows average distance errors for different types of
locations setting of the sensors for both locations of the contamination
sources.

Table 3| displays the average distance errors for different types of location
setting of the sensors for both (288,8750), and (288, -8750) coordinates of the
contamination sources. From all three locations we found that the best sensor
location has the coordinates listed in table [l

| 11500 | 24000 | 36500 | 49000
y| 870 | 0 | 0 [-17500

Table 4: The optimal coordinates for placing a set of 4 sensors for detecting
a single pollutant source on 5 by 5 grid

Figure [3] displays an aerial photo of a the northern part of Chiang Mai indi-
cating with the exact location of one source, approximated location of the sources
and the optimal 4 sensor locations. The size of the depicted area is roughly 30 x
50 km. Figure [4] shows the closer look of how accurate the method is.

We try to put 4 sensors on a finner grids, the 5 x 10 grids. We repeated
the similar experiments to obtain the optimal coordinates for placing a set of 4
sensors locating closer city on a 5 x 10 grid. Table [5| gives the optimal coordinate
for placing a set of 4 sensors locating closer to city.
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Figure 3: Optimal location for sensors on 5 by 5 grids detecting one pollu-
tant source
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Figure 4: Enlarged image of exact location and predicted location

x | 26777.78 | 32333.33 | 37888.89 | 43444.44
y| o | 8mB0 | 0 | 0

Table 5: The optimal coordinate for placing a set of 4 sensors locating
closer to city.
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Figure 5| displays an aerial photo of a the exact location of one source, approx-
imated locations of the sources and the optimal locations for sensors closer to the
city. Figure [6] shows the closer look of how accurate the method is.
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Figure 5: Optimal location for sensors on 5 by 10 grids detecting one pol-
lutant source
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Figure 6: Enlarged image of exact location and predicted location

We also try to retrieve information on both locations and emission rates of the
contamination sources. Since predicting the emission rate requires an additional



Identification of Atmospheric Pollution Source ... 135

unknown, the problem of predicting both locations and emission rate of the sources
becomes more complex than the problem of predicting only for the locations.
Therefore, to obtain an information on both rates of emission and locations of
each source, the accuracy is most likely dropped. We run our algorithm for solving
such a problem, where the feasible solution is the location of the source (z,y) and
the emission rate ). For each setting, we execute our algorithm and the find its
average.

To retrieve both the exact location and emission rate, we need to determine
the suitable parameters w : ¢ in the equation for this problem. To achieve
that, we run all possible combinations of w : ¢ where w, ¢ € {0,0.1,0.2,--- ,1} on
a number of test problems. According to our experiments, the best ratio between
w and c¢ is 0.8:0.4. Thus we use this ratio to find a source location and emission
rate.

We then preform experiments of finding a location for a set of 4 sensors to
detect the source locations and emission rate most accurately. From the exper-
iments, we discover that the best location for 4 sensors has coordinate location
listed in table 6l

z | 11500 | 24000 | 36500 | 49000
y|-8750 | 0 | 0 [ 8750

Table 6: The optimal coordinate for placing a set of four sensors to retrieve
the location and emission rate of the source

No. | TYPE | AVG location Error (meters) | AVG emission rate Error (g/min)
1 439 15.37 0.01
2 308 19.51 0.02
3 314 27.86 0.02
4 303 49.18 0.01
5 313 59.70 0.05
6 315 69.39 0.02
7 189 73.32 0.02
8 322 74.10 0.06
9 311 78.30 0.08
10 339 78.52 0.07

Table 7: Average distance and emission rate errors for 5 x 5 grids

Table [7] confirms that our algorithm can retrieve information on both the
location of the source and the emission rate as well. Figure [7] displays an aerial
photo of the exact location of one source, approximated location of the sources
and the optimal sensor locations. The size of the depicted area is roughly 30 x 50
km. Figure [§| shows the closer look of how accurate the method is.
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Figure 7: Exact and predicted location with rate prediction by the best 4
sensor position located
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Figure 8: Enlarged image of finding location with rate prediction by the
best sensor position

The error of the prediction of the emission rate is about +1072 g/min. Table
is a optimal locations for placing a set of 4 sensors.

x | 26777.78 | 32333.33 | 37888.89 | 43444.44
y| -8750 | 8750 | 8750 | -8750

Table 8: The optimal coordinate for placing a set of 4 sensor to detect
location and emission rate of the source for the inner city of Chiang Mai.
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Figure [0 presents optimal location of the sensors, and Figure [I0] displays how
close of the prediction to the exact location.
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Figure 9: Location of the 4 sensors within the city detecting the location
and the emission rate
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Figure 10: Enlarged image of the exact and the predicted location of the
source

The algorithm can also predict the locations of the multiple contamination
sources accurately. Table [I0]} figure [TI] and [I2] confirm the effectiveness of our
algorithm.
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x | 26777.78 | 32333.33 | 37888.89 | 43444.44

Y ‘ -8750 8750 8750 -8750

Table 9: The optimal coordinate for placing a set of four sensors to detect
location of the two source for the inner city of Chiang mai.

source 1st | source 2nd
Error of distance (m) 32.21 216.17
x (m) 332.16 3784.24
y (m) -5001.74 4986.78

Table 10: Predicted locations of two sources and errors
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Figure 12: Enlarged image of exact and retrieved source locations
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6 Concluding Remarks

In this research, we are able to use optimization technique to find a potential
solution to an environmental problems. The numerical experiments show that the
method has a good performance and computationally inexpensive for retrieving
both source locations and rate of emission. The applications of this technique can
be extended greatly. Instead of using Gaussian Plume estimation, other numerical
method can be brought to improve the problem more realistic. All boundary
conditions, wind directions can be varied input. It could also be implemented to
give real time results.
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Mathematics, CHE, Si Ayutthaya Rd., Bangkok, Thailand, 10400.
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