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1 Introduction and Statement of Results

Let Pn be the class of all polynomials

p(z) =

n∑
j=0

ajz
j

of degree at most n and p′(z) its derivative. For p ∈ Pn, define

‖ p(z) ‖s:=
{

1

2π

2π∫
0

|p(eiθ)|s
} 1
s

, 1 ≤ s <∞,
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‖ p(z) ‖∞:= max
|z|=1

|p(z)| and m = min
|z|=1

|p(z)|.

According to a famous result known as Bernstein’s inequality [1], we have

‖ p′(z) ‖∞ ≤ n ‖ p(z) ‖∞ . (1.1)

Also concerning the maximum modulus of p(z) on |z| = R > 1, we have (for
references see [2]),

‖ p(Rz) ‖∞ ≤ Rn ‖ p(z) ‖∞ . (1.2)

Inequalities (1.1) and (1.2) can be obtained by letting s→∞ in the inequalities

‖ p′(z) ‖s ≤ n ‖ p(z) ‖s, s ≥ 1, (1.3)

and

‖ p(Rz) ‖s ≤ Rn ‖ p(z) ‖s, R > 1, s > 0. (1.4)

respectively. Inequality (1.3) was found by Zygmund [3] whereas inequality (1.4)
is found in [4, Theorem 5.5].

Also, Arestov [5] proved that (1.3) remains true for 0 < s < 1 as well. If
we restrict ourselves to the class of polynomials having no zeros in |z| < 1, the
inequalities (1.3) and (1.4) can be improved. In fact, it was shown by De-Bruijn
[6] for s ≥ 1 and Rahman and Schemeisser [7] extended it for 0 < s < 1 that if
p(z) is a polynomial of degree n having no zeros in |z| < 1, the inequality (1.3)
can be replaced by

‖ p′(z) ‖s ≤ n
‖ p(z) ‖s
‖ 1 + z ‖s

, s > 0. (1.5)

Also Rahman and Shemeisser [7] proved for 0 < s < 1 that if p(z) is a polynomial
of degree n having no zeros in |z| < 1, then inequality (1.4) can be replaced by

‖ p(Rz) ‖s ≤
‖ Rnz + 1 ‖s
‖ 1 + z ‖s

‖ p(z) ‖s, R > 1. (1.6)

Aziz and Rather [8] obtained generalizations of inequalities (1.3) and (1.5). In
fact, they have shown that if p ∈ Pn, then for every R > 1 and s > 0,

‖ p(Rz)− p(z) ‖s ≤ (Rn − 1) ‖ p(z) ‖s, (1.7)

whereas if p(z) 6= 0 in |z| < 1, then

‖ p(Rz)− p(z) ‖s ≤
(Rn − 1)

‖ 1 + z ‖s
‖ p(z) ‖s . (1.8)
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Recently Aziz and Rather [9] considered the more general problem of investigating
the dependence of

‖ p(Rz)− βp(rz) ‖s on ‖ p(z) ‖s

for every β ∈ C with |β| ≤ 1, R > r ≥ 1, s > 0 and proved the following:

Theorem A. [9] If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
β ∈ C with |β| ≤ 1 and R > r ≥ 1, s > 0,

‖ p(Rz)− βp(rz) ‖s ≤
‖ (Rn − βrn)z + (1− β) ‖s

‖ 1 + z ‖s
‖ p(z) ‖s . (1.9)

The result is best possible and equality holds in (1.9) for p(z) = azn + b, |a| =
|b| = 1.

In this paper, we first prove the following more general result which among
other things includes Theorem A as a special case.

Theorem 1.1. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
β, γ ∈ C with |β| ≤ 1, |γ| ≤ 1 and R > r ≥ 1, s > 0,

‖ p(Rz)− βp(rz)+γ
(∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m ‖s

≤ ‖ (Rn − βrn)z + (1− β) ‖s
‖ 1 + z ‖s

‖ p(z) ‖s . (1.10)

The result is best possible and equality in (1.10) holds for p(z) = zn + 1.

Remark 1.2. For γ = 0, Theorem 1.1 reduces to Theorem A. For γ = 0 and
r = β = 1, Theorem 1.1 reduces to inequality (1.8). For β = 0 and r = 1, we get
a result recently proved by Rather [10, Theorem 1.1].

A variety of interesting results can be easily deduced from Theorem 1.1. Here
we mention a few of these. The following corollary immediately follows from
Theorem 1.1 by taking β = 1.

Corollary 1.3. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
γ ∈ C with |γ| ≤ 1 and R > r ≥ 1, s > 0,

‖ p(Rz)− p(rz) +
γ(Rn − rn)m

2
‖s ≤

(Rn − rn)

‖ 1 + z ‖s
‖ p(z) ‖s . (1.11)

If we divide the two sides of (1.11) bt R− r and let R→ r, we get

Corollary 1.4. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
γ ∈ C with |γ| ≤ 1 and r ≥ 1, s > 0,

‖ zp′(rz) +
γnmrn−1

2
‖s ≤

nrn−1

‖ 1 + z ‖s
‖ p(z) ‖s . (1.12)
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Remark 1.5. If we let s → ∞ in (1.12) and choose argument of γ with |γ| = 1
suitably, we get for |z| = 1,

|p′(rz)| ≤ nrn−1

2

(
max
|z|=1

|p(z)| − min
|z|=1

|p(z)|
)
. (1.13)

For r = 1, inequality (1.13) reduces to a result of Aziz and Dawood [11].

Next we mention the following compact generalization of a result of Aziz and
Dawood [11, Theorem 2] which immediately follows from Theorem 1.1 by letting
s→∞ and choosing argument of γ with |γ| = 1 in (1.10).

Corollary 1.6. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
β ∈ C with |β| ≤ 1, R > r ≥ 1, and |z| = 1,∣∣p(Rz)− βp(rz)∣∣ ≤{∣∣Rn − βrn∣∣+

∣∣1− β∣∣
2

}
max
|z|=1

|p(z)|

−
{∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

}
min
|z|=1

|p(z)|. (1.14)

If we take β = 0 in (1.14), we immediately get

‖ p(Rz) ‖∞ ≤
(
Rn + 1

2

)
max
|z|=1

|p(z)| −
(
Rn − 1

2

)
min
|z|=1

|p(z)|, R > 1.

The above inequality is due to Aziz and Dawood [11, Theorem 2].

Finally, as an application of Theorem 1.1, we prove the following generalization
and refinement of (1.6) for s ≥ 1.

Theorem 1.7. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
β, γ ∈ C with |β| ≤ 1, |γ| ≤ 1 and R > r ≥ 1, s ≥ 1,

‖ p(Rz)+γ
(∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m ‖s

≤

{
|β|rn +

‖ (Rn − βrn)z + (1− β) ‖s
‖ 1 + z ‖s

}
‖ p(z) ‖s . (1.15)

Remark 1.8. For β = γ = 0, Theorem 1.7 reduces to (1.6).

The following corollary which is a compact generalization of a result of Aziz
and Dawood [11, Theorem 2] to Ls norm is obtained from Theorem 1.7 by letting
β = r = 1.

Corollary 1.9. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
γ ∈ C with |γ| ≤ 1, R > 1 and s ≥ 1,

‖ p(Rz) + γ

(
Rn − 1

2

)
m ‖s ≤

{
1 +

(Rn − 1)

‖ 1 + z ‖s

}
‖ p(z) ‖s . (1.16)
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2 Lemmas

Lemma 2.1. [9] If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
complex β with |β| ≤ 1, R > r ≥ 1 and |z| = 1,∣∣p(Rz)− βp(rz)∣∣ ≤ ∣∣q(Rz)− βq(rz)∣∣ (2.1)

where q(z) = znp
(
1
z

)
.

Lemma 2.2. If p ∈ Pn and p(z) does not vanish in |z| < 1,m = min|z|=1 |p(z)|,
then for every complex β with |β| ≤ 1, R > r ≥ 1 and |z| = 1,∣∣p(Rz)− βp(rz)∣∣ ≤ ∣∣q(Rz)− βq(rz)∣∣−{∣∣Rn − βrn∣∣− ∣∣1− β∣∣}m, (2.2)

where q(z) = znp
(
1
z

)
.

Proof. Since m ≤ |p(z)| for |z| = 1, it follows by Rouche’s theorem that for m > 0
and for every complex number α with |α| < 1, the polynomial h(z) = p(z)+αmzn

has no zeros in |z| < 1.
Applying Lemma 2.1 to the polynomial h(z), we get for every complex number

α with |α| < 1,∣∣p(Rz)− βp(rz) + αm(Rn − βrn)zn
∣∣ ≤ ∣∣q(Rz)− βq(rz) + αm(1− β)

∣∣,
for |z| = 1 and for every β with |β| ≤ 1 and R > r ≥ 1.
If we now choose the argument of α in the left hand side of inequality (2.3) such
that ∣∣p(Rz)− βp(rz)+αm(Rn − βrn)zn

∣∣
=
∣∣p(Rz)− βp(rz)∣∣+m|α|

∣∣Rn − βrn∣∣|z|n,
we get for |z| = 1 and R > r ≥ 1,∣∣p(Rz)− βp(rz)∣∣+m|α|

∣∣Rn − βrn∣∣ ≤ ∣∣q(Rz)− βq(rz)∣∣+m|α||1− β|.

Now, if in (2.4), we make |α| → 1, we get for |z| = 1,∣∣p(Rz)− βp(rz)∣∣ ≤ ∣∣q(Rz)− βq(rz)∣∣− {∣∣Rn − βrn∣∣− ∣∣1− β∣∣}m,
with R > r ≥ 1 and for every β with |β| ≤ 1.

Lemma 2.3. [9] If p ∈ Pn and p(z) does not vanish in |z| < 1, then for every
complex β with |β| ≤ 1, R > r ≥ 1, s > 0 and α real,

2π∫
0

∣∣∣∣(p(Reiθ)− βp(reiθ))+eiα
(
Rnp

(eiθ
R

)
− βrnp

(eiθ
r

))∣∣∣∣sdθ
≤
∣∣∣∣(Rn − βrn)+ eiα

(
1− β

)∣∣∣∣s
2π∫
0

|p(eiθ)|sdθ.
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Lemma 2.4. [12] If A, B and C are non-negative real numbers such that B+C ≤
A, then for every real number α,∣∣∣(A− C)eiα + (B + C)

∣∣∣ ≤ ∣∣∣Aeiα +B
∣∣∣.

3 Proof of Theorems

Proof of Theorem 1.1. Since p(z) 6= 0 in |z| < 1, it follows by Lemma 2.2, for
each θ, 0 ≤ θ < 2π, R > r ≥ 1 and for every complex number β with |β| ≤ 1,∣∣p(Reiθ)− βp(reiθ)∣∣ ≤ ∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣−{∣∣Rn − βrn∣∣− ∣∣1− β∣∣}m,
which implies,∣∣p(Reiθ)−βp(reiθ)∣∣+

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m

≤
∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣−
(∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m. (3.1)

Taking A =

∣∣∣∣Rnp( eiθR )− βrnp( eiθr )∣∣∣∣, B =
∣∣p(Reiθ)− βp(reiθ)∣∣ and

C =

(∣∣Rn−βrn∣∣−∣∣1−β∣∣
2

)
m in Lemma 2.4, we see with the help of (3.1) that

B + C ≤ A− C ≤ A,

we get for every real α,∣∣∣∣∣
{∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣− (
∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m

}
eiα

+

{∣∣p(Reiθ)− βp(reiθ)∣∣+

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m

}∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣eiα +

∣∣∣∣p(Reiθ)− βp(reiθ)∣∣∣∣
∣∣∣∣∣.

This implies for each s > 0,

2π∫
0

∣∣∣∣F (θ) + eiαG(θ)

∣∣∣∣sdθ
≤

2π∫
0

∣∣∣∣∣
∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣eiα +

∣∣∣∣p(Reiθ)− βp(reiθ)∣∣∣∣
∣∣∣∣∣
s

dθ, (3.2)
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where F (θ) =
∣∣p(Reiθ)− βp(reiθ)∣∣+

(∣∣Rn−βrn∣∣−∣∣1−β∣∣
2

)
m

and G(θ) =

∣∣∣∣Rnp( eiθR )− βrnp( eiθr )∣∣∣∣− (∣∣Rn−βrn∣∣−∣∣1−β∣∣2

)
m.

Integrating both sides of (3.2) with respect to α from 0 to 2π, we get with the
help of Lemma 2.3, for each s > 0, R > r ≥ 1 and α real,

2π∫
0

2π∫
0

∣∣∣∣F (θ) + eiαG(θ)

∣∣∣∣sdθdα
≤

2π∫
0

{ 2π∫
0

∣∣∣∣∣
∣∣∣∣Rnp(eiθR )− βrnp(eiθr )

∣∣∣∣eiα +

∣∣∣∣p(Reiθ)− βp(reiθ)∣∣∣∣
∣∣∣∣∣
s

dα

}
dθ

=

2π∫
0

{ 2π∫
0

∣∣∣∣∣
(
Rnp

(eiθ
R

)
− βrnp

(eiθ
r

))
eiα +

(
p(Reiθ)− βp(reiθ)

)∣∣∣∣∣
s

dα

}
dθ

=

2π∫
0

{ 2π∫
0

∣∣∣∣∣
(
Rnp

(eiθ
R

)
− βrnp

(eiθ
r

))
eiα +

(
p(Reiθ)− βp(reiθ)

)∣∣∣∣∣
s

dθ

}
dα

≤

{ 2π∫
0

∣∣∣∣(Rn − βrn)+ eiα
(
1− β

)∣∣∣∣sdα
}{ 2π∫

0

∣∣∣∣p(eiθ)∣∣∣∣sdθ
}
. (3.3)

Now for every real α, t ≥ 1 and s > 0, we have

2π∫
0

∣∣∣∣t+ eiα
∣∣∣∣sdα ≥

2π∫
0

∣∣∣∣1 + eiα
∣∣∣∣sdα.

If F (θ) 6= 0, we take t =

∣∣∣∣G(θ)
F (θ)

∣∣∣∣, then by (3.1), t ≥ 1 and we get

2π∫
0

∣∣∣∣F (θ) + eiαG(θ)

∣∣∣∣sdα =
∣∣F (θ)

∣∣s 2π∫
0

∣∣∣∣1 +
G(θ)

F (θ)
eiα
∣∣∣∣sdα

=
∣∣F (θ)

∣∣s 2π∫
0

∣∣∣∣G(θ)

F (θ)
+ eiα

∣∣∣∣sdα =
∣∣F (θ)

∣∣s 2π∫
0

∣∣∣∣∣∣∣∣G(θ)

F (θ)

∣∣∣∣+ eiα
∣∣∣∣sdα

≥
∣∣F (θ)

∣∣s 2π∫
0

∣∣∣∣1 + eiα
∣∣∣∣sdα

=

{∣∣p(Reiθ)− βp(reiθ)∣∣+

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m

}s 2π∫
0

∣∣∣∣1 + eiα
∣∣∣∣sdα.
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If F (θ) = 0, this inequality is trivially true. Using this in (3.3), we conclude that
for every complex β with |β| ≤ 1, R > r ≥ 1 and α real,

2π∫
0

∣∣∣∣1 + eiα
∣∣∣∣sdα

2π∫
0

{∣∣p(Reiθ)− βp(reiθ)∣∣+

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m

}s
dθ

≤

{ 2π∫
0

∣∣∣∣(Rn − βrn)+ eiα
(
1− β

)∣∣∣∣sdα
}{ 2π∫

0

∣∣∣∣p(eiθ)∣∣∣∣sdθ
}
. (3.4)

Since

2π∫
0

∣∣∣∣(Rn − βrn)+ eiα
(
1− β

)∣∣∣∣sdα =

2π∫
0

∣∣∣∣∣∣Rn − βrn∣∣+ eiα
∣∣1− β∣∣∣∣∣∣sdα

=

2π∫
0

∣∣∣∣∣∣Rn − βrn∣∣+ eiα
∣∣1− β∣∣∣∣∣∣sdα

=

2π∫
0

∣∣∣∣∣∣Rn − βrn∣∣eiα +
∣∣1− β∣∣∣∣∣∣sdα

=

2π∫
0

∣∣∣∣(Rn − βrn)eiα +
(
1− β

)∣∣∣∣sdα, (3.5)

and for every complex γ with |γ| ≤ 1, we have∣∣∣∣p(Reiθ)− βp(reiθ) + γm

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)∣∣∣∣
≤
∣∣p(Reiθ)− βp(reiθ)∣∣+m

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
, (3.6)

the desired result follows by using (3.5) and (3.6) in (3.4). This completes the
proof of Theorem 1.1. 2

Proof of Theorem 1.7. We have by Minkowski’s inequality, for every s ≥ 1,

‖ p(Rz)+γ
(∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m ‖s

=‖ p(Rz)− βp(rz) + γ

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m+ βp(rz) ‖s

≤‖ p(Rz)− βp(rz) + γ

(∣∣Rn − βrn∣∣− ∣∣1− β∣∣
2

)
m ‖s + ‖ βp(rz) ‖s .

(3.7)
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Using inequalities (1.4) and (1.10) in (28), we get for every β, γ ∈ C with |β| ≤
1, |γ| ≤ 1 and R > r ≥ 1, s ≥ 1,

‖ p(Rz)+γ
(∣∣Rn − βrn∣∣− ∣∣1− β∣∣

2

)
m ‖s

≤ ‖ (Rn − βrn)z + (1− β) ‖s
‖ 1 + z ‖s

‖ p(z) ‖s +|β|rn ‖ p(z) ‖s

=

{
|β|rn +

‖ (Rn − βrn)z + (1− β) ‖s
‖ 1 + z ‖s

}
‖ p(z) ‖s,

which is inequality (1.16) and Theorem 1.7 is completely proved. 2
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