Thai Journal of Mathematics Volume 17 (2019) Number 1: 107-113
http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Complete Solution of 3-step Hamiltonian Grids and Torus Graphs

Gee-Choon Lau ${ }^{\dagger}, \frac{1}{1}$, Sin-Min Lee ${ }^{\ddagger}$, Karl Schaffer ${ }^{\S}$ and Siu-Ming Tong ${ }^{£}$
${ }^{\dagger}$ Faculty of Computer \& Mathematical Sciences, Universiti Teknologi
MARA (Segamat Campus) Johor, Malaysia
e-mail : geeclau@yahoo.com
${ }^{\ddagger} 1304$, North First Avenue, Upland, CA 91786 USA
email : sinminlee@gmail.com
${ }^{\S}$ Department of Mathematics, De Anza College, Cupertino CA 95014, USA
email : karl_schaffer@yahoo.com
${ }^{£}$ Department of Computer Science, Northwestern Polytechnic University
Fremont, CA 94539, USA
e-mail : tjadis@aol.com

Abstract

For a (p, q)-graph G, if the vertices of G can be arranged in a sequence $v_{1}, v_{2}, \ldots, v_{p}$ such that for each $i=1,2, \ldots, p-1$, the distance from v_{i} to v_{i+1} equal to k, then the sequence is called an $A L(k)$-step traversal. Furthermore, if $d\left(v_{p}, v_{1}\right)=k$, the sequence $v_{1}, v_{2}, \ldots, v_{p}, v_{1}$ is called a k-step Hamiltonian tour and G is k-step Hamiltonian. In this paper we completely determine which rectangular grid graphs are 3-step Hamiltonian and show that the torus graph $C_{m} \times C_{n}$ is 3-step Hamiltonian for all $m \geq 3, n \geq 5$.

Keywords : k-step Hamiltonian; grid graphs; torus graphs; NP-complete problem.
2010 Mathematics Subject Classification : 05C78; 05C25.

[^0]
1 Introduction

All graphs considered are simple and loopless. For terms used but not defined here, we refer to 1 . For a (p, q)-graph G, if the vertices of G can be arranged in a sequence $v_{1}, v_{2}, \ldots, v_{p}$ such that for each $i=1,2, \ldots, p-1$, the distance from v_{i} to v_{i+1} is equal to $k \geq 1$, then the sequence is called an $A L(k)$-step traversal. If $d\left(v_{p}, v_{1}\right)=k$, the sequence $v_{1}, v_{2}, \ldots, v_{p}, v_{1}$ is called a k-step Hamiltonian tour and we say G is k-step Hamiltonian (see [2]). Clearly, a 1 -step Hamiltonian graph is also Hamiltonian. The problem of Hamiltonian graphs has application in the traveling salesman problem. The readers may refer to [3, 4 for a survey on the developments of Hamiltonian graphs and the traveling salesman problem. In 2.5, the authors showed that all bipartite graphs are not k-step Hamiltonian for all even k and also determined the k-step Hamiltonicity of many families of graphs.

The classical closed knight's tour chessboard problem asks whether a knight on a chessboard can visit every square and returned to its starting position. The closed knight's tour problem is the problem of constructing such a tour on a given chessboard. It is clear that every rectangular chessboard of size $m \times n$ corresponds to a rectangular grid graphs of order $m n$ and size $2 m n-m-n$ denoted $G(m, n)$ for $n \geq m \geq 1$. Hence, a closed knight's tour of a rectangular chessboard always corresponds to a 3 -Hamiltonian tour in a rectangular grid graph. However, the converse may not true. For simplicity, we label vertices of $G(m, n)$ by (i, j) counting from the upper left corner of the grid in matrix fashion. In this paper we completely determine which rectangular grid graphs are 3 -step Hamiltonian and show that the torus graph $C_{m} \times C_{n}$ is 3 -step Hamiltonian for all $m \geq 3, n \geq 5$.

2 Main Results

Definition 2.1. For a graph G, let $D_{k}(G)$ denote the graph generated from G such that $V\left(D_{k}(G)\right)=V(G)$ and $E\left(D_{k}(G)\right)=\{u v \mid d(u, v)=k$ in G. $\}$.
Lemma 2.2. A graph G is k-step Hamiltonian or admits an $A L(k)$-step Hamiltonian traversal if and only if $D_{k}(G)$ is Hamiltonian or admits a Hamiltonian path.
Lemma 2.3. If G is a bipartite graph with bipartition (X, Y) and it is 3-step Hamiltonian then $|X|=|Y|$.
Proof. $D_{3}(G)$ is also a bipartite graph with bipartition (X, Y). Since $D_{3}(G)$ is Hamiltonian, therefore $|X|=|Y|$.

Remark 2.4. A bipartite graph with $|X|=|Y|$ in bipartition need not be 3-step Hamiltonian. The simplest example is $K(n, n)$, for $n>3$.

In 1750s, Euler presented solutions for the standard 8×8 board (see 6. 7) and the knight's tour problem is easily generalized to rectangular boards. In 1991 Schwenk 7. completely answered the question: Which rectangular chessboards have a knight's tour?

Theorem 2.5. ([7], Schwenk) An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of the following three conditions hold:
(a) m and n are both odd;
(b) $m \in\{1,2,4\}$;
(c) $m=3$ and $n \in\{4,6,8\}$.

We now present our complete solution to the question: Which rectangular boards have a 3 -step Hamiltonian tour?

Theorem 2.6. For $n \geq m \geq 1, G(m, n)$ is 3-step Hamiltonian except for the following four conditions:
(a) m, n are odd;
(b) $m=1$;
(c) $m=2, n=2,3,4,6,7,8,9,12,14$;
(d) $m=4, n=7$.

Proof. By Theorem 2.5, it is clear that we need only consider the grid graphs that do not admit a closed knight's tour. We first show in Figure 1 that $G(3, n)$ is 3 -step Hamiltonian for $n=4,6,8$.

Figure 1: A 3-step Hamiltonian tour in $G(3, n), n=4,6,8$

We now consider the following 4 cases.
(a) Suppose $m=2 s+1$ and $n=2 t+1$. We see that $|X|=(s+1)(t+1)+t s=$ $2 s t+s+t+1$ and $|Y|=s(t+1)+(s+1) t=2 s t+s+t$.

As $|X| \neq|Y|$, thus by Lemma 2.2. $G(m, n)$ cannot be 3 -step Hamiltonian
(b) If $m=1$, it is clear that $D_{3}(G(1, n))$ is disconnected. Hence, $G(1, n)$ cannot be 3 -step Hamiltonian.
(c) If $m=2$, we first show that $G(2, n)$ is not 3 -step Hamiltonian for $n=$ $2,3,4,6,7,8,9,12,14$. For $n=2,3,4,6,7,8,9$, it is routine to show that no 3 -step Hamiltonian tour exists.

We now consider the remaining values of n. In Figure 2, we give a 3 -step Hamiltonian tour in $G(2, n)$ for $n=5,10,11$. Note that a 3 -step Hamiltonian tour in $G(2,13)$ (see Figure 3) can be obtained from the 3 -step Hamiltonian tour in $G(2,11)$ in Figure 2 In a similar way, we can construct a 3 -step Hamiltonian tour in $G(2, n)$ for odd $n \geq 13$.

Figure 2: A 3 -step Hamiltonian tour in $G(2, n), n=5,10,11$

Figure 3: A 3 -step Hamiltonian tour in $G(2,13)$

Using Maple software, we found that for $n=12,14, D_{3}(G(2, n))$ is not Hamiltonian and hence $G(2, n)$ is not 3 -step Hamiltonian. In Figure 4, we give a 3 -step Hamiltonian tour in $G(2,16)$ and $G(2,18)$. We can then construct a 3 -step Hamiltonian tour in $G(2, n)$ for even $n \geq 18$ in a similar way.
(d) If $m=4$, we can construct a 3 -step Hamiltonian tour in $G(4, n)$ from each 3 -step Hamiltonian tour in $G(2, n)$ in part (c). In Figure 5, we show an extension of a 3-step Hamiltonian tour in $G(2,5)$ to a 3 -step Hamiltonian tour in $G(4,5)$.

We now only need to consider $G(4, n)$ for $n=4,6,7,8,9,12,14$ in which $G(2, n)$ is not 3 -step Hamiltonian. In Figure 6, we give a 3 -step Hamiltonian tour for $n=4,6,8,9,12,14$.

Using Maple software, we found that $D_{3}(G(4,7))$ is not Hamiltonian. This completes the proof.

Figure 4: A 3 -step Hamiltonian tour in $G(2, n), n=16,18$

Figure 5: Extension of a 3-step Hamiltonian tour in $G(2,5)$ to one in $G(4,5)$

$$
n=6,9,14
$$

Figure 6: A 3-step Hamiltonian tour in $G(4, n), n=4,6,8,9,12,14$

As a natural extension, we have the following results.
Theorem 2.7. The cylinder graph $P_{m} \times C_{n}$ is 3-step Hamiltonian for all $m \geq$ $3, n \geq 5$.

Proof. $P_{m} \times C_{n}$ contains $G(m, n)$ as a subgraph, so if $G(m, n)$ is 3-step Hamiltonian, then so is $P_{m} \times C_{n}$. This leaves the cases in which m and n are both odd, as well as $m=4, n=7$. Figure 7 shows a 3 -step Hamiltonian tour for $P_{3} \times C_{5}$ with the same pattern may be extended for all $n>5$ and $m=3$ as well as a 3 -step Hamiltonian tour for $P_{2} \times C_{5}$ with the same pattern may be extended for any odd n.

$P_{3} \times C_{5}$

$$
P_{2} \times C_{5}
$$

Figure 7: A 3 -step Hamiltonian tour $P_{m} \times C_{5}, m=2,3$

These two patterns may be combined to create 3 -step Hamiltonian tours for other odd m and n. In Figure 8, we give a 3 -step Hamiltonian tour for $P_{4} \times C_{7}$ and one for $P_{5} \times C_{7}$. The pattern may be extended to other odd m by adding other additional rows of $P_{2} \times C_{n}$ and linking them similarly.

Figure 8: A 3-step Hamiltonian tour for $P_{4} \times C_{7}$ and $P_{m} \times C_{n}, m \geq 5, n \geq 7$ both odd

Corollary 2.8. The torus graph $C_{m} \times C_{n}$ is 3-step Hamiltonian for all $m \geq 4, n \geq$ 5.

Proof. The torus graph contains $P_{m} \times C_{n}$ as a subgraph. Observe that the distance between any 2 vertices of a C_{3} is 1 . This means the 3 -step Hamiltonian tour of $P_{3} \times C_{m}$ is not a 3-step Hamiltonian tour of $C_{3} \times C_{m}$. Hence, the theorem holds.

Since determining whether a bipartite graph is Hamiltonian is NP-complete 8, 9], we would like to end the paper with the following conjecture.

Conjecture 2.9. The problem of 3-step Hamiltonian bipartite graphs is NPcomplete.

References

[1] G. Chartrand, P. Zhang, Introduction to Graph Theory, Walter Rudin Student Series in Advanced Mathematics, McGraw-Hill, 2004.
[2] G.C. Lau, S.M. Lee, K. Schaffer, S.M. Tong, S. Lui, On k-step Hamiltonian graphs, J. Combin. Math. Combin. Comp. 90 (2014) 145-158.
[3] R. Gould, Advances on the Hamiltonian problem, a survey, Graphs and Combinatorics 19 (2003) 7-52.
[4] S. Goyal, A Survey on Travelling Salesman Problem, (2010).
[5] G.C. Lau, S.M. Lee, K. Schaffer, S.M. Tong, On k-step Hamiltonian Bipartite and Tripartite Graphs, Malaya J. Mat. 2 (3) (2014) 180-187.
[6] E. Sandifer, How Euler Dit It?, (2012).
[7] A.J. Schwenk, Which rectangular chessboards have a knight's tour?, Mathematics Magazine (1991) 325-332.
[8] T.S.N. Akiyama, T. Nishizeki, NP-completeness of the Hamiltonian cycle problem for bipartite graphs, Journal of Information Processing 3 (1980) 7376.
[9] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamilton paths in grid graphs, SIAM Journal on Computing 11 (4) (1982) 676-686.
(Received 28 November 2012)
(Accepted 26 December 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2019 by the Mathematical Association of Thailand. All rights reserved.

