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Abstract : For a (p, q)-graph G, if the vertices of G can be arranged in a sequence
v1, v2, . . . , vp such that for each i = 1, 2, . . . , p − 1, the distance from vi to vi+1

equal to k, then the sequence is called an AL(k)-step traversal. Furthermore, if
d(vp, v1) = k, the sequence v1, v2, . . . , vp, v1 is called a k-step Hamiltonian tour and
G is k-step Hamiltonian. In this paper we completely determine which rectangular
grid graphs are 3-step Hamiltonian and show that the torus graph Cm×Cn is 3-step
Hamiltonian for all m ≥ 3, n ≥ 5.
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1 Introduction

All graphs considered are simple and loopless. For terms used but not defined
here, we refer to [1]. For a (p, q)-graph G, if the vertices of G can be arranged in
a sequence v1, v2, . . . , vp such that for each i = 1, 2, . . . , p − 1, the distance from
vi to vi+1 is equal to k ≥ 1, then the sequence is called an AL(k)-step traversal.
If d(vp, v1) = k, the sequence v1, v2, . . . , vp, v1 is called a k-step Hamiltonian tour
and we say G is k-step Hamiltonian (see [2]). Clearly, a 1-step Hamiltonian graph
is also Hamiltonian. The problem of Hamiltonian graphs has application in the
traveling salesman problem. The readers may refer to [3, 4] for a survey on the
developments of Hamiltonian graphs and the traveling salesman problem. In [2,5],
the authors showed that all bipartite graphs are not k-step Hamiltonian for all
even k and also determined the k-step Hamiltonicity of many families of graphs.

The classical closed knight’s tour chessboard problem asks whether a knight
on a chessboard can visit every square and returned to its starting position. The
closed knight’s tour problem is the problem of constructing such a tour on a
given chessboard. It is clear that every rectangular chessboard of size m × n
corresponds to a rectangular grid graphs of order mn and size 2mn−m−n denoted
G(m,n) for n ≥ m ≥ 1. Hence, a closed knight’s tour of a rectangular chessboard
always corresponds to a 3-Hamiltonian tour in a rectangular grid graph. However,
the converse may not true. For simplicity, we label vertices of G(m,n) by (i, j)
counting from the upper left corner of the grid in matrix fashion. In this paper we
completely determine which rectangular grid graphs are 3-step Hamiltonian and
show that the torus graph Cm × Cn is 3-step Hamiltonian for all m ≥ 3, n ≥ 5.

2 Main Results

Definition 2.1. For a graph G, let Dk(G) denote the graph generated from G
such that V (Dk(G)) = V (G) and E(Dk(G)) = {uv|d(u, v) = k in G.}.
Lemma 2.2. A graph G is k-step Hamiltonian or admits an AL(k)-step Hamil-
tonian traversal if and only if Dk(G) is Hamiltonian or admits a Hamiltonian
path.

Lemma 2.3. If G is a bipartite graph with bipartition (X,Y ) and it is 3-step
Hamiltonian then |X| = |Y |.
Proof. D3(G) is also a bipartite graph with bipartition (X,Y ). Since D3(G) is
Hamiltonian, therefore |X| = |Y |.

Remark 2.4. A bipartite graph with |X| = |Y | in bipartition need not be 3-step
Hamiltonian. The simplest example is K(n, n), for n > 3.

In 1750s, Euler presented solutions for the standard 8 × 8 board (see [6, 7])
and the knight’s tour problem is easily generalized to rectangular boards. In 1991
Schwenk [7] completely answered the question: Which rectangular chessboards
have a knight’s tour?
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Theorem 2.5. ([7], Schwenk) An m × n chessboard with m ≤ n has a closed
knight’s tour unless one or more of the following three conditions hold:

(a) m and n are both odd;

(b) m ∈ {1, 2, 4};

(c) m = 3 and n ∈ {4, 6, 8}.

We now present our complete solution to the question: Which rectangular
boards have a 3-step Hamiltonian tour?

Theorem 2.6. For n ≥ m ≥ 1, G(m,n) is 3-step Hamiltonian except for the
following four conditions:

(a) m,n are odd;

(b) m = 1;

(c) m = 2, n = 2, 3, 4, 6, 7, 8, 9, 12, 14;

(d) m = 4, n = 7.

Proof. By Theorem 2.5, it is clear that we need only consider the grid graphs that
do not admit a closed knight’s tour. We first show in Figure 1 that G(3, n) is
3-step Hamiltonian for n = 4, 6, 8.

Figure 1: A 3-step Hamiltonian tour in G(3, n), n = 4, 6, 8

We now consider the following 4 cases.
(a) Suppose m = 2s+1 and n = 2t+1. We see that |X| = (s+1)(t+1)+ ts =

2st + s + t + 1 and |Y | = s(t + 1) + (s + 1)t = 2st + s + t.
As |X| 6= |Y |, thus by Lemma 2.2. G(m,n) cannot be 3-step Hamiltonian
(b) If m = 1, it is clear that D3(G(1, n)) is disconnected. Hence, G(1, n) cannot

be 3-step Hamiltonian.
(c) If m = 2, we first show that G(2, n) is not 3-step Hamiltonian for n =

2, 3, 4, 6, 7, 8, 9, 12, 14. For n = 2, 3, 4, 6, 7, 8, 9, it is routine to show that no 3-step
Hamiltonian tour exists.
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We now consider the remaining values of n. In Figure 2, we give a 3-step
Hamiltonian tour in G(2, n) for n = 5, 10, 11. Note that a 3-step Hamiltonian tour
in G(2, 13) (see Figure 3) can be obtained from the 3-step Hamiltonian tour in
G(2, 11) in Figure 2. In a similar way, we can construct a 3-step Hamiltonian tour
in G(2, n) for odd n ≥ 13.

Figure 2: A 3-step Hamiltonian tour in G(2, n), n = 5, 10, 11

Figure 3: A 3-step Hamiltonian tour in G(2, 13)

Using Maple software, we found that for n = 12, 14, D3(G(2, n)) is not Hamil-
tonian and hence G(2, n) is not 3-step Hamiltonian. In Figure 4, we give a 3-step
Hamiltonian tour in G(2, 16) and G(2, 18). We can then construct a 3-step Hamil-
tonian tour in G(2, n) for even n ≥ 18 in a similar way.

(d) If m = 4, we can construct a 3-step Hamiltonian tour in G(4, n) from each
3-step Hamiltonian tour in G(2, n) in part (c). In Figure 5, we show an extension
of a 3-step Hamiltonian tour in G(2, 5) to a 3-step Hamiltonian tour in G(4, 5).

We now only need to consider G(4, n) for n = 4, 6, 7, 8, 9, 12, 14 in which G(2, n)
is not 3-step Hamiltonian. In Figure 6, we give a 3-step Hamiltonian tour for
n = 4, 6, 8, 9, 12, 14.

Using Maple software, we found that D3(G(4, 7)) is not Hamiltonian. This
completes the proof.
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Figure 4: A 3-step Hamiltonian tour in G(2, n), n = 16, 18

Figure 5: Extension of a 3-step Hamiltonian tour in G(2, 5) to one in G(4, 5)

Figure 6: A 3-step Hamiltonian tour in G(4, n), n = 4, 6, 8, 9, 12, 14
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As a natural extension, we have the following results.

Theorem 2.7. The cylinder graph Pm × Cn is 3-step Hamiltonian for all m ≥
3, n ≥ 5.

Proof. Pm × Cn contains G(m,n) as a subgraph, so if G(m,n) is 3-step Hamilto-
nian, then so is Pm×Cn. This leaves the cases in which m and n are both odd, as
well as m = 4, n = 7. Figure 7 shows a 3-step Hamiltonian tour for P3 × C5 with
the same pattern may be extended for all n > 5 and m = 3 as well as a 3-step
Hamiltonian tour for P2×C5 with the same pattern may be extended for any odd
n.

Figure 7: A 3-step Hamiltonian tour Pm × C5,m = 2, 3

These two patterns may be combined to create 3-step Hamiltonian tours for
other odd m and n. In Figure 8, we give a 3-step Hamiltonian tour for P4 × C7

and one for P5 × C7. The pattern may be extended to other odd m by adding
other additional rows of P2 × Cn and linking them similarly.

Figure 8: A 3-step Hamiltonian tour for P4×C7 and Pm×Cn,m ≥ 5, n ≥ 7
both odd

Corollary 2.8. The torus graph Cm×Cn is 3-step Hamiltonian for all m ≥ 4, n ≥
5.
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Proof. The torus graph contains Pm×Cn as a subgraph. Observe that the distance
between any 2 vertices of a C3 is 1. This means the 3-step Hamiltonian tour of
P3×Cm is not a 3-step Hamiltonian tour of C3×Cm. Hence, the theorem holds.

Since determining whether a bipartite graph is Hamiltonian is NP-complete
[8, 9], we would like to end the paper with the following conjecture.

Conjecture 2.9. The problem of 3-step Hamiltonian bipartite graphs is NP-
complete.
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