Thai Journal of Mathematics Volume 17 (2019) Number 1 : 31-41
http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

On a Spectral Subdivision of the Operator Δ_{i}^{2} over the Sequence Spaces c_{0} and ℓ_{1}

P. Baliarsing $h^{\dagger}{ }^{1}$ and \mathbf{S}. Dutta ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, School of Applied Sciences
KIIT, Bhubaneswar 751024, India
e-mail : pb.math10@gmail.com
\ddagger Department of Mathematics, Utkal University, Vanivihar, India
e-mail : saliladutta516@gmail.com

Abstract

The main objective of this paper is to determine the spectrum and the fine spectrum of the difference operator Δ_{i}^{2} over the sequence spaces c_{0} and ℓ_{1}. For any sequence $x=\left(x_{k}\right)$ in c_{0} or ℓ_{1}, the generalized difference operator Δ_{i}^{2} over c_{0} or ℓ_{1} is defined by $\left(\Delta_{i}^{2}(x)\right)_{k}=\sum_{i=0}^{2} \frac{(-1)^{i}}{i+1}\binom{2}{i} x_{k-i}=x_{k}-x_{k-1}+\frac{1}{3} x_{k-2}$, with $x_{k}=0$ for $k<0$. Moreover, we compute the spectrum, the point spectrum, the residual spectrum and the continuous spectrum of the difference operator Δ_{i}^{2} over the basic sequence spaces c_{0} and ℓ_{1}.

Keywords : Difference operator Δ_{i}^{2}; spectrum of an operator; sequence spaces. 2010 Mathematics Subject Classification : 47A10; 40A05; 46A45.

1 Introduction, Preliminaries and Definitions

Let ω be the space of all sequences of real or complex numbers. Any subspace of ω is called a sequence space. By ℓ_{∞}, c, c_{0} and ℓ_{1}, we denote the spaces of all bounded, convergent, null and absolutely summable sequences, respectively. Now, we define a difference operator $\Delta_{i}^{2}: c_{0}\left(\right.$ or $\left.\ell_{1}\right) \rightarrow c_{0}\left(\right.$ or $\left.\ell_{1}\right)$ by

$$
\left(\Delta_{i}^{2}\right)_{k}=\sum_{i=0}^{2} \frac{(-1)^{i}}{i+1}\binom{2}{i} x_{k-i}=x_{k}-x_{k-1}+\frac{1}{3} x_{k-2}
$$

[^0]with $x_{k}=0$ for $k<0$, where $x \in c_{0}$ or ℓ_{1} and $k \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. It is natural to express the operator Δ_{i}^{2} as a lower triangular matrix $\left(a_{n k}\right)$, where
\[

a_{n k}=\left\{$$
\begin{array}{lr}
1, & (k=n), \\
-1, & (k=n-1), \\
\frac{1}{3}, & (k=n-2), \\
0, & \text { otherwise }
\end{array}
$$ for all n, k \in \mathbb{N}_{0}\right.
\]

Equivalently, one may write

$$
\Delta_{i}^{2}=\left(a_{n k}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
-1 & 1 & 0 & 0 & \ldots \\
\frac{1}{3} & -1 & 1 & 0 & \ldots \\
0 & \frac{1}{3} & -1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. By $\mathcal{R}(T)$, we denote the range of T, i.e.

$$
\mathcal{R}(T)=\{y \in Y: y=T x ; x \in X\}
$$

By $B(X)$, we denote the space all bounded linear operators on X into itself. If X is any Banach space and $T \in B(X)$ then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*} of X defined by $\left(T^{*} \phi\right)(x)=\phi(T x)$ for all $\phi \in X^{*}$ and $x \in X$ with $\|T\|=\left\|T^{*}\right\|$.

Let $X \neq\{\mathbf{0}\}$ be a normed linear space over the complex field and $T: D(T) \rightarrow$ X be a linear operator, where $D(T)$ denotes the domain of T. With T, for a complex number λ, we associate an operator $T_{\lambda}=T-\lambda I$, where I is called the identity operator on $D(T)$ and if T_{λ} has an inverse, we denote it by T_{λ}^{-1} i.e.

$$
T_{\lambda}^{-1}=(T-\lambda I)^{-1}
$$

and is called the resolvent operator of T. Many properties of T_{λ} and T_{λ}^{-1} depend on λ and the spectral theory is concerned with those properties. We are interested in the set of all λ 's in the complex plane such that T_{λ}^{-1} exists/ T_{λ}^{-1} is bounded/ domain of T_{λ}^{-1} is dense in X. For our investigation, we need some basic concepts in spectral theory which are given as some definitions and lemmas.

Definition 1.1. ($[1]$, pp. 371). Let X and T be defined as above. A regular value of T is a complex number λ such that
(R1) T_{λ}^{-1} exists;
(R2) T_{λ}^{-1} is bounded;
(R3) T_{λ}^{-1} is defined on a set which is dense in X.
The resolvent set $\rho(T, X)$ of T is the set of all regular values of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as
follows:
(I)Point spectrum $\sigma_{p}(T, X)$: It is the set of all $\lambda \in \mathbb{C}$ such that (R1) does not hold. The elements of $\sigma_{p}(T, X)$ are called eigenvalues of T.
(II) Continuous spectrum $\sigma_{c}(T, X)$: It is the set of all $\lambda \in \mathbb{C}$ such that (R1) holds and satisfies (R3) but does not satisfy (R2).
(III)Residual spectrum $\sigma_{r}(T, X)$: It is the set of all $\lambda \in \mathbb{C}$ such that (R1) holds but does not satisfy (R3). The condition (R2) may or may not hold.

Goldberg's classification of operator $T_{\lambda}:([\sqrt{2}]$, pp. 58-71). Let X be a Banach space and $T_{\lambda}=(T-\lambda I) \in B(X)$, where λ is a complex number. Again, let $R\left(T_{\lambda}\right)$ and T_{λ}^{-1} denote the range and inverse of the operator T_{λ} respectively. Then the following possibilities may occur:
(A) $R\left(T_{\lambda}\right)=X$;
(B) $\underline{R\left(T_{\lambda}\right)} \neq \overline{R\left(T_{\lambda}\right)}=X$;
(C) $\overline{R\left(T_{\lambda}\right)} \neq X$;
and
(1) T_{λ} is injective and T_{λ}^{-1} is continuous;
(2) T_{λ} is injective and T_{λ}^{-1} is discontinuous;
(3) T_{λ} is not injective.

Taking the permutations (A), (B), (C) and (1), (2), (3), we get nine different states. These are labeled by $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}$ and C_{3}. If λ is a complex number such that $T_{\lambda} \in A_{1}$ or $T_{\lambda} \in B_{1}$, then λ is in the resolvent set $\rho(T, X)$ of T on X. The other classifications give rise to the fine spectrum of T. We use $\lambda \in B_{2} \sigma(T, X)$ means the operator $T_{\lambda} \in B_{2}$, i.e. $R\left(T_{\lambda}\right) \neq \overline{R\left(T_{\lambda}\right)}=X$ and T_{λ} is injective but T_{λ}^{-1} is discontinuous. Similarly others.

Lemma 1.2. ($|2|, \mathrm{pp} .59)$. A linear operator T has a dense range if and only if the adjoint T^{*} is one to one.

Lemma 1.3. ($\left(\sqrt[2]{ }\right.$, pp. 60). The adjoint operator T^{*} is onto if and and only if T has a bounded inverse.

Let P, Q be two nonempty subsets of the space w of all real or complex sequences and $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}$, where $n, k \in \mathbb{N}_{0}$. For every $x=\left(x_{k}\right) \in P$ and every positive integer n, we write

$$
A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}
$$

The sequence $A x=\left(A_{n}(x)\right)$, if it exists, is called the transformation of x by the matrix A. Infinite matrix $A \in(P, Q)$ if and only if $A x \in Q$ whenever $x \in P$.

Lemma 1.4. ([3], pp. 129). The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(c_{0}\right)$ from c_{0} to itself if and only if
(i) the rows of A are in ℓ_{1} and their ℓ_{1} norms are bounded,
(ii) the columns of A are in c_{0} and

The operator norm of T is the supremum of ℓ_{1} norms of the rows.
Lemma 1.5. ($3, \mathrm{pp} .126$). The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(\ell_{1}\right)$ from ℓ_{1} to itself if and only if the supremum of ℓ_{1} norms of the columns of A is bounded.

In analysis the notion of eigenvalues of a matrix is generalized by the spectrum of the operator corresponds to that matrix. Therefore, the study of spectrum and fine spectrum of different operators carries a prominent position in different branches of mathematics like summabilitry theory, schauder basis theory, matrix theory and operator theory. In the existing literature, several authors have devoted their knowledge in achieving new results and theorems concerning the spectrum and the fine spectra of an operator over different sequence spaces. For instance; Reade [4] studied the spectrum of the Cesàro operator over the sequence space c_{0}. The fine spectra of the Cesàro operator over the sequence spaces c_{0} and $b v_{p}$ have been determined by Akhmedov and Başar [5, 6]. Akhmedov and Başar [7, 8] have studied the fine spectrum of the difference operator Δ over the sequence spaces c_{0} and $b v_{p}$ where $1<p<\infty$. Altay and Başar 9 , 10 have determined the fine spectrum of the difference operator Δ over the sequence spaces c_{0}, c and ℓ_{p}, for $0<p<1$. Srivastava and Kumar 11,12 have examined the fine spectrum of the generalized difference operator $\overline{\Delta_{\nu}}$ over the sequence spaces c_{0} and ℓ_{1}. Panigrahi and Srivastava [13] have studied the spectrum and fine spectrum of the generalized second order difference operator $\Delta_{u v}^{2}$ on c_{0}. Recently, the spectrum of the generalized rth difference operator Δ_{ν}^{r} and 2 nd order difference operator Δ^{2} have been determined by Dutta and Baliarsingh (14 15] over ℓ_{1} and c_{0}, respectively and also, for more investigations one may refer 16, 17.

2 The Spectrum of the Operator Δ_{i}^{2} over c_{0}

In this section, we compute the spectrum, the point spectrum, the continuous spectrum, the residual spectrum and the fine spectrum of the operator Δ_{i}^{2} on the sequence space c_{0}.

Theorem 2.1. The operator $\Delta_{i}^{2}: c_{0} \rightarrow c_{0}$ is a linear operator and

$$
\begin{equation*}
\left\|\Delta_{i}^{2}\right\|_{\left(c_{0}: c_{0}\right)}=\frac{7}{3} . \tag{2.1}
\end{equation*}
$$

Proof. Proof of this theorem follows from Lemma 1.4 and with the fact that

$$
1+|-1|+\frac{1}{3}=\frac{7}{3} .
$$

Theorem 2.2. The spectrum of Δ_{i}^{2} on the sequence space c_{0} is given by

$$
\begin{equation*}
\sigma\left(\Delta_{i}^{2}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda| \leq \frac{4}{3}\right\} . \tag{2.2}
\end{equation*}
$$

Proof. We divide the entire proof into two sections.
In the first part, we have to show that

$$
\sigma\left(\Delta_{i}^{2}, c_{0}\right) \subseteq\left\{\lambda \in \mathbb{C}:|1-\lambda| \leq \frac{4}{3}\right\}
$$

Equivalently, we need to show that if $\lambda \in \mathbb{C}$ with $|1-\lambda|>\frac{4}{3} \Rightarrow \lambda \notin \sigma\left(\Delta_{i}^{2}, c_{0}\right)$. Suppose $\lambda \in \mathbb{C}$ with $|1-\lambda|>\frac{4}{3}$. Now, $\left(\Delta_{i}^{2}-\lambda I\right)$ is a triangle and hence has an inverse $\left(\Delta_{i}^{2}-\lambda I\right)^{-1}=\left(b_{n k}\right)$ where

$$
\left(b_{n k}\right)=\left(\begin{array}{ccccc}
\frac{1}{(1-\lambda)} & 0 & 0 & 0 & \cdots \\
\frac{1}{(1-\lambda)^{2}} & \frac{1}{(1-\lambda)} & 0 & 0 & \cdots \\
b_{20} & \frac{1}{(1-\lambda)^{2}} & \frac{1}{(1-\lambda)} & 0 & \cdots \\
b_{30} & b_{31} & \frac{1}{(1-\lambda)^{2}} & \frac{1}{(1-\lambda)} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where $b_{20}, b_{30}, b_{31} \ldots$ etc. are as follows:

$$
\begin{aligned}
b_{20} & =\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}}, \quad b_{31}=\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}}, \\
\text { Similarly, } \quad b_{30} & =\frac{1}{(1-\lambda)^{4}}-\frac{2}{3(1-\lambda)^{3}} .
\end{aligned}
$$

In fact, for $n \in \mathbb{N}_{0}$ one can calculate

$$
\begin{aligned}
& b_{n n}=\frac{1}{1-\lambda}, \quad b_{n, n-1}=\frac{1}{(1-\lambda)^{2}}, \\
& b_{n, n-2}=\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}} \\
& b_{n, n-3}=\frac{1}{(1-\lambda)^{4}}-\frac{2}{3(1-\lambda)^{3}}, \\
& b_{n, n-4}=\frac{1}{(1-\lambda)^{5}}-\frac{1}{(1-\lambda)^{4}}-\frac{1}{9(1-\lambda)^{3}}, \\
& \vdots
\end{aligned}
$$

and so on.
By using Lemma 1.4 we need to show that $\left(\Delta_{i}^{2}-\lambda I\right)^{-1} \in B\left(c_{0}\right)$, i.e.,
(i) The series $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $n \in \mathbb{N}_{0}$ and $\sup _{n} \sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$,
(ii) $\lim _{n \rightarrow \infty}\left|b_{n k}\right|=0$ for each $k \in \mathbb{N}_{0}$.

Therefore, first we prove that the series $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $n \in \mathbb{N}_{0}$.

Let

$$
\begin{aligned}
S_{n}= & \sum_{k=0}^{\infty}\left|b_{n k}\right|=\left|b_{n, 0}\right|+\left|b_{n, 1}\right|+\left|b_{n, 2}\right|+\ldots .+\left|b_{n n}\right| \\
= & \left|b_{n n}\right|+\left|b_{n, n-1}\right|+\left|b_{n, n-2}\right|+\ldots \\
= & \left|\frac{1}{1-\lambda}\right|+\left|\frac{1}{(1-\lambda)^{2}}\right|+\left|\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}}\right|+\left|\frac{1}{(1-\lambda)^{4}}-\frac{2}{3(1-\lambda)^{3}}\right| \\
& +\left|\frac{1}{(1-\lambda)^{5}}-\frac{1}{(1-\lambda)^{4}}-\frac{1}{9(1-\lambda)^{3}}\right|+\ldots
\end{aligned}
$$

Now,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n}= & \left|\frac{1}{1-\lambda}\right|+\left|\frac{1}{(1-\lambda)^{2}}\right|+\left|\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}}\right| \\
& +\left|\frac{1}{(1-\lambda)^{4}}-\frac{2}{3(1-\lambda)^{3}}\right|+\ldots \\
\leq & \left|\frac{1}{1-\lambda}\right|+\left|\frac{1}{1-\lambda}\right|^{2}+\left|\frac{1}{1-\lambda}\right|^{3}+\frac{1}{3}\left|\frac{1}{1-\lambda}\right|^{2}+\left|\frac{1}{1-\lambda}\right|^{4}+\frac{2}{3}\left|\frac{1}{1-\lambda}\right|^{3} \\
& +\left|\frac{1}{1-\lambda}\right|^{5}+\left|\frac{1}{1-\lambda}\right|^{4}+\frac{1}{9}\left|\frac{1}{1-\lambda}\right|^{3}+\ldots \\
= & \left|\frac{1}{1-\lambda}\right|+\left(\sum_{i \geq 1} n_{2(i)}\right)\left|\frac{1}{1-\lambda}\right|^{2}+\left(\sum_{i \geq 1} n_{3(i)}\right)\left|\frac{1}{1-\lambda}\right|^{3} \\
& +\left(\sum_{i \geq 1} n_{4(i)}\right)\left|\frac{1}{1-\lambda}\right|^{4}+\ldots \\
= & \left|\frac{1}{1-\lambda}\right|+\left(1+\frac{1}{3}\right)\left|\frac{1}{1-\lambda}\right|^{2}+\left(1+\frac{1}{3}+\frac{1}{3}+\frac{1}{9}\right)\left|\frac{1}{1-\lambda}\right|^{3} \\
& +\left(1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{27}\right)\left|\frac{1}{1-\lambda}\right|^{4}+\ldots \\
= & \frac{1}{|1-\lambda|}\left\{1+\left(\frac{4}{3}\right)\left|\frac{1}{1-\lambda}\right|+\left(\frac{16}{9}\right)\left|\frac{1}{1-\lambda}\right|^{2}+\left(\frac{64}{27}\right)\left|\frac{1}{1-\lambda}\right|^{3}+\ldots\right\} \\
= & \frac{1}{|1-\lambda|}\left\{1+\left|\frac{4}{3(1-\lambda)}\right|+\left|\frac{4}{3(1-\lambda)}\right|^{2}+\left|\frac{4}{3(1-\lambda)}\right|^{3}+\ldots\right\} \\
= & \frac{3}{3|1-\lambda|-4}<\infty,
\end{aligned}
$$

where $n_{k(i)}$ denote the coefficients of $\left|\frac{1}{1-\lambda}\right|^{k}$ for $k \geq 2$. As per the assumption $\left|\frac{4}{3(1-\lambda)}\right|<1$, thus $\lim _{n} S_{n}<\infty$. Now, $\left(S_{n}\right)$ is a sequence of positive real numbers and is convergent, this implies the boundedness of $\left(S_{n}\right)$.

Secondly, $\lim _{n \rightarrow \infty}\left|b_{n k}\right|=0$ for each $k \in \mathbb{N}_{0}$, this follows from the fact that $\left|\frac{1}{(1-\lambda)}\right|<\left|\frac{4}{3(1-\lambda)}\right|<1$. As a result, $\left(\Delta_{i}^{2}-\lambda I\right)^{-1} \in B\left(c_{0}\right)$ with $|1-\lambda|>\frac{4}{3}$.

Now, we can show that domain of the operator $\left(\Delta_{i}^{2}-\lambda I\right)^{-1}$ is dense in c_{0} equivalently, the range of $\left(\Delta_{i}^{2}-\lambda I\right)$ is dense in c_{0}, which implies the operator $\left(\Delta_{i}^{2}-\lambda I\right)^{-1}$ is onto. Thus,

$$
\begin{equation*}
\sigma\left(\Delta_{i}^{2}, c_{0}\right) \subseteq\left\{\lambda \in \mathbb{C}:|1-\lambda| \leq \frac{4}{3}\right\} \tag{2.3}
\end{equation*}
$$

Conversely, consider $\lambda \neq 1$ and $|1-\lambda| \leq \frac{4}{3}$, clearly $\left(\Delta_{i}^{2}-\lambda I\right)$ is a triangle and hence $\left(\Delta_{i}^{2}-\lambda I\right)^{-1}$ exists, but the sequence $\left(S_{n}\right)$ is unbounded.

$$
\Rightarrow \quad\left(\Delta_{i}^{2}-\lambda I\right)^{-1} \notin B\left(c_{0}\right) \quad \text { with } \quad|1-\lambda|<\frac{4}{3} \quad \text { and }|1-\lambda|=\frac{4}{3}
$$

Finally, we prove the result under the assumption $\lambda=1$. If $\lambda=1$, then we have

$$
\left(\Delta_{i}^{2}-\lambda I\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
-1 & 0 & 0 & 0 & \ldots \\
\frac{1}{3} & -1 & 0 & 0 & \ldots \\
0 & \frac{1}{3} & -1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

which is not invertible. Thus,

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}:|1-\lambda| \leq \frac{4}{3}\right\} \subseteq \sigma\left(\Delta_{i}^{2}, c_{0}\right) \tag{2.4}
\end{equation*}
$$

Combining 2.3 and 2.4, we conclude the proof.
Theorem 2.3. The point spectrum of the operator Δ_{i}^{2} over c_{0} is given by

$$
\sigma_{p}\left(\Delta_{i}^{2}, c_{0}\right)=\emptyset
$$

Proof. Suppose $x \in c_{0}$ and consider $\Delta_{i}^{2} x=\lambda x$ for $x \neq \theta$ in c_{0}, which gives a system of linear equations:

$$
\begin{gather*}
x_{0}=\lambda x_{0} \\
-x_{0}+x_{1}=\lambda x_{1} \\
\frac{1}{3} x_{0}-x_{1}+x_{2}=\lambda x_{2} \tag{2.5}\\
\frac{1}{3} x_{1}-x_{2}+x_{3}=\lambda x_{3} \\
\cdots \ldots \ldots \\
\frac{1}{3} x_{k-2}-x_{k-1}+x_{k}=\lambda x_{k}
\end{gather*}
$$

On solving above system of equations, it is clear that

$$
x_{1}=\frac{x_{0}}{1-\lambda}, x_{2}=\left(\frac{1}{(1-\lambda)^{2}}-\frac{1}{3(1-\lambda)}\right) x_{0}, x_{3}=\left(\frac{1}{(1-\lambda)^{3}}-\frac{2}{3(1-\lambda)^{2}}\right) x_{0} \ldots
$$

and so on
If $x_{0} \neq 0$, then we obtain $\lambda=1$ and hence $x_{0}=0, x_{1}=0, x_{2}=0 \ldots$ which is a contradiction.
If $x_{0}=0$, then also $x_{k}=0$ for all $k \geq 1$ which contradicts our assumption.
Again suppose x_{k} is the first non zero entry of $x=\left(x_{k}\right)$ and from the above system of equations we obtain $\lambda=1$ and $x_{k-1} \neq 0$, which is a contradiction. Thus $\sigma_{p}\left(\Delta_{i}^{2}, c_{0}\right)=\emptyset$.

Theorem 2.4. The point spectrum of the adjoint operator $\left(\Delta_{i}^{2}\right)^{*}$ of Δ_{i}^{2} over $c_{0}^{*} \cong$ ℓ_{1} is given by

$$
\sigma_{p}\left(\left(\Delta_{i}^{2}\right)^{*}, \ell_{1}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|<\frac{4}{3}\right\} .
$$

Proof. Suppose $\left(\Delta_{i}^{2}\right)^{*} f=\lambda f$ for $\mathbf{0} \neq f \in \ell_{1}$, where

$$
\left(\Delta_{i}^{2}\right)^{*}=\left(\begin{array}{ccccc}
1 & -1 & \frac{1}{3} & 0 & \cdots \\
0 & 1 & -1 & \frac{1}{3} & \cdots \\
0 & 0 & 1 & -1 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \text { and } f=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots
\end{array}\right)
$$

Consider the system of linear equations

$$
\left.\begin{array}{c}
f_{0}-f_{1}+\frac{1}{3} f_{2}=\lambda f_{0} \tag{2.6}\\
f_{1}-f_{2}+\frac{3}{3} f_{3}=\lambda f_{1} \\
f_{2}-f_{3}+\frac{1}{3} f_{4}=\lambda f_{2} \\
\ldots \ldots \ldots \ldots \\
f_{k}-f_{k+1}+\frac{1}{3} f_{k+2}=\lambda f_{k} \\
\ldots \ldots \ldots
\end{array}\right\}
$$

Therefore, we have

$$
\begin{aligned}
\left|f_{k}\right|= & \frac{1}{|1-\lambda|}\left|\left(f_{k+1}-\frac{1}{3} f_{k+2}\right)\right| \\
& \leq \frac{1}{|1-\lambda|}\left[\left|f_{k+1}\right|+\left|\frac{1}{3} f_{k+2}\right|\right] .
\end{aligned}
$$

It is clear that $f=\left(f_{k}\right)$, defined by $f_{k}=r^{k}$, with $|r|<1$ is an eigenvector corresponding to the eigenvalue λ satisfying $|1-\lambda|<\frac{4}{3}$. It can also be shown that $\left|f_{0}\right| \geq\left|f_{1}\right| \geq\left|f_{2}\right| \ldots \geq\left|f_{k}\right| \ldots$ i.e. $\left|f_{0}\right| \geq\left|f_{k}\right|$, for all $k \in \mathbb{N}_{0}$, this implies that $\sup _{k}\left|f_{k}\right|<\infty$ and hence $f \in \ell_{1}$.

Conversely, it is trivial to show that if $\sup _{k}\left|f_{k}\right|<\infty$, then $|1-\lambda|<\frac{4}{3}$.
Theorem 2.5. The residual spectrum of the operator Δ_{i}^{2} over c_{0} is given by

$$
\sigma_{r}\left(\Delta_{i}^{2}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|<\frac{4}{3}\right\} .
$$

Proof. For $|1-\lambda|<\frac{4}{3}$, the operator $\Delta_{i}^{2}-\lambda I$ has an inverse. By Theorem 2.4 the operator $\left(\Delta_{i}^{2}\right)^{*}-\lambda I$ is not one to one for $\lambda \in \mathbb{C}$ with $|1-\lambda|<\frac{4}{3}$. By using Lemma 1.2. we have $\overline{R\left(\Delta_{i}^{2}-\lambda I\right)} \neq c_{0}$. Hence,

$$
\sigma_{r}\left(\Delta_{i}^{2}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|<\frac{4}{3}\right\}
$$

Theorem 2.6. The continuous spectrum of the operator Δ_{i}^{2} over c_{0} is given by

$$
\begin{equation*}
\sigma_{c}\left(\Delta_{i}^{2}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|=\frac{4}{3}\right\} \tag{2.7}
\end{equation*}
$$

Proof. The proof follows from Theorems $2.2,2.3,2.5$ and the fact that

$$
\sigma\left(\Delta_{i}^{2}, c_{0}\right)=\sigma_{p}\left(\Delta_{i}^{2}, c_{0}\right) \cup \sigma_{r}\left(\Delta_{i}^{2}, c_{0}\right) \cup \sigma_{c}\left(\Delta_{i}^{2}, c_{0}\right)
$$

3 The Spectrum of the Operator Δ_{i}^{2} over ℓ_{1}

In this section, we determine the fine spectrum of the operator Δ_{i}^{2} over the sequence space ℓ_{1}. For our investigation, we need certain results which follow from Lemma 1.5. The results that obtained for the sequence space ℓ_{1} are very similar to that of the sequence space c_{0}. In order to avoid the similar statements as discussed in previous sections, we omit some detail explanations and give certain results without proofs.

Theorem 3.1. The operator $\Delta_{i}^{2}: \ell_{1} \rightarrow \ell_{1}$ is a linear operator and

$$
\begin{equation*}
\left\|\Delta_{i}^{2}\right\|_{\left(\ell_{1}: \ell_{1}\right)}=\frac{7}{3} \tag{3.1}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.1 and Lemma 1.5.
Theorem 3.2. The spectrum of Δ_{i}^{2} on the sequence space ℓ_{1} is given by

$$
\begin{equation*}
\sigma\left(\Delta_{i}^{2}, \ell_{1}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda| \leq \frac{4}{3}\right\} \tag{3.2}
\end{equation*}
$$

Proof. In view of Theorem 2.2, the proof of this theorem is almost similar. By using Lemma 1.5 , only we need to show that the supremum of ℓ_{1} norms of the columns of $\left(\Delta_{i}^{2}-\lambda I\right)^{-1}$ is bounded, i.e, for all $n \in \mathbb{N}_{0}$

$$
\sup _{k} \sum_{n=0}^{\infty}\left|b_{n k}\right|<\infty
$$

Therefore, first we prove that the series $\sum_{n=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $k \in \mathbb{N}_{0}$. This is clear and this follows from the fact that for all $k \in \mathbb{N}_{0}$, we have

$$
\begin{aligned}
& b_{k k}=\frac{1}{1-\lambda}, \quad b_{k, k-1}=b_{k+1, k}=\frac{1}{(1-\lambda)^{2}}, \\
& b_{k, k-2}=b_{k+2, k}=\frac{1}{(1-\lambda)^{3}}-\frac{1}{3(1-\lambda)^{2}}, \\
& b_{k, k-3}=b_{k+3, k}=\frac{1}{(1-\lambda)^{4}}-\frac{2}{3(1-\lambda)^{3}}, \\
& b_{k, k-4}=b_{k+4, k}=\frac{1}{(1-\lambda)^{5}}-\frac{1}{(1-\lambda)^{4}}-\frac{1}{9(1-\lambda)^{3}},
\end{aligned}
$$

Now, using Lemma 1.5, we obtain

$$
\begin{aligned}
\lim _{k} S_{k} & =\lim _{k} \sum_{n=0}^{\infty}\left|b_{n k}\right|=\lim _{k}\left(\left|b_{k k}\right|+\left|b_{k+1, k}\right|+\left|b_{k+2, k}\right|+\ldots\right) \\
& =\lim _{n}\left(\left|b_{n n}\right|+\left|b_{n, n-1}\right|+\left|b_{n, n-2}\right|+\ldots\right)<\frac{3}{3|1-\lambda|-4}<\infty,
\end{aligned}
$$

by Theorem 2.2. Therefore, $\left(S_{k}\right)$ is sequence of real numbers and $\sup _{k} S_{k}$ is finite, which implies that $\left(S_{k}\right)$ is bounded.

Theorem 3.3. (i) $\sigma_{p}\left(\Delta_{i}^{2}, \ell_{1}\right)=\emptyset$.
(ii) $\sigma_{r}\left(\Delta_{i}^{2}, \ell_{1}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|<\frac{4}{3}\right\}$.
(iii) $\sigma_{c}\left(\Delta_{i}^{2}, \ell_{1}\right)=\left\{\lambda \in \mathbb{C}:|1-\lambda|=\frac{4}{3}\right\}$.

References

[1] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons Inc., New York, Chichester, Brisbane, Toronto, 1978.
[2] S. Goldberg, Unbounded Linear Operators, Dover Publications Inc., New York, 1985.
[3] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, Amsterdam, New York, Oxford, 1984.
[4] J.B. Reade, On the spectrum of the Cesàro operator, Bull. Lond. Math. Soc. 17 (1985) 263-267.
[5] A.M. Akhmedov, F. Başar, On the spectrum of the Cesàro operator in c_{0}, Math. J. Ibaraki Univ. 36 (2004) 25-32.
[6] A.M. Akhmedov, F. Başar, The fine spectra of Cesàro operator C_{1} over the sequence space $b v_{p}$, Math. J. Okayama Univ. 50 (2008) 135-147.
[7] A.M. Akhmedov, F. Başar, The fine spectra of the difference operator Δ over the sequence space $\ell_{p},(1 \leq p<\infty)$, Demonstratio Math. 39 (3) (2006) 586-595.
[8] A.M. Akhmedov, F. Başar, On the fine spectra of the difference operator Δ over the sequence space $b v_{p},(1 \leq p<\infty)$, Acta. Math. Sin. Engl. ser. Oct. 23 (10) (2007) 1757-1768.
[9] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<p<1)$, Comm. in Math. Anal. 2 (2007) 1-11.
[10] B. Altay, F. Başar, On the fine spectrum of the difference operator on c_{0} and c, Inform. Sci. 168 (2004) 217-224.
[11] P.D. Srivastava, S. Kumar, On the fine spectrum of the generalized difference operator Δ_{ν} over the sequence space c_{0}, Commun. Math. Anal. 6 (1) (2009) 8-21.
[12] P.D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator Δ_{ν} on sequence space ℓ_{1}, Thai J. Math. 8 (2) (2010) 221-233.
[13] B.L. Panigrahi, P.D. Srivastava, Spectrum and fine spectrum of the generalized second order difference operator $\Delta_{u v}^{2}$ on sequence space c_{0}, Thai J. Math. 9 (1) (2011) 57-74.
[14] S. Dutta, P. Baliarsingh, On the fine spectra of the generalized rth difference operator Δ_{ν}^{r} on the sequence space ℓ_{1}, Appl. Math. Comput. 219 (18) (2012) 1776-1784.
[15] S. Dutta, P. Baliarsingh, On the spectrum of 2-nd order generalized difference operator Δ^{2} over the sequence space c_{0}, Bol. Soc. Paran. Mat. 31v(2) (2013) 235-244.
[16] P. Baliarsingh, S. Dutta, On a spectral classification of the operator Δ_{ν}^{r} over the sequence space c_{0}, Proc. Natl. Acad. Sci. India Series A 84 (4) (2014) 555-561.
[17] S. Dutta, P. Baliarsingh, On the spectral properties of the weighted mean difference operator $G(u, v ; \Delta)$ over the sequence space ℓ_{1}, International Journal of Analysis (2014) http://dx.doi.org/10.1155/2014/786437.
(Received: 5 October 2012)
(Accepted: 11 February 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2019 by the Mathematical Association of Thailand. All rights reserved.

