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1 Introduction

In numerous problems in mathematics, the existence of a solution becomes
analogous to the existence of a fixed point for a particular map. Thus the exis-
tence of a fixed point, coupled fixed point and coupled coincidence point of two
mappings are of immense importance in various areas of mathematics such as
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Chaos Theory, Game Theory, Linear Programing, Differential Equations, Periodic
Boundary Value Problems, Dynamical Systems etc. Fixed point theorems and
coincidence point theorems provide conditions under which maps have solutions.
Thus the study of fixed points remain a well motivated area of research in both
classical and fuzzy settings.

In order to explain the situations where data are imprecise or vague Zadeh [1]
introduced fuzzy set theory in 1965. On the other hand in 1986, considering both
the degree of membership (belongingness) and non-membership (non-belonging-
ness) of an element within a set, Atanassaov [2] introduced a generalized form of
fuzzy set called intuitionistic fuzzy set. In 1984 Katsaras [3] established the idea
of a fuzzy norm on a linear space for dealing with situations where the classical
norm cannot measure the length of a vector accurately. In 2003, following Cheng
and Mordeson [4], Bag and Samanta [5] introduced the concept of fuzzy normed
linear space (FNLS). After the systematic development of fuzzy normed linear
space, one of the important development over FNLS is the notion of intuitionistic
fuzzy normed linear space (IFNLS) [6]. Vijayabalaji and Narayanan [7] extended
n-normed linear space to fuzzy n-normed linear space while the concept of intu-
itionistic fuzzy n-normed linear space (IFnNLS) was introduced by Vijayabalaji
et al [8].

The study of fixed points in fuzzy metric spaces was introduced by Heilpern [9].
He established fixed point theorems for fuzzy contraction mappings, which was a
fuzzy extension of the Banach’s contraction principle in metric linear space. This
work was further extended by Burtnariu [10]. By using the concept of semi-
compatibility and reciprocal continuity of mappings, Badshah and Joshi [11] es-
tablished a common fixed point theorem for six mappings. In 1988, Grabiec [12]
proved Banach contraction principle in complete fuzzy metric space and Edelstein
contraction principle in compact fuzzy metric space. Extending Grabiec’s work,
Alaca et al. [13] introduced fixed point theorems of Banach and Edelstein in intu-
itionistic fuzzy metric space. In 2013, Ionescu et al. [14] found fixed points for some
new contractions on intuitionistic fuzzy metric spaces. Manro and Tomar [15] es-
tablished existence of fixed point of compatibility maps on fuzzy metric space. For
binary mappings in partially ordered metric spaces the coupled fixed point theo-
rems and their applications were introduced by Bhaskar and Lakshmikantham [16].
After that Lakshmikantham and Cirić [17] introduced some more coupled fixed
point theorems in partially ordered sets. In 2011, Gordji et al. [18] introduced
coupled coincidence point theorems for contraction mappings in partially com-
plete IFNLS. Some breakthrough works in fixed point theory was carried out by
Petrusel and Rus [19] and Rus et al. [20]. For some more significant work in this
direction we refer to [21–32].

In the current paper we are going to establish new coupled coincidence point
theorems for some contraction mappings having commutative property and some
having non-commutative property in an intuitionistic fuzzy n-Banach space
(IFnBS).
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2 Preliminaries

First we recall some basic definitions and examples which are useful for the
current work.

Definition 2.1. [33] Let n ∈ N and X be a real linear space of dimension d ≥ n
(d may be infinite). A real valued function ‖.‖ on X ×X × · · · ×X︸ ︷︷ ︸

n

= Xn is called

an n-norm on X if it satisfies the following properties:

(i) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent,

(ii) ‖x1, x2, . . . , xn‖ is invariant under any permutation,

(iii) ‖x1, x2, . . . , αxn‖ = |α|‖x1, x2, . . . , xn‖ for any α ∈ R,

(iv) ‖x1, x2, . . . , xn−1, y + z‖ ≤ ‖x1, x2, . . . , xn−1, y‖+ ‖x1, x2, . . . , xn−1, z‖,
and the pair (X, ‖.‖) is called an n-normed linear space.

Definition 2.2. [8] An IFnNLS is the five-tuple (X,µ, ν, ∗, ◦), where X is a linear
space over a field R, ∗ is a continuous t-norm, ◦ is a continuous t-conorm, µ, ν
are fuzzy sets on Xn× (0,∞), µ denotes the degree of membership and ν denotes
the degree of non-membership of (x1, x2, . . . , xn, t) ∈ Xn × (0, 1) satisfying the
following conditions for every
(x1, x2, . . . , xn) ∈ Xn and s, t > 0:

(i) µ(x1, x2, . . . , xn, t) + ν(x1, x2, . . . , xn, t) ≤ 1,

(ii) µ(x1, x2, . . . , xn, t) > 0,

(iii) µ(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent,

(iv) µ(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn,

(v) µ(x1, x2, . . . , cxn, t) = µ(x1, x2, . . . , xn,
t
|c| ) if c 6= 0, c ∈ F ,

(vi) µ(x1, x2, . . . , xn + x
′

n, s+ t) ≥ min{µ(x1, x2, . . . , xn, s), µ(x1, x2, . . . , x
′

n, t)},

(vii) µ(x1, x2, . . . , xn, ·) is non-decreasing function of R+ and
limt→∞ µ(x1, x2, . . . , xn, t) = 1,

(viii) ν(x1, x2, . . . , xn, t) < 1,

(ix) ν(x1, x2, . . . , xn, t) = 0 if and only if x1, x2, . . . , xn are linearly dependent,

(x) ν(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn,

(xi) ν(x1, x2, . . . , cxn, t) = ν(x1, x2, . . . , xn,
t
|c| ) if c 6= 0, c ∈ F ,

(xii) ν(x1, x2, . . . , xn + x
′

n, s+ t) ≤ max{ν(x1, x2, . . . , xn, s), ν(x1, x2, . . . , x
′

n, t)},

(xiii) ν(x1, x2, . . . , xn, ·) is non-increasing function of R+ and
limt→∞ ν(x1, x2, . . . , xn, t) = 0.

Also assume that
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(xiv) µ(x1, x2, . . . , xn, t) > 0 and ν(x1, x2, . . . , xn, t) < 1, for all t > 0 implies
x = 0.

(xv) For x 6= 0, µ(x1, x2, . . . , xn, ·) and ν(x1, x2, . . . , xn, ·) are continuous functions
of R and µ and ν are respectively strictly increasing and strictly decreasing
on the subset
{t : 0 < µ(x1, x2, . . . , xn, t), ν(x1, x2, . . . , xn, t) < 1} of R.

Definition 2.3. [34] Let (X,µ, ν, ∗, ◦) be an IFnNLS. We say that a sequence
x = {xk} in X is convergent to l ∈ X with respect to the intuitionistic fuzzy n-
norm (µ, ν)n if, for every ε > 0, t > 0 and y1, y2, . . . , yn−1 ∈ X, there exists k0 ∈ N
such that µ(y1, y2, . . . , yn−1, xk −L, t) > 1− ε and ν(y1, y2, . . . , yn−1, xk − l, t) < ε

for all k ≥ k0. It is denoted by (µ, ν)n − limx = l or xk
(µ,ν)n→ l as k →∞.

Definition 2.4. [34] Let (X,µ, ν, ∗, ◦) be an IFnNLS. Then the sequence x = {xk}
in X is called a Cauchy sequence with respect to the intuitionistic fuzzy n-norm
(µ, ν)n if, for every ε > 0, t > 0 and y1, y2, . . . , yn−1 ∈ X, there exists k0 ∈ N such
that µ(y1, y2, . . . , yn−1, xk − xm, t) > 1 − ε and ν(y1, y2, . . . , yn−1, xk − xm, t) < ε
for all k,m ≥ k0.

Definition 2.5. [5] Let (X,µ, ν, ∗, ◦) be an IFnNLS. Then (X,µ, ν, ∗, ◦) is said
to be complete if any Cauchy sequence in X is convergent to a point in X. A
complete IFnNLS is called a intuitionistic fuzzy n-Banach space (IFnBS).

Definition 2.6. [35, 36] Let (X,µ, ν, ∗, ◦) and (Y, µ, ν, ∗, ◦) be two IFnNLS. A
function f : X → Y is said to be continuous at a point x0 ∈ X if, for any sequence
x = {xn} in X converging to a point x0 ∈ X, then the sequence f(xn) in Y
convergence to a point f(x0) ∈ Y . If f : X → Y is continuous at each x ∈ X, then
f : X → Y is said to be continuous on X.

Definition 2.7. [18] Let (X,µ, ν, ∗, ◦) be an IFnNLS. Then (µ, ν) is said to satisfy
the n-property on X × (0,∞) if

limn→∞[µ(x1, x2, . . . , xn−1, x, k
nt)]n

p

= 1,
limn→∞[ν(x1, x2, . . . , xn−1, x, k

nt)]n
p

= 0

whenever x ∈ X, k > 1 and p > 0.

Definition 2.8. [16] Let X be a non-empty set. An element (x, y) ∈ X × X is
called a coupled fixed point of the mapping f : X ×X → X if

x = f(x, y), y = f(y, x)

Definition 2.9. [17] Let X be a non-empty set. An element (x, y) ∈ X × X is
called a coupled coincidence point of the mappings f : X×X → X and g : X → X
if

g(x) = f(x, y), g(y) = f(y, x)
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Definition 2.10. [17] Let (X,≤) be a partially ordered set and T1 : X ×X −→
X, T2 : X −→ X be two functions. Then T1 is said to have the mixed T2-
monotone property, if T1 is monotone T2-non-decreasing in the first argument and
is monotone T2-non-increasing in the second argument.

i.e. for any x, y ∈ X

x1, x2 ∈ X,T2(x1) ≤ T2(x2)⇒ T1(x1, y) ≤ T1(x2, y) (2.1)

and

y1, y2 ∈ X,T2(y1) ≤ T2(y2)⇒ T1(x, y1) ≤ T1(x, y2). (2.2)

If T2 = I, then T1 is said to have the mixed monotone property.

Definition 2.11. [17] Let X be a non-empty set and f : X×X → X, g : X → X
be two mappings. The mappings f and g are said to be commutative if

g(f(x, y)) = f(g(x), g(y)), for all x, y ∈ X.

Lemma 2.12. [17] Let X be a nonempty set and T2 : X → X be a mapping.
Then there exists a subset E ⊆ X such that T2(E) = T2(X) and T2 : E → X is
one-one.

3 Main Results

Now we are ready to discuss the main results. First we prove the existence of
coupled coincidence points by considering commutative condition of the mappings.

Theorem 3.1. Suppose (X,µ, ν, ∗, ◦) is an IFnBS with (µ, ν) has n-property where
(X,�) is partially ordered and a ∗ b ≥ ab, a ◦ b ≤ ab for all a, b ∈ [0, 1]. Let
T1 : X ×X −→ X and T2 : X −→ X be two mapping such that T1 has the mixed
T2-monotone property and for all x, y, u, v ∈ X, t ∈ R and x1, x2, . . . , xn−1 ∈ X

µ(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≥µ(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ µ(x1, x2, . . . , xn−1, T2(y)− T2(v), t)

(3.1)

and

ν(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≤ν(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

◦ ν(x1, x2, . . . , xn−1, T2(y)− T2(v), t),

(3.2)

for which T2(x) ≤ T2(u) and T2(y) ≥ T2(v), where 0 < k < 1, T1(X×X) ⊆ T2(X),
T2 is continuous and commuting with T1.

Suppose either
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(a) T1 is continuous or

(b) X has the following property:

(i) if xn is a non-decreasing sequence and limn→∞xn = x, then T2(xn) ≤
T2(x) for all n ∈ N.

(ii) if yn is a non-increasing sequence and limn→∞yn = y, then T2(yn) ≥
T2(y) for all n ∈ N.

If there exist x0, y0 ∈ X such that

T2(x0) ≤ T1(x0, y0), T2(y0) ≥ T1(y0, x0)

Then there exist x, y ∈ X such that

T2(x) ≤ T1(x, y), T2(y) ≥ T1(y, x)

i.e. T1 and T2 have a couple coincidence point in X.

Proof. Let x0, y0 ∈ X be such that

T2(x0) ≤ T1(x0, y0) and T2(y0) ≥ T1(y0, x0)

Since T1(X ×X) ⊆ T2(X), we can construct two sequences xn and yn in X such
that

T2(xn+1) = T1(xn, yn), T2(yn+1) = T1(yn, xn), for all n ≥ 0. (3.3)

Next we show that

T2(xn) ≤ T2(xn+1) and T2(yn) ≥ T2(yn+1), for all n ≥ 0. (3.4)

We prove this by using Mathematical Induction.
For n = 0, since T2(x0) ≤ T1(x0, y0), T2(y0) ≥ T1(y0, x0) and

T2(x1) = T1(x0, y0), T2(y1) = T1(y0, x0) we have,

T2(x0) ≤ T2(x1) and T2(y0) ≥ T2(y1). (3.5)

Thus 3.4 holds for n = 0.
Suppose 3.4 holds for some fixed n ≥ 0.

T2(xn) ≤ T2(xn+1) and T2(yn) ≥ T2(yn+1). (3.6)

and T1 has the mixed T2-monotone property, then we check for n+ 1 as

T2(xn+1) = T1(xn, yn) ≤ T1(xn+1, yn), T2(yn+1) = T1(yn, xn) ≥ T1(yn+1, xn).
(3.7)

From 3.3 and 2.1 we obtain,

T2(xn+2) = T1(xn+1, yn+1) ≥ T1(xn+1, yn),
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T2(yn+2) = T1(yn+1, xn+1) ≤ T1(yn+1, xn), (3.8)

i.e.
T2(xn+1) ≤ T2(xn+2), T2(yn+1) ≥ T2(yn+2). (3.9)

Therefore, 3.4 holds for n+ 1. Hence, by Mathematical Induction 3.4 holds for all
n ≥ 0. Therefore, we have

T2(x0) ≤ T2(x1) ≤ T2(x2) ≤ . . . ≤ T2(xn) ≤ T2(xn+1) ≤ . . . (3.10)

and
T2(y0) ≥ T2(y1) ≥ T2(y2) ≥ . . . ≥ T2(yn) ≥ T2(yn+1) ≥ . . . (3.11)

Consider

βn(t) = µ(x1, x2, . . . , xn−1, T2(xn)− T2(xn+1), t)

∗ µ(x1, x2, . . . , xn−1, T2(yn)− T2(yn+1), t). (3.12)

Using 3.4 and 3.1 we have

µ(x1, x2, . . . , xn−1, T2(xn)− T2(xn+1), kt)

= µ(x1, x2, . . . , xn−1, T1(xn−1, yn−1)− T1(xn, yn), kt)

≥ µ(x1, x2, . . . , xn−1, T2(xn−1)− T2(xn), t)

∗ µ(x1, x2, . . . , xn−1, T2(yn−1)− T2(yn), t)

= βn−1(t)

(3.13)

and

µ(x1, x2, . . . , xn−1, T2(yn)− T2(yn+1), kt)

= µ(x1, x2, . . . , xn−1, T1(yn−1, xn−1)− T1(yn, xn), kt)

≥ µ(x1, x2, . . . , xn−1, T2(yn−1)− T2(yn), t)

∗ µ(x1, x2, . . . , xn−1, T2(xn−1)− T2(xn), t)

= βn−1(t).

(3.14)

From the t-norm property we have,

βn(kt) ≥ βn−1(t) ∗ βn−1(t) ≥ [βn−1(t)]2.

Repeating this process we have,

βn(t) ≥ [βn−1( tk )]2 ≥ . . . ≥ [β0( t
k′

)]2
n

.

Implies that

µ(x1, x2, . . . , xn−1, T2(xn)− T2(xn+1), kt)

∗ µ(x1, x2, . . . , xn−1, T2(yn)− T2(yn+1), kt)

≥ [µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1),
t

kn
)]2

n

∗ [µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1),
t

kn
)]2

n

.

(3.15)

Again we have
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t(1− k)(1 + k + . . .+ km−n−1) < t, for all m > n, 0 < k < 1.

By t-norm property, we have

µ(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t)

∗ µ(x1, x2, . . . , xn−1, T2(yn)− T2(ym), t)

≥ µ(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t(1− k)(1 + k + . . .+ km−n−1))

∗ µ(x1, x2, . . . , xn−1, T2(yn)− T2(ym), t(1− k)(1 + k + . . .+ km−n−1))

≥ µ(x1, x2, . . . , xn−1, T2(xn+1)− T2(xn), t(1− k))

∗ µ(x1, x2, . . . , xn−1, T2(yn+1)− T2(yn), t(1− k))

∗ µ(x1, x2, . . . , xn−1, T2(xn+1)− T2(xn+2), t(1− k)k)

∗ µ(x1, x2, . . . , xn−1, T2(yn+1)− T2(yn+2), t(1− k)k) ∗ . . . ∗
µ(x1, x2, . . . , xn−1, T2(xm−1)− T2(xm), t(1− k)km−n−1)

∗ µ(x1, x2, . . . , xn−1, T2(ym−1)− T2(ym), t(1− k)km−n−1)

≥ µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)

∗ µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
) ∗ . . . ∗

µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)

∗ µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)

≥ [µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]m−n

∗ [µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]m−n

≥ [µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]m

∗ [µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]m

≥ [µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]n

p

∗ [µ(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]n

p

,

(3.16)

where p > 0 such that m < np. Since (µ, ν) has the n-property, we have

limn→∞[µ(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k) t
kn )]n

p

= 1

and so

limn→∞[µ(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t) ∗ µ(x1, x2, . . . , xn−1, T2(yn)−
T2(ym), t)] = 1.

Next we show that
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limn→∞[ν(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t) ◦ ν(x1, x2, . . . , xn−1, T2(yn)−
T2(ym), t)] = 0.

Consider

β
′

n(t) = ν(x1, x2, ..., xn−1, T2(xn)− T2(xn+1), t) (3.17)

◦ ν(x1, x2, ..., xn−1, T2(yn)− T2(yn+1), t).

From 3.4 and 3.2 we have

ν(x1, x2, . . . , xn−1, T2(xn)− T2(xn+1), kt)

= ν(x1, x2, . . . , xn−1, T1(xn−1, yn−1)− T1(xn, yn), kt)

≤ ν(x1, x2, . . . , xn−1, T2(xn−1)− T2(xn), t)

◦ ν(x1, x2, . . . , xn−1, T2(yn−1)− T2(yn), t)

= β
′

n−1(t)

(3.18)

and

ν(x1, x2, . . . , xn−1, T2(yn)− T2(yn+1), kt)

= ν(x1, x2, . . . , xn−1, T1(yn−1, xn−1)− T1(yn, xn), kt)

≤ ν(x1, x2, . . . , xn−1, T2(yn−1)− T2(yn), t)

◦ ν(x1, x2, . . . , xn−1, T2(xn−1)− T2(xn), t)

= β
′

n−1(t).

(3.19)

From the t-conorm property we have,

β
′

n(kt) ≤ β′n−1(t) ◦ β′n−1(t) ≤ [β
′

n−1(t)]2.

Repeating this process we have,

β
′

n(t) ≤ [β
′

n−1( tk )]2 ≤ . . . ≤ [β
′

0( t
kn )]2

n

.

Implies that

ν(x1, x2, . . . , xn−1, T2(xn)− T2(xn+1), kt)

◦ ν(x1, x2, . . . , xn−1, T2(yn)− T2(yn+1), kt)

≤ [ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1),
t

kn
)]2

n

◦ [ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1),
t

kn
)]2

n

.

(3.20)

As

t(1− k)(1 + k + . . .+ km−n−1) < t, for all m > n, 0 < k < 1.
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By t-conorm property, we have

ν(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t)

◦ ν(x1, x2, . . . , xn−1, T2(yn)− T2(ym), t)

≤ ν(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t(1− k)(1 + k + . . .+ km−n−1))

◦ ν(x1, x2, . . . , xn−1, T2(yn)− T2(ym), t(1− k)(1 + k + . . .+ km−n−1))

≤ ν(x1, x2, . . . , xn−1, T2(xn+1)− T2(xn), t(1− k))

◦ ν(x1, x2, . . . , xn−1, T2(yn+1)− T2(yn), t(1− k))

◦ ν(x1, x2, . . . , xn−1, T2(xn+1)− T2(xn+2), t(1− k)k)

◦ ν(x1, x2, . . . , xn−1, T2(yn+1)− T2(yn+2), t(1− k)k) ◦ . . . ◦
ν(x1, x2, . . . , xn−1, T2(xm−1)− T2(xm), t(1− k)km−n−1)

◦ ν(x1, x2, . . . , xn−1, T2(ym−1)− T2(ym), t(1− k)km−n−1)

≤ ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)

◦ ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
) ◦ . . . ◦

ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)

◦ ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)

≤ [ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]m−n

◦ [ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]m−n

≤ [ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]m

◦ [ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]m

≤ [ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k)
t

kn
)]n

p

◦ [ν(x1, x2, . . . , xn−1, T2(y0)− T2(y1), (1− k)
t

kn
)]n

p

,

(3.21)

where p > 0 such that m < np. Since (µ, ν) has the n-property, we have

limn→∞[ν(x1, x2, . . . , xn−1, T2(x0)− T2(x1), (1− k) t
kn )]n

p

= 0

and so

limn→∞[ν(x1, x2, . . . , xn−1, T2(xn)− T2(xm), t) ◦ ν(x1, x2, . . . , xn−1, T2(yn)−
T2(ym), t)] = 0.

Hence the sequences T2(xn) and T2(yn) are Cauchy sequences in X. As X is
complete, there exist x, y ∈ X such that
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limn→∞T2(xn) = x and limn→∞T2(yn) = y.

From the continuity of T2, we have

limn→∞T2T2(xn) = T2(x) and limn→∞T2T2(yn) = T2(y).

Using commutativity of T1 and T2 and 3.3 we have

T2T2(xn+1) = T2T1(xn, yn) = T1(T2(xn), T2(yn)) and
T2T2(yn+1) = T2T1(yn, xn) = T1(T2(yn), T2(xn)).

Next, we show that, T2(x) = T1(x, y) and T2(y) = T1(y, x).
First we consider (a) holds. Taking limit as n → ∞ and from the continuity

of T1 we have,

T2(x) = limn→∞T2(T2(xn+1)) = limn→∞T1(T2(xn), T2(yn))

= T1(limn→∞T2(xn), limn→∞T2(yn))

= T1(x, y)

(3.22)

and

T2(y) = limn→∞T2(T2(yn+1)) = limn→∞T1(T2(yn), T2(xn))

= T1(limn→∞T2(yn), limn→∞T2(xn))

= T1(y, x).

(3.23)

Therefore T2(x) = T1(x, y) and T2(y) = T1(y, x), i.e. T1 has a coupled coincidence
point.

Next consider (b) holds. Since Txn
is non-decreasing and T2(xn)→ x from (i)

we have T2T2(xn) ⊆ T2(x), for all n ∈ N. Similarly, T2(yn) is non-decreasing and
T2(yn)→ y from (ii) we have T2T2(yn) ⊇ T2(y), for all n ∈ N. Then we have,

µ(x1, x2, . . . ,xn−1, T2T2(xn+1)− T1(x, y), kt)

= µ(x1, x2, . . . , xn−1, T2T1(xn, yn)− T1(x, y), kt)

= µ(x1, x2, . . . , xn−1, T1(T2(xn), T2(yn))− T1(x, y), kt)

≥ µ(x1, x2, . . . , xn−1, T2T2(xn)− T2(x), t)

∗ µ(x1, x2, . . . , xn−1, T2T2(yn)− T2(y), t)

(3.24)

and

ν(x1, x2, . . . ,xn−1, T2T2(xn+1)− T1(x, y), kt)

= ν(x1, x2, . . . , xn−1, T2T1(xn, yn)− T1(x, y), kt)

= ν(x1, x2, . . . , xn−1, T1(T2(xn), T2(yn))− T1(x, y), kt)

≤ ν(x1, x2, . . . , xn−1, T2T2(xn)− T2(x), t)

◦ ν(x1, x2, . . . , xn−1, T2T2(yn)− T2(y), t).

(3.25)

Taking limit as n→∞ in 3.24 and 3.25, we have
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µ(x1, x2, . . . , xn−1, T2(x)− T1(x, y), kt) ≥ 1 and
ν(x1, x2, . . . , xn−1, T2(x)− T1(x, y), kt) ≤ 0.

Hence T2(x) = T1(x, y) and similarly T2(y) = T1(y, x).
Therefore T1 and T2 have a coupled coincidence point at (x, y).

Next we prove the existence of coupled coincidence points by considering map-
pings which are non-commutative in nature.

Theorem 3.2. Suppose (X,µ, ν, ∗, ◦) is an IFnBS with (µ, ν) has n-property where
(X,�) is partially ordered and a ∗ b ≥ ab, a ◦ b ≤ ab for all a, b ∈ [0, 1]. Let
T1 : X ×X −→ X and T2 : X −→ X be two mapping such that T1 has the mixed
T2-monotone property and for all x, y, u, v ∈ X, t ∈ R and x1, x2, . . . , xn−1 ∈ X

µ(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≥µ(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ µ(x1, x2, . . . , xn−1, T2(y)− T2(v), t)

(3.26)

and

ν(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≤ν(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

◦ ν(x1, x2, . . . , xn−1, T2(y)− T2(v), t),

(3.27)

for which T2(x) ≤ T2(u) and T2(y) ≥ T2(v), where 0 < k < 1, T1(X×X) ⊆ T2(X),
T2(X) is complete and T2 is continuous.

Suppose either

(a) T1 is continuous or

(b) X has the following property:

(i) if xn is a non-decreasing sequence and limn→∞xn = x, then T2(xn) ≤
T2(x) for all n ∈ N.

(ii) if yn is a non-increasing sequence and limn→∞yn = y, then T2(yn) ≥
T2(y) for all n ∈ N.

If there exist x0, y0 ∈ X such that

T2(x0) ≤ T1(x0, y0), T2(y0) ≥ T1(y0, x0)

Then, T1 and T2 have a coupled coincidence point in X.

Proof. From Lemma 2.12, there exists S ∈ X such that T2(S) = T2(X) and
T2 : E → X is one-one. Let us define a mapping F : T2(S)×T2(S)→ X such that

F (T2(x), T2(y)) = T1(x, y), for all T2(x), T2(y) ∈ T2(S) (3.28)
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Since T2 is one-one on T2(S), so F is well-defined. Thus, we have

µ(x1, x2, . . . , xn−1, F (T2(x), T2(y))− F (T2(u), T2(v)), kt)

≥ µ(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ µ(x1, x2, . . . , xn−1, T2(y)− T2(v), t)

(3.29)

and

ν(x1, x2, . . . , xn−1, F (T2(x), T2(y))− F (T2(u), T2(v)), kt)

≤ ν(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

◦ ν(x1, x2, . . . , xn−1, T2(y)− T2(v), t),

(3.30)

for all T2(x), T2(y), T2(u), T2(v) ∈ T2(S) with T2(x) ≤ T2(u) and T2(y) ≥ T2(v).
Since T1 has the mixed T2-monotone property, for all x, y ∈ X we have

x1, x2 ∈ X,T2(x1) ≤ T2(x2) =⇒ T1(x1, y) ≤ T1(x2, y). (3.31)

and
y1, y2 ∈ X,T2(y1) ≥ T2(y2) =⇒ T1(x, y1) ≤ T1(x, y2). (3.32)

From 3.28, 3.31 and 3.32 we have, for all T2(x), T2(y) ∈ T2(S)

T2(x1), T2(x2) ∈ T2(S), T2(x1) ≤ T2(x2) =⇒ F (T2(x1), T2(y)) ≤ F (T2(x2), T2(y)).
(3.33)

and

T2(y1), T2(y2) ∈ T2(S), T2(y1) ≥ T2(y2) =⇒ F (T2(x), T2(y1)) ≤ F (T2(x), T2(y2)).
(3.34)

This implies that F has the mixed monotone property.
Now we consider that assumption (a) holds. Since T1 is continuous, F is also

continuous. Therefore from Theorem 3.1 and Definition 2.8 F has a coupled fixed
point (u, v) ∈ T2(X)× T2(X).

Next assume that (b) holds. Then similarly from Theorem 3.1 and Definition
2.8 F has a coupled fixed point (u, v) ∈ T2(X)× T2(X).

Finally we show that T1 and T2 have a coupled coincidence point in X. Since
(u, v) is a coupled fixed point of F , we have

u = F (u, v), v = F (v, u)

Since (u, v) ∈ T2(X) × T2(X),there exists a point (u1, v1) ∈ T2(X) × T2(X) such
that

u = T2(u1), v = T2(v1).

Thus we have,

T2(u1) = F (T2(u1), T2(v1)), T2(v1) = F (T2(v1), T2(u1))
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Also we have

T2(u1) = F (u1, v1), T2(v1) = F (v1, u1).

Therefore, (u1, v1) is a coupled coincidence point of T1 and T2 in X, where T1
and T2 are not commutative.

Corollary 3.3. Suppose (X,µ, ν, ∗, ◦) is an IFnBS with (µ, ν) has n-property
where (X,�) is a partially ordered set and a∗ b ≥ ab, a◦ b ≤ ab for all a, b ∈ [0, 1].
Let T1 : X × X −→ X be a mapping having the mixed monotone property on X
and for all x, y, u, v ∈ X, t ∈ R and x1, x2, . . . , xn−1 ∈ X

µ(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≥µ(x1, x2, . . . , xn−1, x− u, t)
∗ µ(x1, x2, . . . , xn−1, y − v, t)

(3.35)

and

ν(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) ≤ν(x1, x2, . . . , xn−1, x− u, t)
◦ ν(x1, x2, . . . , xn−1, y − v, t),

(3.36)

for which x ≤ u and y ≥ v, where 0 < k < 1.
Suppose either

(a) T1 is continuous or

(b) X has the following property:

(i) if xn is a non-decreasing sequence and limn→∞xn = x, then xn ≤ x for
all n ∈ N.

(ii) if yn is a non-increasing sequence and limn→∞yn = y, then yn ≥ y for
all n ∈ N.

If there exist x0, y0 ∈ X such that

x0 ≤ T1(x0, y0), y0 ≥ T1(y0, x0)

Then there exist x, y ∈ X such that

x = T1(x, y), y = T1(y, x)

Further, if x0 and y0 are comparable, then x = y, i.e. x = T1(x, x).

Proof. In Theorem 3.1 taking T2 = I(i.e. the identity mapping) the first part of
the corollary is completed. Next we have to show that x = T1(x, x). Suppose
x0 ≤ y0. We show that

xn ≤ yn, for all n ≥ 0, (3.37)

where, xn = Txn−1,yn−1 and yn = T1(yn−1, xn−1), for all n ≥ 1.



Some Results on Coincidence Points for Contractions ... 57

Suppose 3.37 holds for some n ≥ 0. Then from the monotone property of T1,
it follows that xn+1 = T1(xn, yn) ≤ T1(yn, xn) = yn+1, for all n ≥ 0. Then 3.37
holds for some n+ 1. Therefore 3.37 holds for all n ≥ 0.

Next, we prove that x = y. Suppose x 6= y, then we have

µ(x1, x2, . . . ,xn−1, xn+1 − yn+1, kt)

= µ(x1, x2, . . . , T1(xn, yn)− T1(yn, xn), kt)

≥ µ(x1, x2, . . . , xn−1, xn − yn, t) ∗ µ(x1, x2, . . . , xn−1, yn − xn, t)
≥ [µ(x1, x2, . . . , xn−1, xn − yn, t)]2

(3.38)

and

ν(x1, x2, . . . ,xn−1, xn+1 − yn+1, kt)

= ν(x1, x2, . . . , T1(xn, yn)− T1(yn, xn), kt)

≤ ν(x1, x2, . . . , xn−1, xn − yn, t) ◦ ν(x1, x2, . . . , xn−1, yn − xn, t)
≤ [ν(x1, x2, . . . , xn−1, xn − yn, t)]2.

(3.39)

Thus we have

µ(x1, x2, . . . , xn−1, xn − yn, kt) ≥ [µ(x1, x2, . . . , xn−1, x0 − y0,
t

kn
)]2

n

and

ν(x1, x2, . . . , xn−1, xn − yn, kt) ≤ [ν(x1, x2, . . . , xn−1, x0 − y0,
t

kn
)]2

n

.

Again from the triangle inequality, we have

µ(x1,x2, . . . , xn−1, x− y, t)

≥ µ(x1, x2, . . . , xn−1, x− xn,
t

3
) ∗ µ(x1, x2, . . . , xn−1, xn − yn,

t

3
)

∗ µ(x1, x2, . . . , xn−1, yn − y,
t

3
)

≥ µ(x1, x2, . . . , xn−1, x− xn,
t

3
) ∗ [µ(x1, x2, . . . , xn−1, x0 − y0,

t

3kn
)]2

n

∗ µ(x1, x2, . . . , xn−1, yn − y,
t

3
)

−→ 1.

(3.40)
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and

ν(x1,x2, . . . , xn−1, x− y, t)

≤ ν(x1, x2, . . . , xn−1, x− xn,
t

3
) ◦ ν(x1, x2, . . . , xn−1, xn − yn,

t

3
)

◦ ν(x1, x2, . . . , xn−1, yn − y,
t

3
)

≤ ν(x1, x2, . . . , xn−1, x− xn,
t

3
) ◦ [ν(x1, x2, . . . , xn−1, x0 − y0,

t

3kn
)]2

n

◦ ν(x1, x2, . . . , xn−1, yn − y,
t

3
)

−→ 0.

(3.41)

as n −→∞. Thus we have

µ(x1, x2, . . . , xn−1, x− y, t) = 1

and
ν(x1, x2, . . . , xn−1, x− y, t) = 0.

Therefore, x = y.

4 Examples

In this section we are going to discuss examples regarding Theorems 3.1 and
3.2. First example shows the existence of coupled fixed point for the mappings
with commutative condition and second one show the existence for the mapping
having not-commutative condition.

Example 4.1. Let us consider X = R, set of real numbers, a ∗ b = ab = a ◦ b for
all a, b ∈ [0, 1] and ϕ(t) = 1 − e−t. Then (X,µ, ν, ∗, ◦) is a complete IFnNS with
the norm µ, ν satisfying the n-property on X × (0,∞) and

µ(x1, x2, . . . , xn−1, x, t) = [ϕ(t)]|x| and ν(x1, x2, . . . , xn−1, x, t) = 1 − [ϕ(t)]|x|,
for all x ∈ X, t ∈ R and x1, x2, . . . , xn−1 ∈ X.

If X is endowed with the usual order as x ≤ y ⇒ y − x ∈ [0,∞), then (X,�)
is a partially ordered set. Next define mappings

T1 : X ×X → X such that T1(x, y) = x− y, for all (x, y) ∈ X ×X.

and

T2(x) : X → X such that T2 = 5x, for all x ∈ X,

where T1 is a mixed T2-monotone mapping and T1(X ×X) ⊆ T2(X).
Next we check commutative condition.

T2(T1(x, y)) = T2(x−y) = 5(x−y) and T1(T2(x), T2(y)) = T1(5x, 5y) = 5(x−y).
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Thus, T2(T1(x, y)) = T1(T2(x), T2(y)), i.e., T1 and T2 are commutative.
Let x0 = −1 and Y0 = 2 then we have

−5 = T2(x0) ≤ T1(x0, y0) = −3 and 10 = T2(y0) ≥ T1(y0, x0) = 3

Now for any x, y, u, v ∈ X with T2(x) ≤ T2(u) and T2(y) ≥ T2(v), we get

µ(x1, x2, . . . ,xn−1, T1(x, y)− T1(u, v),
t

4
)

= [1− e− t
4 ]|x−y−(u−v)|

≥ [1− e− t
4 ]|x−u|+|v−y|

= [1− e− t
4 ]|T2(x)−T2(u)| · [1− e− t

4 ]|T2(y)−T2(v)|

= µ(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ µ(x1, x2, . . . , xn−1, T2(y)− T2(v), t).

(4.1)

Similarly

ν(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v),
t

4
) ≤ν(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ ν(x1, x2, . . . , xn−1, T2(y)− T2(v), t).

(4.2)

where 0 < k < 1. Therefore from Theorem 3.1 T1 and T2 have a coupled fixed
point in X ×X and a point (−1, 2) is a coupled coincidence point of T1 and T2.

Example 4.2. Let us consider X = R, set of real numbers, a∗b = ab = a◦b for all
a, b ∈ [0, 1] and ϕ(t) = 1− e−t. Then (X,µ, ν, ∗, ◦) is a complete IFnNS with the
norm µ, ν satisfying the n-property on X × (0,∞) and µ(x1, x2, . . . , xn−1, x, t) =
[ϕ(t)]|x| and ν(x1, x2, . . . , xn−1, x, t) = 1 − [ϕ(t)]|x|, for all x ∈ X, t ∈ R and
x1, x2, . . . , xn−1 ∈ X.

If X is endowed with the usual order as x ≤ y ⇒ y − x ∈ [0,∞], then (X,�)
is a partially ordered set. Next define mappings

T1 : X ×X → X such that T1(x, y) = 1, for all (x, y) ∈ X ×X.

and

T2(x) : X → X such that T2 = x− 1, for all x ∈ X.

where T1 and T2 are continuous, T1 is a mixed T2-monotone mapping and T1(X ×
X) ⊆ T2(X).

Next we check commutative condition.

T2(T1(x, y)) = T2(1) = 0 and T1(T2(x), T2(y)) = 1.

Thus, T2(T1(x, y)) 6= T1(T2(x), T2(y)), i.e., T1 and T2 are not satisfy the commu-
tative condition.

Let x0 = 1 and Y0 = 5 then we have
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T2(x0) = 0 ≤ T1(x0, y0) = 1 and 4 = T2(y0) ≥ T1(y0, x0) = 1.

Now for any x, y, u, v ∈ X with T2(x) ≤ T2(u) and T2(y) ≥ T2(v), we get

µ(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) = µ(x1, x2, . . . , xn−1, 0, kt)

= 1

≥ µ(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

∗ µ(x1, x2, . . . , xn−1, T2(y)− T2(v), t)

(4.3)
and

ν(x1, x2, . . . , xn−1, T1(x, y)− T1(u, v), kt) = ν(x1, x2, . . . , xn−1, 0, t)

= 0

≤ ν(x1, x2, . . . , xn−1, T2(x)− T2(u), t)

◦ ν(x1, x2, . . . , xn−1, T2(y)− T2(v), t),

(4.4)

where 0 < k < 1. Therefore from Theorem 3.2 T1 and T2 have a coupled fixed
point in X ×X and a point (2, 2) is a coupled coincidence point of T1 and T2.
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