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1 Introduction

In 2011, Azam et. al. [1] introduced the notion of complex valued metric space
and established sufficient conditions for the existence of common fixed points of
a pair of mappings satisfying a contractive condition. The theorems proved by
Azam et. al. [1] and Bhatt et. al. [2] uses the rational inequality in a complex
valued metric space as contractive condition. We use more general contractive
condition.
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The study of existence of common fixed point grown from weakly commu-
tativity [3] to compatibility [4] and weakly compatibility [5]. Similarly, the non-
commutativity of mappings grown from noncompatibility [6] to property (E.A) [7].
The concept of (E.A) property allows us to replace the completeness requirement
of the space by a more natural condition of closeness of range. Pathak, Lopez and
Verma [8] proved a common fixed point theorem in metric space for an integral type
implicit relation using the property (E.A). By using the idea of property (E.A),
Sintunavarat and Kumam [9] introduced the concept of ‘common limit range prop-
erty’ or (CLR)-property, for a pair of mappings. They proved some common fixed
point results for a pair of weakly compatible mappings in a fuzzy metric space
satisfying (CLR)-property. Sintunavarat, Cho and Kumam [10] proved a common
fixed point theorem in complex valued metric space using Urysohn integral equa-
tion approach. Also, Sintunavarat and Kumam [11] proved common fixed point
theorem for R-weakly commuting mappings in fuzzy metric space. More results
on common fixed point theorems using the (CLR) property can be find in [12–21]
etc.

In this paper, we prove some common fixed point theorems for two pairs of
weakly compatible mappings in a complex-valued metric space by using new prop-
erty, known as common limit converging in the subset or (CLCS)-property. Using
this idea we will prove a common fixed point theorem for two pairs of weakly
compatible mappings in a complex valued metric space. We apply this result to
prove a common fixed point theorem in GV-fuzzy metric space.

An ordinary metric d is a real-valued function from a set X×X into R, where
X is a nonempty set. That is, d : X × X → R. A complex number z ∈ C is an
ordered pair of real numbers, whose first co-ordinate is called Re(z) and second
coordinate is called Im(z). Thus a complex valued metric d is a function from a
set X×X into C, where X is a nonempty set and C is the set of complex number.
That is, d : X ×X → C. Let z1, z2 ∈ C, define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In (i), (ii) and (iii), we have |z1| < |z2|. In (iv), we have |z1| = |z2|. So |z1| ≤ |z2|.
In particular, z1 � z2 if z1 6= z2 and one of (i), (ii), (iii) is satisfy. In this case

|z1| < |z2|. We will write z1 ≺ z2 if only (iii) satisfy. Further,

0 - z1 � z2 ⇒ |z1| < |z2|,

z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.
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Azam et. al. [1] defined the complex-valued metric space (X, d) in the following
way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X×X →
C satisfies the following conditions:
(C1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a complex valued metric on X, and (X, d) is called a complex
valued metric space.

A point x ∈ X is called an interior point of A ⊆ X if there exists r ∈ C, where
0 ≺ r, such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.
A point x ∈ X is called a limit point of A ⊆ X, if for every 0 ≺ r ∈ C, we have

B(x, r) ∩ (A X) 6= φ.

The set A is called open whenever each element of A is an interior point of A.
A subset B is called closed whenever each limit point of B belongs to B.

The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff
topology τ on X.

Let {xn} be a sequence in X and x ∈ X. If for every c ∈ C, with 0 ≺ c
there exists n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, then {xn} is called
convergent. Also, {xn} converges to x (written as, xn → x or limn→∞ xn = x);
and x is the limit point of {xn}. The sequence {xn} converges to x if and only if
limn→∞ |d(xn, x)| = 0.

If for every c ∈ C, with 0 ≺ c there exists n0 ∈ N such that for all n > n0,
d(xn, xn+m) ≺ c, then {xn} is called Cauchy sequence in (X, d). If every Cauchy
sequence converges in X, then X is called a complete complex valued metric space.
The sequence {xn} is called Cauchy if and only if limn→∞ |d(xn, xn+m)| = 0.

Definition 1.2. [2, 5] A pair of self-mappings A,S : X → X is called weakly-
compatible if they commute at their coincidence points. That is, if there be a
point u ∈ X such that Au = Su, then ASu = SAu, for each u ∈ X.

Example 1.3. Let X = C. Define complex-metric d : X×X → C by: d(z1, z2) :=
eia|z1 − z2|, where a ∈ [0, π2 ). Then (X, d) is a complex-valued metric space. Sup-
pose A,S : X → X be defined as:

Az = 2eiπ/4, if Re(z) 6=0, Az = 3eiπ/3, if Re(z)=0, and

Sz = 2eiπ/4, if Re(z) 6=0, Sz = 4eiπ/6 if Re(z)=0.

Then observe that Az = Sz = 2eiπ/4, when Re(z) 6= 0, and so ASz = SAz =
2eiπ/4. Hence (A,S) is weakly compatible at all z ∈ C with Re(z) 6=0.
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Definition 1.4. We define the ‘’ function, call ’selection of one co-ordinate among
these options’, for the partial order relation - by:
(1) {z1, z2} = z2 if z1 - z2.
(2) z1 - {z2, z3} ⇒ z1 - z2, or z1 - z3.
(3) {z1, z2} = z2 ⇔ z1 - z2, or |z1| ≤ |z2|.

Using Definition 1.4 we have the following Lemma:

Lemma 1.5. Let z1, z2, z3.... ∈ C and the partial order relation - is defined on
C. Then following statements are easy to prove:
(i) If z1 - z2 and z2 - {z2, z3}, then z1 - z2;
(ii) If {z1, z2} - z3 and z4 - {z1, z3, z4} then z1 - z4 if ;
(iii) If z1 - {z2, z3, z4, z5} and {z3, z4, z5} - z2, then z1 - z2 and so on.

Definition 1.6. (Sintunavarat and Kumam [9]) Suppose that (X, d) is a metric
space and f, g : X → X. Two mappings f and g are said to satisfy the common
limit in the range of g property, in short, (CLRg)-property if:

lim
n→∞

fxn = lim
n→∞

gxn = gx, (1.1)

for some x ∈ X.

In a complex-valued metric space (X, d), Definition 1.6 will be same but the
space X will be a complex-valued metric space.

Remark 1.7. If the mapping pair f, g : X → X satisfy (CLRg)-property, then it
also satisfy (CLRf )-property and vice-versa. Examples 1.8 and 1.9 below, verify
this fact. Keeping this view in mind, we are going to unify the (CLRg) and
(CLRf )-properties, in our notion of (CLCS) property.

Example 1.8. Let X = C and d be any complex valued metric on X. Define
f, g : X → X by fz = z + 2i and gz = 3z, ∀z ∈ X. Consider a sequence
{zn} = {i+ 1

n}n≥1 in X, then

lim
n→∞

fzn = lim
n→∞

zn + 2i = lim
n→∞

(i+
1

n
) + 2i = 3i,

and

lim
n→∞

gzn = lim
n→∞

3(i+
1

n
) = 3i = g(0 + i).

Hence, the pair (f, g) satisfies property (CLRg) in X with x = 0 + i ∈ X.

Example 1.9. Let X = C and d(z1, z2) = eia|z1 − z2| be any complex-valued
metric on X. Define f, g : X → X by: fz = 2z − 4 and gz = z + 2i, ∀z ∈ X.
Consider a sequence {zn} = {4 + 2i+ 1

n}n≥1 in X, then

lim
n→∞

fzn = lim
n→∞

2zn − 4 = 4 + 4i = lim
n→∞

gzn = lim
n→∞

zn + 2i = 4 + 4i = g(4 + 2i).

Hence, the pair (f, g) satisfies property (CLRg) in X with x = 4+2i ∈ X. Observe
that, (f, g) satisfy (CLRf ) property also, in X.
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In Definition 1.6, the notion of (CLR) property does not require the condition
of closeness of the range (sub)space but the common limit t goes to different sets
(in fX for (CLRf ) and in gX for (CLRg)). By unifying above definition of
(CLRf ) and (CLRg) properties and by generalizing the (E.A) property, we give
the following notion:

Definition 1.10. [21] Suppose that (X, d) be a complex valued metric space and
f, g : X → X. Let Y ⊆ X. The mappings f, g are said to satisfy the property of
common limit in the subset Y , in brief (CLCS) property, if there exist a sequence
{zn} in X such that

lim
n→∞

fzn = lim
n→∞

gzn ∈ Y (1.2)

for some sequence {zn} in X.

Remark 1.11. The (CLRg) and (CLRf ) properties unify if Y = fX ∩ gX.

Following are some examples of (CLCS) property in metric and complex-valued
metric spaces:

Example 1.12. Let (X, d) be any complex valued metric space and f, g : X → X
be defined as fz = z

4 , gz = 3z
4 , ∀z ∈ X. Then for the sequence {zn} = { 1n}, we

have
lim
n→∞

fzn = lim
n→∞

gzn = 0 ∈ fX ∩ gX.

Hence (f, g) is (CLCS) in fX ∩ gX.

Example 1.13. Let (X, d) be any complex valued metric space and f, g : X → X
be defined as fz = z+1, gz = 2z, ∀z ∈ X. Then for the sequence {zn} = {1+ 1

n},
we have

lim
n→∞

fzn = lim
n→∞

gzn = 2 ∈ fX ∩ gX.

Hence (f, g) is (CLCS) in fX ∩ gX.

Example 1.14. Let (X, d) be a usual metric space and f, g : X → X = [0,∞)
be defined as fx = x2 + 2, gz = 2x + 10, ∀x ∈ X. Then for the sequence
{xn} = {4− 1

n}, we have

lim
n→∞

fxn = lim
n→∞

gxn = 18 ∈ fX ∩ gX = [10,∞).

Hence (f, g) is (CLCS) in fX ∩ gX.

Example 1.15. Let (X, d) be a metric space with d(x, y) = 1
4 |x − y|; and f, g :

X → X = [5, 50] be defined as fx = x+5
2 , gz = x+15

3 , ∀x ∈ X. Then for the
sequence {xn} = {15 + 1

n}, we have

lim
n→∞

fxn = lim
n→∞

gxn = 10 ∈ fX ∩ gX = [5,
65

3
].

Hence (f, g) is (CLCS) in fX ∩ gX.
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2 Preliminaries

Let φ : C→ C be a continuous function with the partial order relation ‘≺’ in
C such that φ(0) = 0 and |φ(p)| < |p|, ∀p ∈ C.

Example 2.1. If φ(z) = 1
2z ∀z ∈ C, then φ is continuous, φ(0) = 0 and |φ(p)| <

|p|.

Theorem 2.2. Let (X, d) be a complex valued metric space and A,B, S, T : X →
X be four self-mappings satisfying:

(i) (A,S) satisfy (CLCS) property in T (X) or B(X), and (B, T ) satisfy (CLCS)
property in S(X) or A(X),

(ii) d(Ax,By) - φ
(
max

{
d(Sx,Ty), d(Ax,Sx), d(By,Ty), d(By,Sx), d(Ax,Ty)

})
for all x, y ∈ X. If (A,S) and (B, T ) are weakly compatible then mappings
A,B, S and T have a unique common fixed point in X.

Proof. We take condition (i), one by one.

Case I. First suppose that the pair (A,S) satisfy (CLCS) property in T (X).
Then, according to Definition 1.10, there exist a sequence {xn} in X such that
limn→∞Axn = limn→∞ Sxn ∈ TX. So, there exist t ∈ T (X) such that t = Tv for
some v ∈ X, where t = limn→∞Axn = limn→∞ Sxn. We claim that Bv = t, i.e.
d(Bv, t) = 0. If not, then putting x = xn, y = v in (ii) we have

d(Axn,Bv)-φ
(

max
{
d(Sxn,T v),d(Axn,Sxn),d(Bv,Tv),d(Bv,Sxn),d(Axn,T v)

})
,

since φ is continuous, letting n→∞, we have

d(t, Bv) - φ
(

max
{

0, 0, d(Bv, t), d(Bv, t), 0
})
. (2.1)

• If we choose max
{

0, 0, d(Bv, t), d(Bv, t), 0
}

= 0 in eq.(2.1), then d(t, Bv) - φ(0),
from which |d(t, Bv)| ≤ |φ(0)| < 0, which is a contradiction.

• If we choose max
{

0, 0, d(Bv, t), d(Bv, t), 0
}

= d(Bv, t) in eq.(2.1), then we have

d(t, Bv) - φ
(
d(t, Bv)

)
,

whence, |d(t, Bv)| ≤ |φ
(
d(t, Bv)

)
| < |d(t, Bv)|, as |φ(t)| < |t|, which is again a

contradiction.
Thus, in both cases, the assumption of d(Bv, t) 6= 0 is wrong. So, Bv = t.

It shows that v is a coincidence point of (B, T ). The weakly compatibility of the
pair (B, T ) yields BTv = TBv, or Bt = Tt.

Now, we claim that t is a common fixed point of (B, T ). If not, then Bt =
Tt 6= t. So put x = yn, y = t in (ii) we have

d(Ayn, Bt) - φ
(

max
{
d(Syn, T t), d(Ayn, Syn), d(Bt, T t), d(Bt, Syn), d(Ayn, T t)

})
,
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since φ is continuous, letting n→∞, we have

d(t, Bt) - φ
(

max
{
d(t, Bt), 0, 0, d(Bt, t), d(t, Bt)

})
. (2.2)

• If we choose max
{
d(t, Bt), 0, 0, d(Bt, t), d(t, Bt)

}
= 0 in eq.(2.2), then d(t, Bt) -

φ(0), from which |d(t′, Bt)| ≤ |φ(0)| < 0, which is a contradiction.

• If we choose max
{
d(t, Bt), 0, 0, d(Bt, t), d(t, Bt)

}
= d(Bt, t) in eq.(2.2), then we

have

d(t, Bt) - φ
(
d(t, Bt)

)
,

whence, |d(t, Bt)| ≤ |φ
(
d(t, Bt)

)
| < |d(t, Bt)|, as |φ(t)| < |t|, which is again a

contradiction. Thus, in both cases, the assumption of d(Bt, t) 6= 0 is wrong. So,
Bt = t. It shows that t ∈ T (X) is a common fixed point of (B, T ).

Case II. Similar argument arises if the pair (A,S) satisfy (CLCS) property
in B(X). In this case t ∈ B(X) is a common fixed point of (B, T ).

Case III. Next, suppose that the pair (B, T ) satisfy (CLCS) property in
S(X). Then, according to Definition 1.10, there exist a sequence {yn} in X such
that limn→∞Byn = limn→∞ Tyn ∈ S(X). So, there exist t′ ∈ S(X) such that
t′ = Su for some u ∈ X, where t′ = limn→∞Byn = limn→∞ Tyn. The claim
Au = t′ follows exactly as in case I. It shows that u is a coincidence point of
(A,S). The weakly compatibility of (A,S) implies that ASu = SAu = At′ = St′.
It shows that t′ is a coincidence point of (A,S) and t ∈ S(X).

Now, we claim that t′ is a common fixed point of (A,S). This follows exactly
as in case I, by putting x = t′, y = yn in condition (ii), making n→∞, and using
At′ = St′. Hence At′ = t′. It shows that t′ ∈ S(X) is a common fixed point of
(A,S).

Case IV. Similar argument arises if the pair (B, T ) satisfy (CLCS) property
in A(X). In this case t′ ∈ A(X) is a common fixed point of (A,S).

Further, we claim that the common fixed point t′ of (A,S), and t of (B, T ) are
same, i.e., t = t′. If not, then put x = t′, y = t in condition (ii), we have

d(At′, Bt) - φ
(

max
{
d(St′, T t), d(At′, St′), d(Bt, T t), d(Bt, St′), d(At′, T t)

})
,

or, d(t′, t) - φ
(

max
{
d(t′, t), 0, 0, d(t, t′), d(t′, t)

})
,

• If we choose max
{
d(t′, t), 0, 0, d(t, t′), d(t′, t)

}
= 0, then d(t, t′) - φ(0), from

which |d(t, t′)| ≤ |φ(0)| < 0, which is a contradiction.

• If we choose max
{
d(t′, t), 0, 0, d(t, t′), d(t′, t)

}
= d(t, t′), then we have

d(t, t′) - φ
(
d(t, t′)

)
,
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whence, |d(t, t′)| ≤ |φ
(
d(t, t′)

)
| < |d(t, t′)|, as |φ(t)| < |t|, which is again a contra-

diction. Thus, in both cases, the assumption of d(t, t′) 6= 0 is wrong. So, t = t′.
It shows that t′ is a common fixed point of A,B, S, T . The existence of common
fixed point is easy to prove. This completes the proof.

Remark 2.3. The subset in which t = t′ exist is either Y1 = TX ∩ SX, or
Y2 = TX ∩ AX, Y3 = BX ∩ SX, or Y4 = BX ∩ AX. Note that, Y1, ..., Y4 need
not be closed.

Putting A = B = f and S = T = g in Theorem 2.2, we obtain the following
common fixed point result for one pair of weakly compatible mappings:

Corollary 2.4. Let (X, d) be a complex valued metric space and f, g : X → X be
two self-mappings satisfying:
(i) (f, g) satisfy (CLCS) property in g(X),

(ii) d(fx, gy) - φ
(

max
{
d(gx, gy), d(fx, gx), d(fy, gy), d(fy, gx), d(fx, gy)

})
,

for all x, y ∈ X. If (f, g) is weakly compatible then mappings f and g have a
unique common fixed point in X.

If the (CLCS) property of one pair lies in the common range-subspace of the
other pair, and vice-versa, we have the following theorem:

Theorem 2.5. Let (X, d) be a complex valued metric space and A,B, S, T : X →
X be four self-mappings satisfying:
(i) (A,S) satisfy (CLCS) property in T (X) ∩ B(X), and (B, T ) satisfy (CLCS)
property in S(X) ∩A(X),

(ii) d(Ax,By) - φ
(

max
{
d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)

})
,

for all x, y ∈ X. If (A,S) and (B, T ) are weakly compatible then mappings A,B, S
and T have a unique common fixed point in X.

Proof. In the proof, we merge cases I and II of Theorem 2.2 for the pair (A,S) to
satisfy (CLCS) property. Similarly, we merge cases III and IV for the pair (B, T )
to satisfy (CLCS) property. The proof exactly runs as that of Theorem 2.2.

Putting A = B = f and S = T = g in Theorem 2.5, we obtain the following
result for a pair of weakly compatible mappings:

Corollary 2.6. Let (X, d) be a complex valued metric space and f, g : X → X be
two self-mappings satisfying:
(i) (f, g) satisfy (CLCS) property in f(X) ∩ g(X),

(ii) d(fx, gy) - φ
(

max
{
d(gx, gy), d(fx, gx), d(fy, gy), d(fy, gx), d(fx, gy)

})
,

for all x, y ∈ X. If (f, g) is weakly compatible then mappings f and g have a
unique common fixed point in fX ∩ gX.
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3 Application in Fuzzy Metric Space

In 1994, George and Veeramani [22], introduced and studied a notion of fuzzy
metric space which constitute a modification of the one due to Kramosil and
Michalek [23].

Definition 3.1. (George and Veeramani [22]) A fuzzy metric space is a triple
(X,M, ∗) where X is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy
set on X×X× [0, 1] and the following conditions are satisfied for all x, y ∈ X and
α, β > 0;
(GV-1) M(x, y, α) > 0;
(GV-2) M(x, y, α) = 1⇔ x = y;
(GV-3) M(x, y, α) = M(y, x, α);
(GV-4) M(x, y, .) : (0,∞)→ (0, 1) is continuous;
(GV-5) M(x, y, α+ β) ≥M(x, y, α) ∗M(x, y, β).

From (GV-1) and (GV-2), it follows that if x 6= y, then 0 < M(x, y, α) < 1 for all
α > 0. In what follows, fuzzy metric spaces in the sense of George and Veeramani
will be called GV-fuzzy metric spaces.

Definition 3.2. (Schweizer and Sklar [24]) A continuous t-norm is a binary op-
eration ∗ on [0,1] satisfying the following conditions:
(t-1) ∗ is commutative and associative;
(t-2) a ∗ 1 = a;
(t-3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]);
(t-4) the mapping ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous.

Example 3.1. TMax(a, b) = {a+b−1, 0}, Tmin(a, b) = min{a, b}, Tproduct(a, b)
= a.b are some t-norms.

Throughout this section, let Φ be class of all mappings ϕ : [0, 1] → [0, 1]
satisfying the following properties:

(ϕ.1) ϕ is continuous and non-decreasing in [0,1];
(ϕ.2) ϕ(x) > x, ∀x ∈ (0, 1).
Sintunavarat and Kumam [25] proved a common fixed point theorem for a pair

of weakly compatible mappings in fuzzy metric space.

Following theorem is the GV-fuzzy metric version of our main Theorem 2.2:

Theorem 3.3. Let (X,M, ∗) be a GV-fuzzy metric space and A,B, S, T : X → X
be four self-mappings satisfying:
(i) (A,S) satisfy (CLCS) property in T (X) or B(X), and (B, T ) satisfy (CLCS)
property in S(X) or A(X),

(ii) M(Ax,By, α) ≥ ϕ
(

min
{
M(Sx, Ty, α),M(Ax, Sx, α),M(By, Ty, α),

M(By, Sx, α),M(Ax, Ty, α)
})
,
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for all x, y ∈ X, where α > 0 and ϕ ∈ Φ. If (A,S) and (B, T ) are weakly
compatible then mappings A,B, S and T have a unique common fixed point in X.

Proof. We take condition (i), one by one.

Case I. First suppose that the pair (A,S) satisfy (CLCS) property in T (X).
Then, according to Definition 1.10, there exist a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn ∈ TX. (3.1)

So, there exist t ∈ T (X) such that t = Tv for some v ∈ X, where t = limn→∞Axn
= limn→∞ Sxn. Let α be a continuity point of (X,M, ∗). Then

M(Axn, Bv, α) ≥ ϕ
(

min
{
M(Sxn, T v, α),M(Axn, Sxn, α),M(Bv, Tv, α),

M(Bv, Sxn, α),M(Axn, T v, α)
})
,

(3.2)
for all n ∈ N. By taking the limit as n→∞ in (3.2) and using (3.1), we have

M(t,Bv,α) ≥ ϕ
(

min
{
M(t,t,α),M(t,t,α),M(Bv, t,α),M(Bv,t,α),M(t,t,α)

})
,

= ϕ
(

min
{

1, 1,M(Bv, t, α),M(Bv, t, α), 1
})

= ϕ
(
M(t, Bv, α)

)
.

Now, we claim that t = Bv. If not, then from (GV-1) and (GV-2),

0 < M(t, Bv, α) < 1, (3.3)

for all α > 0. From conditions of (ϕ.2), ϕ
(
M(t, Bv, α)

)
> M(t, Bv, α), ∀α ∈

(0, 1). This is a contradiction. Thus t = Bv. Therefore, we have

Axn = lim
n→∞

Sxn = t = Tv = Bv ∈ TX. (3.4)

Eq. (3.4) shows that v is a coincidence point of the pair (B, T ). Now, the weakly
compatibility of (B, T ) gives, BTv = TBv = Bt = Tt. Hence t is a coincidence
point of (B, T ).

Now, we show that t is a common fixed point of the pair (B, T ). If not, then
Bt 6= t. By (GV-1) and (GV-2), it implies that 0 < M(t, Bt, α) < 1 for all α > 0.
By (ϕ.2), we know that ϕ

(
M(t, Bt, α)

)
> M(t, Bt, α). Let α be a continuity

point of (X,M, ∗), then from condition (ii) we have

M(Axn, Bt, α) ≥ ϕ
(

min
{
M(Sxn, T t, α),M(Axn, Sxn, α),M(Bt, T t, α),

M(Bt, Sxn, α),M(Axn, T t, α)
})
,

for all n ∈ N. Taking n→∞, putting Bt = Tt and using (3.1) we have
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M(t,Bt,α)≥ϕ
(

min
{
M(t,Bt,α),M(t,t,α),M(Bt,Bt,α),M(Bt,t,α),M(t,Bt,α)

})
= ϕ

(
min

{
M(t, Bt, α), 1, 1,M(Bt, t, α),M(t, Bt, α)

})
= ϕ

(
M(t, Bt, α)

)
,

a contradiction. Thus Bt = t. Hence t ∈ T (X) is a common fixed point of (B, T ).

Case II. Similar argument arises if the pair (A,S) satisfy (CLCS) property
in B(X). In this case t ∈ B(X) is a common fixed point of (B, T ).

Case III. Similarly, if the pair (B, T ) satisfy (CLCS) property in S(X), then
as in Theorem 2.2, the common convergence point t′ of (B, T ) for a sequence
{yn} ⊆ X, is a common fixed point of (A,S) and t′ ∈ S(X).

Case IV. Similarly, if the pair (B, T ) satisfy (CLCS) property in A(X), then
as in Theorem 2.2, the common convergence point (here t′) of (B, T ) for a sequence
{yn} ⊆ X, is a common fixed point of (A,S) and t′ ∈ A(X).

Unifying Case I (or II), and Case III (or IV), we can say that t = Bt = Tt
and t′ = At′ = Tt′. We claim that t = t′. If not, then for each α > 0, by
(GV-1) and (GV-2) it implies that 0 < M(t, t′, α) < 1. By (ϕ.2), we know that
ϕ
(
M(t, t′, α)

)
> M(t, t′, α). It follows from condition (ii) that

M(t, t′, α) = M(At,Bt′, α) ≥ ϕ
(

min
{
M(St, T t′, α),M(At, St, α),M(Bt′, Bt′, α),

M(Bt′, St, α),M(At,Bt′, α)
})

= ϕ
(

min
{
M(t, t′, α), 1, 1,M(t′, t, α),M(t, t′, α)

})
= ϕ

(
M(t, t′, α)

)
,

which is a contradiction. Thus t = t′. Hence t is a common fixed point of A,B, S
and T . The uniqueness of common fixed point t is easy to show. For, if there be
another common fixed point of A,B, S, T with w 6= t; then putting x = t, y = w
in condition (ii) and using the fact that ϕ

(
M(t, w, α)

)
> M(t, w, α), we obtain a

contradiction. This completes the proof.

Putting A = B = f and S = T = g in Theorem 3.3, we obtain the following
common fixed point result for one pair of weakly compatible mappings:

Corollary 3.4. Let (X,M, ∗) be a GV-fuzzy metric space and f, g : X → X be
two self-mappings satisfying:
(i) (f, g) satisfy (CLCS) property in g(X),

(ii) M(fx, fy, α) ≥ ϕ
(

min
{
M(gx, gy, α),M(fx, gx, α),M(fy, gy, α),

M(fy, gx, α),M(fx, gy, α)
})
,
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for all x, y ∈ X, where α > 0 and ϕ ∈ Φ. If (f, g) is weakly compatible then
mappings f and g have a unique common fixed point in X.

Remark 3.5. Corollary 3.4 is same as the main Theorem 2.8 Sintunavarat and
Kumam [9], because the (CLCS) property in g(X) is identical to the (CLR) prop-
erty.

If the (CLCS) property of one pair lies in the common range-subspace of the
other pair, and vice-versa, we have the following theorem:

Theorem 3.6. Let (X,M, ∗) be a GV-fuzzy metric space and A,B, S, T : X → X
be four self-mappings satisfying:
(i) (A,S) satisfy (CLCS) property in T (X)∩B(X), and (B, T ) satisfy (CLCS)
property in S(X) ∩A(X),

(ii) M(Ax,By, α) ≥ ϕ
(

min
{
M(Sx, Ty, α),M(Ax, Sx, α),M(By, Ty, α),

M(By, Sx, α),M(Ax, Ty, α)
})
,

for all x, y ∈ X, where α > 0 and ϕ ∈ Φ. If (A,S) and (B, T ) are weakly
compatible then mappings A,B, S and T have a unique common fixed point in X.

Putting A = B = f and S = T = g in Theorem 3.3, we obtain the following
common fixed point result for one pair of weakly compatible mappings:

Corollary 3.7. Let (X,M, ∗) be a GV-fuzzy metric space and f, g : X → X be
two self-mappings satisfying:
(i) (f, g) satisfy (CLCS) property in f(X) ∩ g(X),

(ii) M(fx, fy, α) ≥ ϕ
(

min
{
M(gx, gy, α),M(fx, gx, α),M(fy, gy, α),

M(fy, gx, α),M(fx, gy, α)
})
,

for all x, y ∈ X, where α > 0 and ϕ ∈ Φ. If (f, g) is weakly compatible then
mappings f and g have a unique common fixed point in fX ∩ gX.

Remark 3.8. This Corollary 3.7 is free from the condition of different types of
(CLR) properties, because the (CLCS) property and the unique common fixed
point lies in fX ∩ gX. Thus property (CLRf ) and property (CLRg) is unified
here.
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