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Abstract : The main objective of this paper is to determine the spectrum and
the fine spectrum of the difference operator ∆2

i over the sequence spaces c0 and
`1. For any sequence x = (xk) in c0 or `1, the generalized difference operator ∆2

i

over c0 or `1 is defined by (∆2
i (x))k =

∑2
i=0

(−1)i
i+1

(
2
i

)
xk−i = xk − xk−1 + 1

3xk−2,
with xk = 0 for k < 0. Moreover, we compute the spectrum, the point spectrum,
the residual spectrum and the continuous spectrum of the difference operator ∆2

i

over the basic sequence spaces c0 and `1.
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1 Introduction, Preliminaries and Definitions
Let ω be the space of all sequences of real or complex numbers. Any subspace

of ω is called a sequence space. By `∞, c, c0 and `1, we denote the spaces of all
bounded, convergent, null and absolutely summable sequences, respectively. Now,
we define a difference operator ∆2

i : c0(or `1)→ c0(or `1) by

(∆2
i )k =

2∑
i=0

(−1)i

i+ 1

(
2

i

)
xk−i = xk − xk−1 +

1

3
xk−2,
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with xk = 0 for k < 0, where x ∈ c0 or `1 and k ∈ N0 = {0, 1, 2, . . . }. It is natural
to express the operator ∆2

i as a lower triangular matrix (ank), where

ank =


1, (k = n),
−1, (k = n− 1),
1
3 , (k = n− 2),
0, otherwise.

for all n, k ∈ N0.

Equivalently, one may write

∆2
i = (ank) =


1 0 0 0 . . .
−1 1 0 0 . . .
1
3 −1 1 0 . . .
0 1

3 −1 1 . . .
...

...
...

...
. . .

 .

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
By R(T ), we denote the range of T , i.e.

R(T ) = {y ∈ Y : y = Tx ; x ∈ X}.

By B(X), we denote the space all bounded linear operators on X into itself.
If X is any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a bounded
linear operator on the dual X∗ of X defined by (T ∗φ)(x) = φ(Tx) for all φ ∈ X∗
and x ∈ X with ‖T‖ = ‖T ∗‖.

Let X 6= {0} be a normed linear space over the complex field and T : D(T )→
X be a linear operator, where D(T ) denotes the domain of T . With T , for a
complex number λ, we associate an operator Tλ = T − λI, where I is called the
identity operator on D(T ) and if Tλ has an inverse, we denote it by T−1λ i.e.

T−1λ = (T − λI)−1

and is called the resolvent operator of T . Many properties of Tλ and T−1λ depend
on λ and the spectral theory is concerned with those properties. We are interested
in the set of all λ’s in the complex plane such that T−1λ exists/ T−1λ is bounded/
domain of T−1λ is dense in X. For our investigation, we need some basic concepts
in spectral theory which are given as some definitions and lemmas.

Definition 1.1. ([1], pp. 371). Let X and T be defined as above. A regular value
of T is a complex number λ such that
(R1) T−1λ exists;
(R2) T−1λ is bounded;
(R3) T−1λ is defined on a set which is dense in X.

The resolvent set ρ(T,X) of T is the set of all regular values of T . Its com-
plement σ(T,X) = C \ ρ(T,X) in the complex plane C is called the spectrum of
T . Furthermore, the spectrum σ(T,X) is partitioned into three disjoint sets as
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follows:
(I)Point spectrum σp(T,X): It is the set of all λ ∈ C such that (R1) does not
hold. The elements of σp(T,X) are called eigenvalues of T .
(II)Continuous spectrum σc(T,X): It is the set of all λ ∈ C such that (R1)
holds and satisfies (R3) but does not satisfy (R2).
(III)Residual spectrum σr(T,X): It is the set of all λ ∈ C such that (R1) holds
but does not satisfy (R3). The condition (R2) may or may not hold.

Goldberg’s classification of operator Tλ :([2], pp. 58-71). Let X be a Banach
space and Tλ = (T −λI) ∈ B(X), where λ is a complex number. Again, let R(Tλ)
and T−1λ denote the range and inverse of the operator Tλ respectively. Then the
following possibilities may occur:
(A) R(Tλ) = X;
(B) R(Tλ) 6= R(Tλ) = X;
(C) R(Tλ) 6= X;
and
(1) Tλ is injective and T−1λ is continuous;
(2) Tλ is injective and T−1λ is discontinuous;
(3) Tλ is not injective.
Taking the permutations (A), (B), (C) and (1), (2), (3), we get nine different
states. These are labeled by A1, A2, A3, B1, B2, B3, C1, C2 and C3. If λ is a com-
plex number such that Tλ ∈ A1 or Tλ ∈ B1, then λ is in the resolvent set ρ(T,X)
of T on X. The other classifications give rise to the fine spectrum of T . We use
λ ∈ B2σ(T,X) means the operator Tλ ∈ B2, i.e. R(Tλ) 6= R(Tλ) = X and Tλ is
injective but T−1λ is discontinuous. Similarly others.

Lemma 1.2. ([2], pp. 59). A linear operator T has a dense range if and only if
the adjoint T ∗ is one to one.

Lemma 1.3. ([2], pp. 60). The adjoint operator T ∗ is onto if and and only if T
has a bounded inverse.

Let P,Q be two nonempty subsets of the space w of all real or complex se-
quences and A = (ank) be an infinite matrix of complex numbers ank, where
n, k ∈ N0. For every x = (xk) ∈ P and every positive integer n, we write

An(x) =

∞∑
k=1

ankxk.

The sequence Ax = (An(x)), if it exists, is called the transformation of x by the
matrix A. Infinite matrix A ∈ (P,Q) if and only if Ax ∈ Q whenever x ∈ P .

Lemma 1.4. ([3], pp. 129). The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(c0) from c0 to itself if and only if

(i) the rows of A are in `1 and their `1 norms are bounded,
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(ii) the columns of A are in c0 and

The operator norm of T is the supremum of `1 norms of the rows.

Lemma 1.5. ([3], pp. 126). The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(`1) from `1 to itself if and only if the supremum of `1 norms of
the columns of A is bounded.

In analysis the notion of eigenvalues of a matrix is generalized by the spectrum
of the operator corresponds to that matrix. Therefore, the study of spectrum
and fine spectrum of different operators carries a prominent position in different
branches of mathematics like summabilitry theory, schauder basis theory, matrix
theory and operator theory. In the existing literature, several authors have devoted
their knowledge in achieving new results and theorems concerning the spectrum
and the fine spectra of an operator over different sequence spaces. For instance;
Reade [4] studied the spectrum of the Cesàro operator over the sequence space
c0. The fine spectra of the Cesàro operator over the sequence spaces c0 and bvp
have been determined by Akhmedov and Başar [5, 6]. Akhmedov and Başar [7, 8]
have studied the fine spectrum of the difference operator ∆ over the sequence
spaces c0 and bvp where 1 < p <∞. Altay and Başar [9, 10] have determined the
fine spectrum of the difference operator ∆ over the sequence spaces c0, c and `p,
for 0 < p < 1. Srivastava and Kumar [11, 12] have examined the fine spectrum
of the generalized difference operator ∆ν over the sequence spaces c0 and `1.
Panigrahi and Srivastava [13] have studied the spectrum and fine spectrum of the
generalized second order difference operator ∆2

uv on c0 . Recently, the spectrum
of the generalized rth difference operator ∆r

ν and 2nd order difference operator ∆2

have been determined by Dutta and Baliarsingh [14,15] over `1 and c0, respectively
and also, for more investigations one may refer [16,17].

2 The Spectrum of the Operator ∆2
i over c0

In this section, we compute the spectrum, the point spectrum, the continuous
spectrum, the residual spectrum and the fine spectrum of the operator ∆2

i on the
sequence space c0.

Theorem 2.1. The operator ∆2
i : c0 → c0 is a linear operator and

‖ ∆2
i ‖(c0:c0)=

7

3
. (2.1)

Proof. Proof of this theorem follows from Lemma 1.4 and with the fact that

1 + | − 1|+ 1

3
=

7

3
.

Theorem 2.2. The spectrum of ∆2
i on the sequence space c0 is given by

σ(∆2
i , c0) =

{
λ ∈ C : |1− λ| ≤ 4

3

}
. (2.2)
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Proof. We divide the entire proof into two sections.
In the first part, we have to show that

σ(∆2
i , c0) ⊆

{
λ ∈ C : |1− λ| ≤ 4

3

}
.

Equivalently, we need to show that if λ ∈ C with |1 − λ| > 4
3 ⇒ λ /∈ σ(∆2

i , c0).
Suppose λ ∈ C with |1 − λ| > 4

3 . Now, (∆2
i − λI) is a triangle and hence has an

inverse (∆2
i − λI)−1 = (bnk) where

(bnk) =



1
(1−λ) 0 0 0 . . .

1
(1−λ)2

1
(1−λ) 0 0 . . .

b20
1

(1−λ)2
1

(1−λ) 0 . . .

b30 b31
1

(1−λ)2
1

(1−λ) . . .
...

...
...

...
. . .

 ,

where b20, b30, b31.... etc. are as follows:

b20 =
1

(1− λ)3
− 1

3(1− λ)2
, b31 =

1

(1− λ)3
− 1

3(1− λ)2
,

Similarly, b30 =
1

(1− λ)4
− 2

3(1− λ)3
.

In fact, for n ∈ N0 one can calculate

bnn =
1

1− λ
, bn,n−1 =

1

(1− λ)2
,

bn,n−2 =
1

(1− λ)3
− 1

3(1− λ)2
,

bn,n−3 =
1

(1− λ)4
− 2

3(1− λ)3
,

bn,n−4 =
1

(1− λ)5
− 1

(1− λ)4
− 1

9(1− λ)3
,

...
and so on.

By using Lemma 1.4, we need to show that (∆2
i − λI)−1 ∈ B(c0), i.e.,

(i) The series
∑∞
k=0 |bnk| is convergent for each n ∈ N0 and supn

∑∞
k=0 |bnk| <∞,

(ii) limn→∞ |bnk| = 0 for each k ∈ N0.

Therefore, first we prove that the series
∑∞
k=0 |bnk| is convergent for each n ∈ N0.
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Let

Sn =

∞∑
k=0

|bnk| = |bn,0|+ |bn,1|+ |bn,2|+ .....+ |bnn|

= |bnn|+ |bn,n−1|+ |bn,n−2|+ . . .

=
∣∣∣ 1

1− λ

∣∣∣+
∣∣∣ 1

(1− λ)2

∣∣∣+
∣∣∣ 1

(1− λ)3
− 1

3(1− λ)2

∣∣∣+
∣∣∣ 1

(1− λ)4
− 2

3(1− λ)3

∣∣∣
+
∣∣∣ 1

(1− λ)5
− 1

(1− λ)4
− 1

9(1− λ)3

∣∣∣+ . . .

Now,

lim
n→∞

Sn =
∣∣∣ 1

1− λ

∣∣∣+
∣∣∣ 1

(1− λ)2

∣∣∣+
∣∣∣ 1

(1− λ)3
− 1

3(1− λ)2

∣∣∣
+
∣∣∣ 1

(1− λ)4
− 2

3(1− λ)3

∣∣∣+ . . .

≤
∣∣∣ 1

1− λ

∣∣∣+
∣∣∣ 1

1− λ

∣∣∣2 +
∣∣∣ 1

1− λ

∣∣∣3 +
1

3

∣∣∣ 1

1− λ

∣∣∣2 +
∣∣∣ 1

1− λ

∣∣∣4 +
2

3

∣∣∣ 1

1− λ

∣∣∣3
+
∣∣∣ 1

1− λ

∣∣∣5 +
∣∣∣ 1

1− λ

∣∣∣4 +
1

9

∣∣∣ 1

1− λ

∣∣∣3 + . . .

=

∣∣∣∣ 1

1− λ

∣∣∣∣+

∑
i≥1

n2(i)

∣∣∣∣ 1

1− λ

∣∣∣∣2 +

∑
i≥1

n3(i)

∣∣∣∣ 1

1− λ

∣∣∣∣3

+

∑
i≥1

n4(i)

∣∣∣∣ 1

1− λ

∣∣∣∣4 + . . .

=

∣∣∣∣ 1

1− λ

∣∣∣∣+

(
1 +

1

3

) ∣∣∣∣ 1

1− λ

∣∣∣∣2 +

(
1 +

1

3
+

1

3
+

1

9

) ∣∣∣∣ 1

1− λ

∣∣∣∣3
+

(
1 +

1

3
+

1

3
+

1

3
+

1

9
+

1

9
+

1

9
+

1

27

) ∣∣∣∣ 1

1− λ

∣∣∣∣4 + . . .

=
1

|1− λ|

{
1 +

(
4

3

) ∣∣∣∣ 1

1− λ

∣∣∣∣+

(
16

9

) ∣∣∣∣ 1

1− λ

∣∣∣∣2 +

(
64

27

) ∣∣∣∣ 1

1− λ

∣∣∣∣3 + . . .

}

=
1

|1− λ|

{
1 +

∣∣∣∣ 4

3(1− λ)

∣∣∣∣+

∣∣∣∣ 4

3(1− λ)

∣∣∣∣2 +

∣∣∣∣ 4

3(1− λ)

∣∣∣∣3 + . . .

}

=
3

3|1− λ| − 4
<∞,

where nk(i) denote the coefficients of
∣∣∣ 1
1−λ

∣∣∣k for k ≥ 2. As per the assumption∣∣∣ 4
3(1−λ)

∣∣∣ < 1, thus limn Sn <∞. Now, (Sn) is a sequence of positive real numbers
and is convergent, this implies the boundedness of (Sn).



On a Spectral Subdivision of the Operator ∆2
i ... 37

Secondly, limn→∞ |bnk| = 0 for each k ∈ N0, this follows from the fact that∣∣∣ 1
(1−λ)

∣∣∣ < ∣∣∣ 4
3(1−λ)

∣∣∣ < 1. As a result, (∆2
i − λI)−1 ∈ B(c0) with |1− λ| > 4

3 .

Now, we can show that domain of the operator (∆2
i − λI)−1 is dense in c0

equivalently, the range of (∆2
i − λI) is dense in c0, which implies the operator

(∆2
i − λI)−1 is onto. Thus,

σ(∆2
i , c0) ⊆

{
λ ∈ C : |1− λ| ≤ 4

3

}
. (2.3)

Conversely, consider λ 6= 1 and |1 − λ| ≤ 4
3 , clearly (∆2

i − λI) is a triangle and
hence (∆2

i − λI)−1 exists, but the sequence (Sn) is unbounded.

⇒ (∆2
i − λI)−1 /∈ B(c0) with |1− λ| < 4

3
and |1− λ| = 4

3
.

Finally, we prove the result under the assumption λ = 1. If λ = 1, then we
have

(∆2
i − λI) =


0 0 0 0 . . .
−1 0 0 0 . . .
1
3 −1 0 0 . . .
0 1

3 −1 0 . . .
...

...
...

...
. . .

 ,

which is not invertible. Thus,{
λ ∈ C : |1− λ| ≤ 4

3

}
⊆ σ(∆2

i , c0). (2.4)

Combining (2.3) and (2.4), we conclude the proof.

Theorem 2.3. The point spectrum of the operator ∆2
i over c0 is given by

σp(∆
2
i , c0) = ∅.

Proof. Suppose x ∈ c0 and consider ∆2
ix = λx for x 6= θ in c0, which gives a

system of linear equations:

x0 = λx0
−x0 + x1 = λx1

1
3x0 − x1 + x2 = λx2
1
3x1 − x2 + x3 = λx3

........
1
3xk−2 − xk−1 + xk = λxk

........


(2.5)

On solving above system of equations, it is clear that

x1 =
x0

1− λ
, x2 =

(
1

(1− λ)2
− 1

3(1− λ)

)
x0, x3 =

(
1

(1− λ)3
− 2

3(1− λ)2

)
x0 . . .
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and so on
If x0 6= 0, then we obtain λ = 1 and hence x0 = 0, x1 = 0, x2 = 0 . . . which is a
contradiction.
If x0 = 0, then also xk = 0 for all k ≥ 1 which contradicts our assumption.

Again suppose xk is the first non zero entry of x = (xk) and from the above
system of equations we obtain λ = 1 and xk−1 6= 0, which is a contradiction. Thus
σp(∆

2
i , c0) = ∅.

Theorem 2.4. The point spectrum of the adjoint operator (∆2
i )
∗ of ∆2

i over c∗0 u
`1 is given by

σp((∆
2
i )
∗, `1) =

{
λ ∈ C : |1− λ|< 4

3

}
.

Proof. Suppose (∆2
i )
∗f = λf for 0 6= f ∈ `1, where

(∆2
i )
∗ =


1 −1 1

3 0 . . .
0 1 −1 1

3 . . .
0 0 1 −1 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 and f =


f0
f1
f2
...

 .

Consider the system of linear equations

f0 − f1 + 1
3f2 = λf0

f1 − f2 + 1
3f3 = λf1

f2 − f3 + 1
3f4 = λf2

........
fk − fk+1 + 1

3fk+2 = λfk
........


(2.6)

Therefore, we have

|fk| =
1

|1− λ|

∣∣∣∣(fk+1 −
1

3
fk+2

)∣∣∣∣
≤ 1

|1− λ|

[
|fk+1|+

∣∣∣∣13fk+2

∣∣∣∣].
It is clear that f = (fk), defined by fk = rk, with |r| < 1 is an eigenvector
corresponding to the eigenvalue λ satisfying |1 − λ| < 4

3 . It can also be shown
that |f0| ≥ |f1| ≥ |f2|... ≥ |fk|... i.e. |f0| ≥ |fk|, for all k ∈ N0, this implies that
supk |fk| <∞ and hence f ∈ `1.

Conversely, it is trivial to show that if supk |fk| <∞, then |1− λ| < 4
3 .

Theorem 2.5. The residual spectrum of the operator ∆2
i over c0 is given by

σr(∆
2
i , c0) =

{
λ ∈ C : |1− λ|< 4

3

}
.
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Proof. For |1− λ| < 4
3 , the operator ∆2

i − λI has an inverse. By Theorem 2.4 the
operator (∆2

i )
∗−λI is not one to one for λ ∈ C with |1−λ| < 4

3 . By using Lemma
1.2, we have R(∆2

i − λI) 6= c0. Hence,

σr(∆
2
i , c0) =

{
λ ∈ C : |1− λ|< 4

3

}
.

Theorem 2.6. The continuous spectrum of the operator ∆2
i over c0 is given by

σc(∆
2
i , c0) =

{
λ ∈ C : |1− λ| = 4

3

}
. (2.7)

Proof. The proof follows from Theorems 2.2, 2.3, 2.5 and the fact that

σ(∆2
i , c0) = σp(∆

2
i , c0) ∪ σr(∆2

i , c0) ∪ σc(∆2
i , c0).

3 The Spectrum of the Operator ∆2
i over `1

In this section, we determine the fine spectrum of the operator ∆2
i over the

sequence space `1. For our investigation, we need certain results which follow from
Lemma 1.5. The results that obtained for the sequence space `1 are very similar
to that of the sequence space c0. In order to avoid the similar statements as
discussed in previous sections, we omit some detail explanations and give certain
results without proofs.

Theorem 3.1. The operator ∆2
i : `1 → `1 is a linear operator and

‖ ∆2
i ‖(`1:`1)=

7

3
. (3.1)

Proof. The proof follows from Theorem 2.1 and Lemma 1.5.

Theorem 3.2. The spectrum of ∆2
i on the sequence space `1 is given by

σ(∆2
i , `1) =

{
λ ∈ C : |1− λ| ≤ 4

3

}
. (3.2)

Proof. In view of Theorem 2.2, the proof of this theorem is almost similar. By
using Lemma 1.5, only we need to show that the supremum of `1 norms of the
columns of (∆2

i − λI)−1 is bounded, i.e, for all n ∈ N0

sup
k

∞∑
n=0

|bnk| <∞.
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Therefore, first we prove that the series
∑∞
n=0 |bnk| is convergent for each k ∈ N0.

This is clear and this follows from the fact that for all k ∈ N0, we have

bkk =
1

1− λ
, bk,k−1 = bk+1,k =

1

(1− λ)2
,

bk,k−2 = bk+2,k =
1

(1− λ)3
− 1

3(1− λ)2
,

bk,k−3 = bk+3,k =
1

(1− λ)4
− 2

3(1− λ)3
,

bk,k−4 = bk+4,k =
1

(1− λ)5
− 1

(1− λ)4
− 1

9(1− λ)3
,

...

Now, using Lemma 1.5, we obtain

lim
k
Sk = lim

k

∞∑
n=0

|bnk| = lim
k

(|bkk|+ |bk+1,k|+ |bk+2,k|+ . . . )

= lim
n

(|bnn|+ |bn,n−1|+ |bn,n−2|+ . . . ) <
3

3|1− λ| − 4
<∞,

by Theorem 2.2. Therefore, (Sk) is sequence of real numbers and supk Sk is finite,
which implies that (Sk) is bounded.

Theorem 3.3. (i) σp(∆
2
i , `1) = ∅.

(ii) σr(∆
2
i , `1) =

{
λ ∈ C : |1− λ|< 4

3

}
.

(iii) σc(∆
2
i , `1) =

{
λ ∈ C : |1− λ|= 4

3

}
.
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