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Abstract : This paper deals with the connections and interdependencies among
prime ideals, primary ideals, valuation ideals, valuation semigroups and semi-
groups. R. Gilmer and J. Ohm [1] studied primary ideals and valuation ideals for
integral domains. In this article, we generalize this concept for semigroups. It is
proved that if T is a prime ideal of a semigroup S, and {Qα} is the set of primary
ideals that belongs to T . Further, if I =

⋂
Qα and every Qα is a valuation ideal,

then I is prime.
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1 Introduction

Throughout this paper, S will represent commutative cancellation nontrivial
additive semigroup with zero 0. A nonempty subset I of a semigroup S is called
an ideal of S if I + S ⊂ I. A proper ideal P of S is called a prime ideal of S if
a+ b ∈ P with a, b ∈ S implies either a ∈ P or b ∈ P . The supremum of lengths
n of chains of prime ideals 0 ⊆ P0 ⊆ P1 ⊆ · · · ⊆ Pn of a semigroup is called
the dimension (dim) of S. So, we write dim (S) = 1 if S has one and only one
prime ideal. For any y ∈ S, (y) = y + S = {y + a | a ∈ S}. Then (y) is called a
principal ideal of S. For x1, x2, · · · , xn ∈ S, I = (x1, x2, · · · , xn) =

⋃n
i=1(xi + S)

is called an ideal generated by x1, x2, · · · , xn ∈ S. Moreover, an ideal M of S is
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said to be a maximal ideal of S if M 6= S and there exists no ideal I of S where,
M ⊆ I ⊆ S. The maximal ideal is a prime ideal of S. An element x ∈ S is called
a unit if x + y = 0 for some y ∈ S. Also, if M = {m ∈ S | m is a non-unit
element of S} is a non-empty set, then M is the unique maximal ideal of S. If I
is an ideal of S then the radical of I, denoted by rad(I) or

√
I, is defined to be

rad(I) = {s ∈ S | ns ∈ I for some n ∈ N}, where N is the set of positive integers.
We know that rad(I) is an ideal of S.

A proper ideal Q of S is said to be a primary ideal of S if x + y ∈ Q, where
x, y ∈ S and x /∈ Q ⇒ y ∈ rad(Q). It is a well known fact that the concept of
primary ideals generalizes the notion of prime ideals. For a primary ideal Q of S,
P =

√
Q is a prime ideal of S, and we term Q a primary ideal belonging to P

or a P -primary ideal. Moreover, Q is a P -primary if and only if
√
Q = P and if

x + y ∈ Q with x /∈ P then y ∈ Q. For t ∈ T , let S[t] = {s + nt | s ∈ S, n ∈ N
or n=0}, where N is the set of natural numbers. An element t ∈ T is called
integral over S if nt ∈ S for some n ∈ N . The set S∗ of elements t ∈ T that are
integral over S is said to be the integral closure of S in T . If S = S∗, we say that
S is integrally closed in T .

We recall some notations and definitions [2–4] used in the subsequent section
of this paper.

(1) A non-empty subset As of a semigroup S is called an additive system of S
if x, y ∈ As ⇒ x+ y ∈ As and 0 ∈ As. Moreover, let SAs

= {s− t | s ∈ S, t ∈ As}.
Then, As is an oversemigroup of S and is called an additive system of S and the
quotient semigroup ST is denoted by SP . Each element t ∈ As is a unit of S.

(2) Let G = {s − s′ | s, s′ ∈ S}, then G is a torsion-free abelian group and S
is a subsemigroup of G. G is called the quotient of S and is denoted by q(S). T
is called an oversemigroup of S if T is a subsemigroup of q(S) containing S.

(3) Let S be a semigroup and H a totally ordered additive group, that is, H
is totally ordered set and additive group such that if a ≤ b then a+ c ≤ b+ c for
each a, b, c ∈ H. Let v : q(S) → H be a mapping. We say that v is a valuation
on q(S) if v(α+ β) = v(α) + v(β) for any α, β ∈ q(S).

(4) A semigroup S is a valuation semigroup if and only if S = {a ∈ q(S) |
v(a) ≥ 0} for each a ∈ q(S).

(5) A semigroup S is a valuation semigroup if and only if either α ∈ S or
−α ∈ S for each α ∈ G.

(6) An ideal Iv of a semigroup S is called a valuation ideal if there exists a
valuation semigroup Sv ⊇ S and an ideal I of Sv with I ∩ S = Iv. If we like to
specify the particular valuation semigroup Sv, we say that Iv is a v-ideal. If Iv is
a v-ideal, then (Iv + Sv) ∩ S = Iv.

2 Primary Ideals and Valuation Ideals

To start with, we need the following:

Definition 2.1. A semigroup S (with unit) is called almost semigroup if for any
maximal ideal M of S, SM is a semigroup.
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Definition 2.2. A commutative semigroup (with unit) which has only finitely
many maximal ideals is called quasi-local semigroup.

Definition 2.3. Let S be a semigroup and S ⊆ V with V a quasi-local semigroup
having maximal ideal M . Then M ∩ S is called the centre of V on S.

Definition 2.4. A semigroup S is defined to have the finite rank r if every finitely
generated subsemigroup of S is generated by ≤ r elements. The smallest number
r endowed with this property is called the rank of S.

Lemma 2.5. Let Iv be a valuation ideal of the semigroup S, and P , Q be any
subsets of S. Then, we have the following:

(i) P +Q ⊆ Iv ⇒ {2p | p ∈ P} ⊆ Iv or {2q | q ∈ Q} ⊆ Iv.

(ii) 2P + 2Q ⊆ Iv ⇒ P +Q ⊆ Iv.

Proof. (i) Let there be q ∈ Q such that 2q /∈ Iv, and suppose Sv is a valuation
semigroup such that (Iv + Sv) ∩ S = Iv. So for any p ∈ P , v(2p) ≥ v(p + q) or
v(2q) ≥ v(p + q); and so we have 2p ∈ Iv + Sv or 2q ∈ Iv + Sv. Since 2q /∈ Iv,
2q /∈ Iv +Sv and therefore 2p ∈ Iv +Sv. Hence, {2p | p ∈ P} ⊆ (Iv +Sv)∩S = Iv.

(ii) Let p ∈ P , q ∈ Q and Sv be a valuation semigroup such that (Iv+Sv)∩S =
Iv. Suppose that v(p) ≤ v(q). Then v(p + q) ≥ v(2p) ≥ v(2p + 2q), therefore,
p+ q ∈ (2p+ 2q) + Sv ⊆ Iv + Sv. Hence, p+ q ∈ (Iv + Sv) ∩ S = Iv.

Theorem 2.6. A semigroup S is a valuation semigroup if every principal ideal of
S is a valuation ideal.

Proof. By Lemma 2.5(i), we have that 2l ∈ (l + m) or 2m ∈ (l + m), for every
nonzero elements l, m ∈ S. Then l −m or m − l ∈ S and hence S is a valuation
semigroup.

Theorem 2.7. Suppose Q is a primary ideal of a semigroup S and As is an
additive system in S so that Q∩As = ∅. Further, assume S0 is a semigroup that
contains S and (Q + S0) ∩ S = Q, and S∗0 = (S0)As , S∗ = SAs , Q∗ = SAs + Q.
Then we have that (S∗0 +Q∗) ∩ S∗ = Q∗.

Proof. Obviously, Q∗ ⊆ (S∗0 +Q∗)∩ S∗. Let y ∈ (S∗0 +Q∗)∩ S∗ = (S∗0 +Q)∩ S∗,

y = k − l = m− n, k ∈ S0 +Q, l, n ∈ As,m ∈ S.

Thus, n + k = l + m. However, n + k ∈ S0 + Q and m + l ∈ S, therefore,
m+ l ∈ (S0 +Q)∩ S = ∅. Since Q∩As = ∅, l ∈ As implies l /∈ Q. Hence m ∈ Q
and y = m− n ∈ Q∗.

Corollary 2.8. Suppose As is an additive system, S is a semigroup and Q is a
primary ideal. Then Q∗ = Q + SAs

is also a valuation ideal if Q is a valuation
ideal.
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Proof. Let (Sv+Q)∩S = Q, where Sv is a valuation semigroup, and if S∗v = (Sv)As ,
then (S∗v +Q∗) ∩ S∗ = Q∗ by Theorem 2.7. Hence Q∗ is a valuation ideal.

Lemma 2.9. Suppose V is a semigroup, and V1,· · · , Vn are v-ideals of S for some
fixed v. Let si ∈ S and si /∈ Vi, i = 1, · · · , n, then

s = s1 + · · ·+ sn /∈ V1 + V2 + · · ·+ Vn.

Proof. As (Vi + Sv) ∩ S = Vi, si /∈ Vi ⇒ si /∈ Vi + Sv. So, v(si) < v(qi) for all
qi ∈ Vi + Sv. However, then v(s) = v(s1 + · · · + sn) < v(q1 + · · · + qn) for all q1
,· · · , qn, qi ∈ Vi+Sv. This shows that s /∈ (V1 +Sv) + · · ·+ (Vn+Sv); and because
V1 + · · ·+ Vn ⊆ (V1 + Sv) + · · ·+ (Vn + Sv), we have that s /∈ V1 + · · ·+ Vn.

Theorem 2.10. Suppose I1, I2 are ideals of the semigroup S, where I1 is a
valuation ideal and nI2 ⊆ nI1. Then, I2 ⊆ I1.

Proof. There exists x ∈ I2, x /∈ I1 if I2 * I1. Hence, by Lemma 2.9, nx /∈ nI1;
therefore, nI2 * nI1.

Lemma 2.11. Suppose S is a semigroup, and I is an ideal of S such that nI is
a valuation ideal for all n. Then, we have that χ =

⋂∞
n=1 nI is prime.

Proof. Let a + b ∈ χ. This implies that a + b ∈ 2nI = 2(nI), for all n. So, by
Lemma 2.9, a ∈ nI or b ∈ nI. Hence, a ∈ χ or b ∈ χ.

Lemma 2.12. Suppose P is a prime ideal of a valuation semigroup S, and further
assume that T is the intersection of the primary ideals that belongs to P . Then,
T is prime, and, moreover, there exists no prime ideal P1 such that T ⊂ P1 ⊂ P .

Proof. Suppose that S = SP so that S is quasi-local and P is maximal in S. The
lemma is established if T = P . Further, given y ∈ P , y /∈ Q, Q ⊂ (y) ⊆ P if T ⊂ P
so that there exists a P -primary ideal Q ⊂ P . So if Qα is any P -primary ideal
of S, then iy ∈ Qα for some i so that (iy) ⊆ Qα. Moreover,

√
(iy) =

√
(y) = P ,

and so (iy) is P -primary. Then by Lemma 2.11 this implies that T =
⋂∞
i=1(iy) is

prime. Again, if I is an ideal of S such that T ⊂ I ⊂ P , then I * (ny) for some
n, so that (ny) ⊂ I. Hence, I ⊂ P =

√
(ny) ⊆

√
I and I is not prime.

Lemma 2.13. Suppose {Iα} = V (S) is a set of valuation ideals of a semigroup S,
and assume for any I1, I2 ∈ V (S) there exists an I3 ∈ V (S) such that I3 ⊆ I1∩ I2.
If I =

⋂
Iα, then

√
I is prime.

Proof. Let a+b ∈
√
I. This implies that n(a+b) ∈ I for some n. Then na+nb ∈ Iα

for all α; therefore by Lemma 2.5(i), 2na ∈ Iα or 2nb ∈ Iα. If 2na /∈ I1 and 2nb /∈ I2
for some I1, I2 ∈ V (S), then there exists I3 ∈ V (S) such that I3 ⊆ I1 ∩ I2; and
then 2na /∈ I3, 2nb /∈ I3, which is a contradiction. Therefore, we suppose 2na ∈ Iα
for all α. However, then 2na ∈ I and hence a ∈

√
I.
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Theorem 2.14. Suppose T is a prime ideal of a semigroup S, and {Qα} is the
set of primary ideals that belongs to T . If I =

⋂
Qα and every Qα is a valuation

ideal, then I is prime.

Proof. Suppose Q is a primary ideal of S, and let Sv be a valuation semigroup
such that Qv ∩ S = Q, Qv = Q + Sv. If Tv =

√
Qv, Tv is prime and Tv ∩ S = T .

The prime ideals of a valuation semigroup are linearly ordered so that every ideal
of a valuation semigroup has prime radical. Suppose T ∗v is the intersection of the
Tv-primary ideals of Sv, and suppose T ∗ = T ∗v ∩ S. By Lemma 2.12, T ∗v is prime,
therefore T ∗ is also prime. So, I ⊆ T ∗ ⊆ Q, and consequently

√
I ⊆ T ∗ ⊆ Q.

Because this is valid for any Tv-primary ideal Q,
√
I ⊆ I. Hence,

√
I = I.

Moreover, if Q1, Q2 are T -primary ideals, then Q3 = Q1 ∩Q2, is also T -primary.
So, by using Lemma 2.13, we infer that I =

√
I is prime.

Lemma 2.15. Suppose L is a prime ideal of a semigroup S, and assume there is a
prime ideal P ⊂ L such that there exists no prime ideal P1 such that P ⊂ P1 ⊂ L.
Then, P is the intersection of the L-primary ideals of S containing P .

Proof. We prove the lemma under the hypothesis that S is a one-dimensional and
quasi-local semigroup with maximal ideal L and P = (0). Since every nonzero
ideal is L-primary, and intersection of all nonzero ideals of S is (0), the lemma is
established.

Theorem 2.16. Suppose L is a prime ideal of a semigroup S, and let every L-
primary ideal is a valuation ideal. If we have a prime ideal P ⊂ L and there exists
no prime ideal P1 such that P ⊂ P1 ⊂ L, then P is unique.

Proof. Suppose L0 is the intersection of the L-primary deals. L0 is prime and is
properly contained in L by Theorem 2.14 and Lemma 2.15. We now prove P ⊆ L0.
Then it implies that P = L0 and so P is unique. By the 1-1 correspondence
between primary(prime) ideals of S ⊂ L and primary(prime) ideals of SL and
Corollary 2.8, we substitute S by SL and therefore suppose that S is quasi-local
with maximal ideal L. Suppose then Q is any L-primary ideal of S, and then
we prove P ⊆ Q. Let y ∈ Q, y /∈ P and assume N = Q + P + (4y). Then
N ⊆ Q and

√
N ⊇ (P, y) ⊃ P ; therefore

√
N = L, and so N is L-primary. By our

assumption, N is a valuation ideal, therefore there exists a valuation semigroup
Sv and an ideal Nv of Sv such that Nv ∩ S = N ; and now let Nv = N + Sv.
Further suppose Pv = P + Sv, Qv = Q + Sv. Now on the contrary assume
2y ∈ Pv ⇒ y + 2y ∈ (Qv + Pv) ∩ S ⊆ N . Then 3y = m + n + 4y, m ∈ Q + P ,
n ∈ S. So, y + (m+ n) = 0 ∈ P . Since m+ n is a unit of S, this shows y ∈ P , a
contradiction. So, 2y /∈ Pv. Since Sv is a valuation semigroup, the ideals of Sv are
linearly ordered; therefore 2y /∈ Pv ⇒ Pv ⊆ 2y + Sv. So, 2Pv ⊆ (2y + Sv) + Pv.
However, 2P + (2y) is a valuation ideal, so by Lemma 2.5(ii), y + P ⊆ 2P + (2y).
Therefore, y+P ⊆ 2P+(2y)+P because y /∈ P . Then (y+Sv)+Pv ⊆ (2Pv)+(2y+
Sv)+Pv = (2y+Sv)+Pv. So, (y+Sv)+Pv = (2y+Sv)+Pv ⇒ Pv = (y+Sv)+Pv =
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(2y + Sv) + Pv = (3y + Sv) + Pv = · · · . So, Pv ⊆
∞⋂
i=1

(iy + Sv) = P1, where P1 is

prime by Lemma 2.11, and y /∈ P1 ⇒ P1 ∩ S ⊂ L. So, P ⊆ Pv ∩ S ⊆ P1 ∩ S ⊂ L,
so by our assumption, P = P1∩S. This implies N and P are v-ideals for the same
v. Because N * P , we get P = Pv ∩ S ⊆ Nv ∩ S = N . Hence, P ⊆ N ⊆ Q.

A semigroup satisfies the ascending chain condition(a.c.c.) for prime ideals
provided any strictly ascending chain of prime ideals P1 ⊂ P2 ⊂ P3 ⊂ · · · termi-
nates after a finite number of steps. Equivalently, every nonempty family of prime
ideals contains a maximal element.

Lemma 2.17. Suppose S is a quasi-local semigroup, and for any nonzero prime
ideal P of S there exists a prime ideal N(P ) ⊂ P such that if P1 is a prime ideal
⊂ P , then P1 ⊆ N(P ). Then S satisfies the a.c.c. for prime ideals and the prime
ideals of S are linearly ordered.

Proof. Let P1 ⊂ P2 ⊂ P3 ⊂ · · · be an ascending chain of prime ideals of S, then
P =

⋃
Pi is also prime; therefore if P 6= Pi for all i, then Pi ⊆ N(P ) for all i; and

thus we get P =
⋃
Pi ⊆ N(P ) ⊂ P , which is a contradiction. So, S has the a.c.c.

for prime ideals. Now let there be prime ideals P1, P2 of S such that P1 * P2 and
P2 * P1. Because S satisfies the a.c.c. for prime ideals, there exists a prime ideal
L, which is maximal in view of P1 ⊆ L, P2 * L. Since P2 * L, L is not the maximal
ideal of S and there exists a prime ideal Lβ ⊃ L. If {Lβ} is the set of all such prime
ideals, then L 6=

⋂
Lβ since P2 ⊆

⋂
Lβ and P2 * L. So, by Zorn’s lemma, there

exists a prime ideal L0 minimal to L0 ⊃ L. So, L ⊆ N(L0) ⊂ L0 ⇒ L = N(L0).
However, then P2 ⊂ L0 implies P2 ⊆ N(L0) = L, and that is a contradiction to
our hypothesis.

Theorem 2.18. Suppose S is a quasi-local semigroup such that S has the a.c.c.
for prime ideals. If Q(S) ⊆ V (S), then the prime ideals of S are linearly ordered,
where Q(S) is the set of primary ideals and V (S) is the set of valuation ideal.

Proof. Let P be any nonzero prime ideal of S. Since S has the a.c.c. for prime
ideals, the set of all prime ideals P1 ⊂ P contains a maximal element N(P ). So,
N(P ) is unique by Theorem 2.16 and so contains every prime ideal P1 ⊂ P . Hence,
by Lemma 2.17, the prime ideals of S are linearly ordered.

Theorem 2.19. Suppose S is a semigroup which satisfies the a.c.c. for prime
ideals. Then the following conditions are equivalent:

(i) There exists a finite set Sv1 , · · · , Svn of valuation semigroups such that
every primary ideal of S is a vi-ideal for some i.

(ii) S is valuation semigroup with maximal ideals.

Proof. (i)⇒ (ii) S is a valuation semigroup by [1, Theorem 4]. If M is a maximal
ideal of S, M is a vi-ideal for some vi and hence M is the centre of Svi on S. We
have that there exists at most n such distinct centres.
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(ii)⇒ (i) Suppose M1,· · · , Mt, t ≤ n are the maximal ideals of S. Because S
is valuation semigroup, SMi

is a valuation semigroup, and then SM1
,· · · ,SMt

are
the desired valuation semigroup.

Corollary 2.20. Suppose S is a semigroup which has a.c.c. for prime ideals, and
assume that every primary ideal of S is a v-ideal for some fixed v. Then S is a
valuation semigroup.

Proof. S is a semigroup having one maximal ideal M by Theorem 2.19, and hence
S = SM is a valuation semigroup.

Theorem 2.21. Suppose S is a semigroup and T ⊃ U prime ideals of S such
that T is a minimal prime of U + I for some finitely generated ideal I and such
that every T -primary ideal is a valuation ideal. Suppose P is the intersection of
T -primary ideals. Then P is a prime ideal satisfying the relation U ⊆ P ⊆ T and
there exists no prime ideal P1 having P ⊂ P1 ⊂ T .

Proof. Because T is a minimal prime of U + I, T is not a union of prime ideals
properly between U and T , we use Zorn’s lemma to obtain that there is a prime
ideal P with U ⊆ P ⊂ T and there is no prime ideal P1 satisfying P ⊂ P1 ⊂ T .
Hence, using Theorem 2.16, we get that P is the intersection of all T -primary
ideals.

Corollary 2.22. Suppose S is a semigroup such that Q(S) ⊆ V (S), and for every
ideal P of S there is a valuation semigroup Sv of rank 1 such that P is a v-ideal.
Then dim S ≤ 1 and S is a valuation semigroup.

Proof. Let there be prime ideals T ⊂ L in S. Let y ∈ L, y /∈ T and L0 be a
minimal prime of T + (y). Then T ⊆ P , where P is the intersection of the L0-
primary ideals and by Theorem 2.21 T ⊂ L0. There exists a rank 1 valuation
semigroup Sv such that (L0 + Sv) ∩ S = L0; therefore if Lv is the maximal ideal
of Sv, then Lv ∩ S = L0. So, every Lv-primary ideal of Sv gives in to an L0-
primary ideal of S. Because Sv has rank 1, the intersection of the Lv-primary
ideals of Sv is (0). So, the intersection P of the L0-primary ideals of S is also (0).
Therefore, T ⊆ P = (0), so, dim S = 1. Hence by [1, Theorem 4], S is a valuation
semigroup.

Corollary 2.23. A semigroup S with quotient group G is almost semigroup if
Q(S) ⊆ V (S) and for every prime ideal P of S there is a rank 1, discrete valuation
semigroup Sv ⊂ G with P is a v-ideal.

Proof. Let there be a proper prime ideal P of S. Then dim S = 1 and S is a
valuation semigroup by Corollary 2.22. So, Sp is of rank 1 valuation semigroup
and therefore Sp is a maximal subsemigroup of G. However, if P is a v-ideal, then
Sp ⊆ Sv ⊂ G; therefore, Sp = Sv. Hence, Sp is , discrete, rank 1 and so, S is
almost semigroup.
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