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special cases.
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1 Introduction and Statement of Results

Let P, be the class of all polynomials

n
p(z) = a;7
=0

of degree at most n and p’(z) its derivative. For p € P,, define
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1 p(2) lloo:= max [p(z)| and ‘m = min |p(2)].

According to a famous result known as Bernstein’s inequality [I], we have

1P'(2) lso <7l p(2) llo - (L.1)

Also concerning the maximum modulus of p(z) on |z| = R > 1, we have (for
references see [2]),

I P(Rz) [0 < R™ || p(2) lloo - (1.2)

Inequalities (1.1) and (1.2) can be obtained by letting s — oo in the inequalities

I (2) [ls <nllp(2) s s=1, (1.3)

and
| p(R2) |s < R" || p(2) [[s, R>1, s>0. (1.4)

respectively. Inequality (1.3) was found by Zygmund [3] whereas inequality (1.4)
is found in [4, Theorem 5.5].

Also, Arestov [5] proved that (1.3) remains true for 0 < s < 1 as well. If
we restrict ourselves to the class of polynomials having no zeros in |z| < 1, the
inequalities (1.3) and (1.4) can be improved. In fact, it was shown by De-Bruijn
[6] for s > 1 and Rahman and Schemeisser [7] extended it for 0 < s < 1 that if
p(z) is a polynomial of degree n having no zeros in |z| < 1, the inequality (1.3)
can be replaced by

I p(2) s

APE s oS, (1.5)
[1+2 s

Ip'(2) ls <n

Also Rahman and Shemeisser [7] proved for 0 < s < 1 that if p(z) is a polynomial
of degree n having no zeros in |z| < 1, then inequality (1.4) can be replaced by

| R"z+11|s

p(Rz) ||s <
| p(R2) | 1421,

| p(2) Ils, R>1. (1.6)

Aziz and Rather [8] obtained generalizations of inequalities (1.3) and (1.5). In
fact, they have shown that if p € P,, then for every R > 1 and s > 0,

I p(R2) —p(2) s < (R"=1) || p(2) [|s, (L.7)

whereas if p(z) # 0 in |z| < 1, then

| p(R2) — pl2) s < |<R" DR (18)

|1+ 2 s
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Recently Aziz and Rather [9] considered the more general problem of investigating
the dependence of

| p(Rz) = Bp(rz) Is on | p(2) s

for every g € C with |8 <1,R >r > 1,5 > 0 and proved the following;:

Theorem A. [9) If p € P, and p(z) does not vanish in |z| < 1, then for every
BeC with|f|<land R>r>1,s>0,

[ (B" = pr)z+ (1= 5) |s
1421

| p(Rz) = Bp(rz) ||s < I p(2) [|s - (1.9)

The result is best possible and equality holds in (1.9) for p(z) = az™ + b, |a| =
|b] = 1.

In this paper, we first prove the following more general result which among
other things includes Theorem A as a special case.

Theorem 1.1. If p € P, and p(z) does not vanish in |z| < 1, then for every
B, veCwith |B| <1, |y|<1land R>r>1,s>0,

R™ — nl _ |1 —
R !

_@®E = a-p) |,
8 TT+21,

Ip(2) s - (1.10)

The result is best possible and equality in (1.10) holds for p(z) = 2™ + 1.

Remark 1.2. For v = 0, Theorem reduces to Theorem A. For v = 0 and
r=p8=1, Theoremreduces to inequality (1.8). For § =0 and r = 1, we get
a result recently proved by Rather [10, Theorem 1.1].

A variety of interesting results can be easily deduced from Theorem Here
we mention a few of these. The following corollary immediately follows from
Theorem [I.1] by taking 5 = 1.

Corollary 1.3. If p € P, and p(z) does not vanish in |z| < 1, then for every
vyeC with |y <1and R>r>1,s >0,

AR = rym (R =)

s <2 p2) s . 1.11
7 e < T 1) | (111)

| p(Rz) — p(rz) +

If we divide the two sides of (1.11) bt R —r and let R — r, we get

Corollary 1.4. If p € P, and p(z) does not vanish in |z| < 1, then for every
ve€C with |y <1 andr >1,s >0,
ynmr™ 1 nr™1

< . 1.12
5 s < T 1) I (112)

I zp'(rz) +




118 Thai J. Math. 17 (2019)/ A. Mir and B. Dar

Remark 1.5. If we let s — oo in (1.12) and choose argument of v with |y| =1
suitably, we get for |z] = 1,

o) = 5 (maoep(e)| i () ) (1.13)

For r = 1, inequality (1.13) reduces to a result of Aziz and Dawood [11].

Next we mention the following compact generalization of a result of Aziz and
Dawood [II], Theorem 2] which immediately follows from Theorem by letting
s — oo and choosing argument of v with |y| =1 in (1.10).

Corollary 1.6. If p € P, and p(z) does not vanish in |z| < 1, then for every
BeC with|f|<1,R>r>1, and|z| =1,

Ip(Rz) — Bp(rz)| S{ [B" - W;' +[1-4] } max Ip(2)|

[R" —prm| = 15[\ .
-{ : buin bl (0

If we take 8 =0 in (1.14), we immediately get

o) e < (557 ) maxlp) - (T3 ) min ). B> 1.

The above inequality is due to Aziz and Dawood [I1, Theorem 2].

Finally, as an application of Theorem|[I.1] we prove the following generalization
and refinement of (1.6) for s > 1.

Theorem 1.7. If p € P, and p(z) does not vanish in |z| < 1, then for every
B, veCwith |B| <1, |y|<land R>r>1,s > 1,

I e e )
y LBz 1= B) |,
§{|B|r+ et }|p<z>||s. (1.15)

Remark 1.8. For 8 =~ = 0, Theorem [1.7] reduces to (1.6).

The following corollary which is a compact generalization of a result of Aziz
and Dawood [I1 Theorem 2] to L® norm is obtained from Theorem [1.7| by letting
B=r=1.

Corollary 1.9. If p € P, and p(z) does not vanish in |z| < 1, then for every
veC with |[y| <1, R>1 and s > 1,

o) 425 Yl < {1+ oot } lpG) e (L16)
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2 Lemmas

Lemma 2.1. [9] If p € P, and p(z) does not vanish in |z| < 1, then for every
complex B with |8] <1, R>r>1and |z| =1,

[p(Rz) — Bp(rz)| < |q(Rz) — Bq(rz)| (2.1)
where q(z) = z"@

Lemma 2.2. If p € P, and p(z) does not vanish in |z| < 1,m = min|.|— [p(2)|,
then for every complex 5 with |8| <1, R>r>1 and |z| =1,

[p(Rz) — Bp(rz)| < |a(Rz) — Ba(rz)| — {!R" — pr*| — |1 - B }m (2.2)

where q(z) = 2"p(2).
Proof. Since m < |p(z)| for |z| = 1, it follows by Rouche’s theorem that for m > 0
and for every complex number « with |a| < 1, the polynomial h(z) = p(z) +amz"
has no zeros in |z| < 1.

Applying Lemmato the polynomial h(z), we get for every complex number
a with |af < 1,

[p(Rz) = Bp(rz) + am(R" — pr")z"| < |q(Rz) — Bq(rz) + am(1 - f)

for |z| =1 and for every 8 with |f| <1and R >r > 1.
If we now choose the argument of « in the left hand side of inequality (2.3) such
that

)

|p(Rz) — Bp(rz)+am(R"™ — Br™)z"
- ’p(Rz) — Bp(rz)‘ + m|aHR" — ﬂr"‘|z|”,
we get for [z] =1 and R >r > 1,
Ip(R=) — Bp(r=)] + mlal|[R" — 8r"| < |q(Rz) — Ba(r=)] + mlal[1 - .

Now, if in (2.4), we make |a| — 1, we get for |z] =1,
|p(Rz) — Bp(rz)| < |a(Rz) — Bq(rz)| — {\R" —prtl—1- ﬁl}m,
with R > r > 1 and for every 8 with || < 1. O

Lemma 2.3. [9] If p € P, and p(z) does not vanish in |z| < 1, then for every
complez f with |B| <1, R>r>1, s> 0 and « real,

S

10 10
€ o

27
(ot = ot e (e 5) - ool )
0

27

[ ey,

0

S ’(Rn_ﬁrn) +eia(1_B)
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Lemma 2.4. [12] If A, B and C' are non-negative real numbers such that B+C <
A, then for every real number «,

‘(A— Ce™ + (B+C)’ < ’Aem +B’.

3 Proof of Theorems

Proof of Theorem Since p(z) # 0 in |z| < 1, it follows by Lemma [2.2] for
each 0, 0 <6 < 2w, R>r > 1 and for every complex number  with |3] <1,

6

60
[p(Re) = Bp(re®)| < ]R”p(eR) - Br"p(i)' - {IR” =Bt =1~ 5I}mv

which implies,

, 4 R" — pr™| — |1 —
[p(Re)—Bp(re’”)| + (' B 2' Lo ')m
60 . 16 R™ — Byn| — |1 —
< ‘R”p(GR )= Brp(=)| - <| m2| | m)m (3.1)

Taking A = ‘R"p(e;:) —57“"]3(6;9)‘, B = |P(Rei9) — ﬁp(rew)| and

C= (W) m in Lemma we see with the help of (3.1) that

B+C<A-C<A,
we get for every real «,

i0 _ 60 R™ — Brn| — |1 — )
e N G e M

+ {|p(Rei0) —ﬂp(rewﬂ + (’Rn *5Tn2| - |1 5|>m}’

0 0
R'p(F) = Brp(—)

<

€+ plRe) — Bp(ret)

This implies for each s > 0,

2m
/‘F(@)—kemG(Q) do
0
i Gt ot | ' °
< / ‘R”p(R)—ﬁr”p(T) eza+‘p<Re’9)—ﬁp(re”> dj, (32

0
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where F(0) = |p(Rei9) — ﬁp(rei9)| + w m

md 610) = |Rea(s) - Frp(e)| - ()
Integrating both sides of (3.2) with respect to a from 0 to 27, we get with the
help of Lemma for each s > 0, R > r > 1 and « real,

[/

F(0) + e“G(0)| doda

¥
3

6 0

o %) - Bl )

IN

da}dﬁ
da}dQ
dH}doz

de}. (3.3)

; \pme”) ~ Bp(re®)

(R() = Fa(5) )eio+ (i) - e )

3

O\:!M O\:‘M o\:lm

(Br() = Fa(S) )eio+ (i) - e )

R
}{ O/ ‘p(em)

Now for every real o, t > 1 and s > 0, we have

[}

I
o O\ﬂm o
[\) R — e e, e N,

T

— ﬂr”) + @ (1 - B) do

IN
—
o\
=
N

2 2
s S
/'t—i—em daz/‘l—&—em do.
0 0
If F(0) # 0, we take t = % , then by (3.1), ¢ > 1 and we get

27

!

d

| /‘1+ wz
| / 9 wz
F(9)

F(0) + ¢“G(9)

(0)
| /‘9+ et
> |FO) \1+em " da
/
27
:{‘p(Rew — Bp(re' ‘+(|R 57"2||1ﬂ|> }/’1—&-6”
0

do
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If F(0) = 0, this inequality is trivially true. Using this in (3.3), we conclude that
for every complex 8 with |5] <1, R >r > 1 and « real,

/‘14’610&

27

da/{|p Rez& ,Bp T6 |+<’R”_Br”2’—|l—ﬁ|>m} 46

< {/‘ ") + e (1 - B) }{/‘ ') da} (3.4)
Since
27 s 27 s
/‘( —BT")—Fem( B) da:/ ’R”—Br"’—l—em‘l—m do
0 0

S

= [ ||R" = pr"| +€*[1 - B]| da

27

= [ ||R" = Br"|e™ + |1 - B]| do
0
2m s

_ / (R* = rYe™ + (1— B)| da,  (3.5)
0

and for every complex v with |y| < 1, we have
, , R" — Brn| — |1 —
p(Re™?) — Bp(re”) +’Ym<| ol - | 5')’
) n o __ n| _ |1 —
< |p(Re’9) Bp(re’ | +m<|R BT2| | m), (3.6)

the desired result follows by using (3.5) and (3.6) in (3.4). This completes the
proof of Theorem O

Proof of Theorem [1.7] We have by Minkowski’s inequality, for every s > 1,

Rni nili
(e ﬂ”;’ M

o) o)+ (T ey ),

~prr 1=
2

')m o + 1l Bp(r2) |l -
(3.7)

<|l p(Rz=) - Bp(r2) +v(’Rn
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Using inequalities (1.4) and (1.10) in (28), we get for every 8, v € C with |5] <
L, yl<land R>r>1, s> 1,

R —pr*| —|1-3
(e (=2 228,
| (7" = 5z + (1= ) I
< I p(2) s +1B817™ (I p(2) |15
1+ 2|
| (R" = pr")z+ (1 —B) s
= {18l + I p(2) Ils,
{ TT+=1,
which is inequality (1.16) and Theorem is completely proved. m|
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