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Buchdahl-Like Transformations in
General Relativity

P. Boonserm and M. Visser

Abstract : Based on earlier work, we develop “algorithmic” techniques that per-
mit one (in a purely mechanical way) to generate large classes of general relativistic
static perfect fluid spheres. Working in Schwarzschild curvature coordinates, we
used these algorithmic ideas to prove several “solution-generating theorems” of
varying levels of complexity. In addition, we now consider the situation in other
coordinate systems: In particular, in isotropic coordinates we shall encounter a
variant of the so-called “Buchdahl transformation”, while in other coordinate sys-
tems we shall find a number of more complex “Buchdahl-like transformations” and
“solution-generating theorems” that may be used to investigate and classify the
general relativistic static perfect fluid sphere.
Keywords : Fluid spheres; Buchdahl-like transformations

1 Introduction

Understanding perfect fluid spheres in general relativity is an important
topic, recently deemed worthy of a full chapter in an updated edition of
the premier book summarizing and surveying “exact solutions” in general
relativity [1]. Physically, perfect fluid spheres are a first approximation to
realistic models for a general relativistic star. The study of perfect fluid
spheres is a long-standing topic with a venerable history [1, 2, 3, 4, 5, 6, 7],
and continuing interest [8, 9, 10, 11]. In particular, as derived in refer-
ences [12] and [13], and as further described in references [14, 15, 16], we
have developed several “algorithmic” techniques that permit one to gener-
ate large classes of perfect fluid spheres from first principles in a purely me-
chanical way. We now generalize these algorithmic ideas, originally derived
for Schwarzschild curvature coordinates, (and to a lesser extent isotoropic
coordinates), to a number of other coordinate systems [17]. This sometimes
leads to much simpler results, and sometimes more general results. In this
current article we shall:

1. Report a number of “transformation theorems” and “solution gener-
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ating theorems” that allow us to map perfect fluid spheres into perfect
fluid spheres.

2. Seek to understand how these various theorems and various coordi-
nate systems inter-relate to one another.

2 Strategy

We start the discussion by considering static spherically symmetric distri-
butions of matter, which implies (purely by symmetry), that in orthonormal
components the stress energy tensor takes the specific form

Tâb̂ =




ρ 0 0 0
0 pr 0 0
0 0 pt 0
0 0 0 pt


 . (2.1)

If the matter is a perfect fluid, then in addition we must have

pr = pt. (2.2)

Invoking the Einstein equations, this then implies a differential relation on
the spacetime geometry arising from equating the appropriate orthonormal
components of the Einstein tensor

Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. (2.3)

Equivalently, one could work with the appropriate orthonormal components
of the Ricci tensor

Rθ̂θ̂ = Rr̂r̂ = Rφ̂φ̂. (2.4)

In terms of the metric components, this now leads to an ordinary differential
equation [ODE], which constrains the spacetime geometry for any general
relativistic static perfect fluid sphere.

This equation constraining the spacetime geometry of static perfect
fluid spheres is now analyzed in several different coordinate systems: gen-
eral diagonal coordinates, Schwarzschild curvature coordinates, isotropic
coordinates, and lesser-known coordinate systems such as Buchdahl coor-
dinates.

To place the use of “unusual” coordinate systems in perspective, one
might observe that Finch and Skea [3] estimate that about 55% of all work
on fluid spheres is carried out in Schwarzschild curvature coordinates, that
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isotropic coordinates account for about 35% of related research, and that
the remaining 10% is spread over multiple specialized coordinate systems.
We take the viewpoint that the “unusual” coordinate systems are useful
only insofar as they enable us to obtain particularly simple analytic results,
and the central point of this article is to see just how much we can do in
this regard.

3 General diagonal coordinates

We begin by setting the notation. Choose coordinates to put the metric
into the form:

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ R(r)2dΩ2. (3.1)

A brief calculation yields [17]

Gr̂r̂ = −1−B(R′)2

R2
+

2Bζ ′R′

Rζ
, (3.2)

Gθ̂θ̂ = Gφ̂φ̂ =
1
2

2Bζ ′R′ + 2ζR′′B + ζB′R′ + 2Rζ ′′B + Rζ ′B′

Rζ
, (3.3)

and

Gt̂t̂ =
1−B(R′)2

R2
+

2BR′′ −B′R′

R
. (3.4)

3.1 ODEs

If this spacetime geometry is to be a perfect fluid sphere, then we must
have Gr̂r̂ = Gθ̂θ̂. This isotropy constraint supplies us with an ODE, which
we can write in the form:

[R(Rζ)′]B′ + 2[RR′′ζ + R2ζ ′′ −RR′ζ ′ − (R′)2ζ]B + 2ζ = 0. (3.5)

In this form the ODE is a first-order linear non-homogeneous ODE in B(r),
and hence explicitly solvable. (Though it must be admitted that the explicit
solution is sometimes rather messy.) The physical impact of this ODE
(3.5) is that it reduces the freedom to choose the three a priori arbitrary
functions in the general diagonal spacetime metric (3.1) to two arbitrary
functions, (and we still have some remaining coordinate freedom in the r–t
plane, which then allows us to specialize the ODE even further).
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The same ODE (3.5) can also be rearranged as:

[2R2B]ζ ′′ + [R2B′ − 2BRR′]ζ ′ + [2B(RR′′ − [R′]2) + RB′R′ + 2]ζ = 0.(3.6)

In this form the ODE is a second-order linear and homogeneous ODE in
ζ(r). While this ODE is not explicitly solvable in closed form, it is certainly
true that a lot is known about its generic behaviour.

We can also view the two equivalent ODEs (3.5) and (3.6) as an ODE
for R(r):

[2Bζ]RR′′ + [B′ζ − 2Bζ ′]RR′ − [2Bζ](R′)2 + [2Bζ ′′ + B′ζ ′]R2 + 2ζ = 0.(3.7)

Viewed in this manner it is a second-order nonlinear ODE of no discernible
special form — and this approach does not seem to lead to any useful
insights.

3.2 Solution generating theorems

Two rather general solution generating theorems can be derived for the
general diagonal line element [17].

Theorem 1 (General diagonal 1) Suppose we adopt general diagonal
coordinates and suppose that {ζ(r), B(r), R(r)} represents a perfect fluid
sphere. Define

∆(r) = λ

(
R(r)ζ(r)

(R(r)ζ(r))′

)2

exp
(

2
∫

ζ ′(r)
ζ(r)

· (R′(r)ζ(r)−R(r)ζ ′(r))
(R′(r)ζ(r) + R(r)ζ ′(r))

dr

)
.

(3.8)
Then for all λ, the geometry defined by holding ζ(r) fixed and setting

ds2 = −ζ(r)2 dt2 +
dr2

B(r) + ∆(r)
+ R(r)2dΩ2 (3.9)

is also a perfect fluid sphere. That is, the mapping

Tgen1(λ) : {ζ, B, R} 7→ {ζ,B + ∆, R} (3.10)

takes perfect fluid spheres into perfect fluid spheres.

Proof [Proof for Theorem 1] The proof is based on the techniques used
in [12, 14, 17]. No new principles are involved and we quickly sketch the
argument. Assume that {ζ(r), B(r), R(r)} is a solution for equation (3.5).
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Under what conditions does {ζ(r), B̃(r), R(r)} also satisfy equation (3.5)?
Without loss of generality, we write

B̃(r) = B(r) + ∆(r). (3.11)

Substitute B̃(r) in equation (3.5)

[R(Rζ)′](B + ∆)′ + 2[RR′′ζ + R2ζ ′′ −RR′ζ ′ − (R′)2ζ](B + ∆) + 2ζ = 0.(3.12)

Rearranging we see

[R(Rζ)′]B′ + 2[RR′′ζ + R2ζ ′′ −RR′ζ ′ − (R′)2ζ]B + 2ζ (3.13)
+[R(Rζ)′]∆′ + 2[RR′′ζ + R2ζ ′′ −RR′ζ ′ − (R′)2ζ]∆ = 0.

But we know that the first line in equation (3.13) is zero, because {R, ζ, B}
corresponds by hypothesis to a perfect fluid sphere. Therefore

[R(Rζ)′]∆′ + 2[RR′′ζ + R2ζ ′′ −RR′ζ ′ − (R′)2ζ]∆ = 0, (3.14)

which is an ordinary homogeneous first order differential equation in ∆. A
straightforward calculation, including an integration by parts, now leads to

∆ = λ

(
Rζ

(Rζ)′

)2

exp
(

2
∫

ζ ′

ζ
· (R′ζ −Rζ ′)
(R′ζ + Rζ ′)

dr

)
(3.15)

as required.

Theorem 2 (General diagonal 2) Suppose we adopt general diagonal
coordinates, and suppose that {ζ(r), B(r), R(r)} represents a perfect fluid
sphere. Define

Z(r) = σ + ε

∫
R(r)√

B(r) ζ(r)2
dr. (3.16)

Then for all σ and ε, the geometry defined by holding B(r) and R(r) fixed
and setting

ds2 = −ζ(r)2 Z(r)2 dt2 +
dr2

B(r)
+ R(r)2dΩ2 (3.17)

is also a perfect fluid sphere. That is, the mapping

Tgen2(σ, ε) : {ζ, B, R} 7→ {ζ Z(ζ, B,R), B, R} (3.18)

takes perfect fluid spheres into perfect fluid spheres.
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Proof The proof is based on the technique of “reduction in order” as used
in [12, 14, 17]. No new principles are involved and we quickly sketch the
argument. Assuming that {ζ(r), B(r), R(r)} solves equation (3.6), write

ζ(r) → ζ(r) Z(r) . (3.19)

and demand that {ζ(r) Z(r), B(r), R(r)} also solves equation (3.6). Then

[2R2 B] (ζ Z)′′+[R2 B′−2B R R′](ζ Z)′+[2B (R R′′−[R′]2)+R B′R′+2](ζ Z) = 0.
(3.20)

We expand the above equation to

[2R2 B](ζ ′′ Z + 2ζ ′ Z ′ + ζ Z ′′) + [R2 B′ − 2B R R′](ζ ′ Z + ζ Z ′)
+[2B (R R′′ − [R′]2) + R B′R′ + 2](ζ Z) = 0, (3.21)

and then re-group to obtain
{
[2R2 B] ζ ′′ + [R2 B′ − 2B R R′]ζ ′ + [2B (R R′′ − [R′]2) + R B′R′ + 2]ζ

}
Z

[2R2 B](2ζ ′ Z ′ + ζ Z ′′) + [R2 B′ − 2B R R′]ζ Z ′ = 0. (3.22)

This is a linear homogeneous 2nd order ODE for Z. But under the cur-
rent hypotheses the entire first line simplifies to zero — so the ODE now
simplifies to

[R2 B′ ζ + 4 R2 B ζ ′ − 2B R R′ ζ] Z ′ + (2R2 B ζ)Z ′′ = 0. (3.23)

This is a first-order linear ODE in the dependent quantity Z ′(r). Rearrange
the above equation into

Z ′′

Z ′
=

−[R2 B′ ζ + 4 R2 B ζ ′ − 2B R R′ ζ]
(2R2 B ζ).

(3.24)

Simplifying
Z ′′

Z ′
= −1

2
B′

B
− 2

ζ ′

ζ
+

R′

R
. (3.25)

Re-write Z ′′/Z ′ = d ln(Z ′)/dr, and integrate twice over both sides of equa-
tion (3.25), to obtain

Z(r) = σ + ε

∫
R√
B ζ2

dr, (3.26)

depending on the old solution {ζ, B, R}, and two arbitrary integration con-
stants σ and ε.
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4 Schwarzschild curvature coordinates

Schwarzchild curvature coordinates is the most popular coordinate system
used in the study of perfect fluid spheres, and this coordinate choice (cor-
responding to R(r) → r) accounts for approximately 55% of the research
reported on perfect fluid spheres [3]. The line element of a spherically
symmetric spacetime in Schwarzschild curvature coordinates is

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ r2dΩ2. (4.1)

To begin with, we calculate [17]

Gr̂r̂ =
2Bζ ′r − ζ + ζB

r2ζ
, (4.2)

Gθ̂θ̂ = Gφ̂φ̂ =
1
2

B′ζ + 2Bζ ′ + 2rζ ′′B + rζ ′B′

rζ
. (4.3)

and

Gt̂t̂ = −B′r − 1 + B

r2
. (4.4)

4.1 ODEs

Pressure isotrropy leads to the ODE

[r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ = 0. (4.5)

This is first-order linear non-homogeneous in B(r). Solving for B(r) in
terms of ζ(r) is the basis of the analysis in reference [9], and is also the
basis for Theorem 1 in reference [12]. (See also [14] and the reports in [15,
16]. After rephrasing in terms of the TOV equation this is also related to
Theorem P2 in reference [13]). If we re-group in terms of ζ(r) we find

2r2ζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ = 0, (4.6)

which is a linear homogeneous second-order ODE. This is the basis of The-
orem 2 in [12], and after being recast as a Riccati equation is also the basis
of Theorem P1 in reference [13].
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5 Isotropic coordinates

Isotropic coordinates are again commonly used coordinates when investi-
gating perfect fluid spheres. The spacetime metric for an arbitrary static
spherically symmetric spacetime in isotropic coordinates is conveniently
given by

ds2 = −ζ(r)2 dt2 +
1

ζ(r)2 B(r)2
{dr2 + r2dΩ2}. (5.1)

We calculate [17]

Gr̂r̂ = −2BB′ ζ2/r + (B′)2ζ2 − ζ ′2B2, (5.2)

Gθ̂θ̂ = Gφ̂φ̂ = −BB′ζ2/r + (B′)2 ζ2 −BB′′ζ2 + B2ζ ′2, (5.3)

and

Gt̂t̂ = 2B2ζζ ′′+4B2ζζ ′/r−3B2ζ ′2−2BB′ζζ ′+2BB′′ζ2−3B′2ζ2+4BB′ζ2/r.
(5.4)

5.1 ODEs

The pressure isotropy condition leads to the very simple looking ODE [10]:

(
ζ ′

ζ

)2

=
B′′ −B′/r

2B
. (5.5)

There are several ways of improving this. For instance, if we write ζ(r) =
exp(

∫
g(r)dr) then we have an algebraic equation for g(r) [10]:

g(r) = ±
√

B′′ −B′/r

2B
. (5.6)

Conversely, the isotropy condition can be written in terms of B(r) as:

B′′ −B′/r − 2g2B = 0. (5.7)

There is also an improvement obtained by writing B(r) = exp(2
∫

h(r)dr)
so that

g(r)2 = 2h(r)2 + h′(r)− h(r)/r (5.8)

which is the basis of the analysis in [10].
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5.2 Solution generating theorems

Let us now report two transformation theorems appropriate to isotropic
coordinates [17].

Theorem 3 (Isotropic 1 — Buchdahl transformation) In Isotropic co-
ordinates, if {ζ(r), B(r)} describes a perfect fluid then so does {ζ(r)−1, B(r)}.
This is the well-known Buchdahl transformation in disguise. That is, if

ds2 = −ζ(r)2 dt2 +
1

ζ(r)2 B(r)2
{dr2 + r2dΩ2} (5.9)

represents a perfect fluid sphere, then the geometry defined by

ds2 → − 1
ζ(r)2

dt2 +
ζ(r)2

B(r)2
{dr2 + r2dΩ2} (5.10)

is also a perfect fluid sphere. Alternatively, the mapping

TIso 1 : {ζ,B} 7→ {
ζ−1, B

}
(5.11)

takes perfect fluid spheres into perfect fluid spheres, and furthermore is a
“square root of unity” in the sense that:

TIso 1 ◦ TIso 1 = I. (5.12)

Proof By inspection. Vide equation (5.5).

Theorem 4 (Isotropic 2) Let {ζ(r), B(r)} describe a perfect fluid sphere.
Define

Z =
{

σ + ε

∫
rdr

B(r)2

}
. (5.13)

Then for all σ and ε, the geometry defined by holding ζ(r) fixed and setting

ds2 = −ζ(r)2 dt2 +
1

ζ(r)2 B(r)2 Z(r)2
{dr2 + r2dΩ2} (5.14)

is also a perfect fluid sphere. That is, the mapping

TIso 2(σ, ε) : {ζ, B} 7→ {ζ,B Z(B)} (5.15)

takes perfect fluid spheres into perfect fluid spheres.
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Proof The proof is based on the technique of “reduction in order”, and
is a simple variant on the discussion in [12]. (See also [17].) Assuming that
{ζ(r), B(r)} solves equation (5.7), write

B(r) → B(r) Z(r) . (5.16)

and demand that {ζ(r), B(r)Z(r)} also solves equations (5.5) and (5.7).
We find

(B Z)′′ − (B Z)′/r − 2g2(B Z) = 0. (5.17)

Re-grouping
{
B′′ −B′/r − 2g2B

}
Z + (2B′ −B/r)Z ′ + BZ ′′ = 0. (5.18)

This is a linear homogeneous second-order ODE for Z which now simplifies
[in view of (5.7)] to

(2B′ −B/r)Z ′ + BZ ′′ = 0 , (5.19)

which is an ordinary homogeneous second-order differential equation, de-
pending only on Z ′ and Z ′′. (So it can be viewed as a first-order homoge-
neous order differential equation in Z ′, which is solvable.) Separating the
unknown variable to one side,

Z ′′

Z ′
= −2

B′

B
+

1
r

. (5.20)

Re-write Z ′′/Z ′ = d ln(Z ′)/dr, and integrate twice over both sides of equa-
tion (5.20), to obtain

Z(r) =
{

σ + ε

∫
r dr

B(r)2

}
. (5.21)

depending on the old solution {ζ(r), B(r)}, and two arbitrary integration
constants σ and ε.

Theorem 5 (Isotropic 3) The transformations TIso 1 and TIso 2 commute.

Proof By inspection.
Note that the fact that these two transformation theorems commute is

specific to isotropic coordinates. Such behaviour certainly does not occur
in Schwarzschild coordinates or in general diagonal coordinates.
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6 Buchdahl coordinates

Without loss of generality we can put the metric in “Buchdahl coordinates”
and choose the coefficients to be

ds2 = −ζ(r)2 dt2 + ζ(r)−2
{
dr2 + R(r)2dΩ2

}
. (6.1)

This coordinate system is a sort of cross between Synge isothermal (tor-
toise) coordinates and Gaussian polar (proper radius) coordinates. We
calculate [17]

Gr̂r̂ = −(ζ ′)2 − ζ2 [1− (R′)2]
R2

, (6.2)

Gθ̂θ̂ = +(ζ ′)2 +
ζ2 R′′

R
, (6.3)

and

Gt̂t̂ = −3(ζ ′)2 + 2ζζ ′′ − 2ζ(ζR′′ − 2R′ζ ′)
R

+
ζ2 [1− (R′)2]

R2
. (6.4)

Imposing pressure isotropy supplies us with a first-order homogeneous ODE
for ζ(r): (

ζ ′

ζ

)2

= − [1− (R′)2 + RR′′]
2R2

. (6.5)

This is very similar to the equation we obtained in isotropic coordinates.
(Rearranging this into an ODE for R(r) yields a second-order nonlinear
differential equation which does not seem to be particularly useful.)

Theorem 6 (Buchdahl) If {ζ(r), R(r)} describes a perfect fluid then so
does {ζ(r)−1, R(r)}. This is the Buchdahl transformation in yet another
disguise. The geometry defined by holding R(r) fixed and setting

ds2 = −ζ(r)−2 dt2 + ζ(r)2
{
dr2 + R(r)2dΩ2

}
(6.6)

is also a perfect fluid sphere. That is, the mapping

TBuchdahl : {ζ, R} 7→ {
ζ−1, R

}
(6.7)

takes perfect fluid spheres into perfect fluid spheres.

Proof By inspection. (Note strong similarities to the discussion for
isotropic coordinates.)
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7 Generalized Buchdahl ansatz

We now return to general diagonal coordinates and, based on our insight
from dealing with isotropic coordinates and Buchdahl coordinates, make
a specific ansatz for the functional form of the metric components [17].
Without loss of generality we choose the metric coefficients to be

ds2 = −ζ(r)2 dt2 + ζ(r)−2

{
dr2

E(r)
+ R(r)2dΩ2

}
. (7.1)

We calculate [17]

Gr̂r̂ = −E(ζ ′)2 − ζ2 [1−E (R′)2]
R2

, (7.2)

Gθ̂θ̂ = +E(ζ ′)2 +
ζ2 [2ER′′ + E′R′]

2R
, (7.3)

and

Gt̂t̂ = −3E(ζ ′)2+2Eζζ ′′+ζE′ζ ′−2Eζ(ζR′′ − 2R′ζ ′)
R

+
ζ2 [1− E(R′)2]

R2
−ζ2E′R′

R
.

(7.4)
Imposing pressure isotropy supplies us with a first-order homogeneous ODE
for ζ(r): (

ζ ′

ζ

)2

= − [2− 2E(R′)2 + 2ERR′′ + RE′R′]
4ER2

. (7.5)

This is very similar to the equation we obtained in isotropic coordinates
and Buchdahl coordinates, but now in general diagonal coordinates — the
key point is that we have carefully chosen the functional form of the metric
components. Rearranging this into an ODE for E(r) yields a first-order
linear differential equation

[ζ2RR′]E′ + [4R2(ζ ′)2 + 2Rζ2R′′ − 2ζ2(R′)2]E + 2ζ2 = 0. (7.6)

(In contrast, rearranging this into an ODE for R(r) yields a second-order
nonlinear differential equation which does not seem to be particularly use-
ful.)

Theorem 7 (Generalized Buchdahl) If {ζ(r), E(r), R(r)} describes a
perfect fluid then so does {ζ(r)−1, E(r), R(r)}. This is the Buchdahl trans-
formation in yet another disguise. The geometry defined by holding E(r)
and R(r) fixed and transforming

ds2 = −ζ(r)2 dt2 + ζ(r)−2

{
dr2

E(r)
+ R(r)2dΩ2

}
. (7.7)
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into

ds2 = −ζ(r)−2 dt2 + ζ(r)2
{

dr2

E(r)
+ R(r)2dΩ2

}
. (7.8)

is also a perfect fluid sphere. That is, the mapping

TGeneralized Buchdahl : {ζ, E, R} 7→ {
ζ−1, E, R

}
(7.9)

takes perfect fluid spheres into perfect fluid spheres.

Proof By inspection. (Note very strong similarities to the discussion for
isotropic coordinates and Buchdahl coordinates.)

In addition, we could use the fact that the isotropy condition, when
viewed as a differential equation in E(r), is first-order linear to develop
yet another variant on the theorem General diagonal 1. As no new
significant insight is gained we suppress the details.

8 Discussion

In this article, we have reported several new transformation theorems that
map perfect fluid spheres to perfect fluid spheres using both “usual” and
“unusual” coordinate systems — such as Schwarzschild (curvature), isotropic,
and Buchdahl coordinates. In each case we developed at least one such
transformation theorem, while in several cases we have been able to de-
velop multiple transformation theorems. We have also investigated regu-
larity conditions at the centre of the fluid sphere in all these coordinate
systems.

In summary, we have now extended the algorithmic technique origi-
nally introduced in [10] to many other coordinate systems and many other
functional forms for the metric.
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