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Abstract : The smooth kink regression model is introduced in this study. The model
provides more flexibility in investigating the nonlinear effect of independent variable on
dependent variable. The logistic function is considered as a regime weighting function
for separating our two-regime model. In the estimation point of view, we employ the
Bayesian empirical likelihood (BEL) as it gives a flexible way of combining data with
prior information from our knowledge and the empirical likelihood in order to avoid the
misspecification of the likelihood function. The performance and accuracy of the estima-
tion from our proposed model is examined by the simulation study and real data.

Keywords : smooth kink model; logistic function; Bayesian empirical likelihood estima-
tion.
2010 Mathematics Subject Classification : 35K05; 91G20.

1 Introduction
In many applications, the causal effect studies are well described by a kink regression

model [1],[2],[3]. This model is a piecewise linear regression segment, where coefficients
suddenly switch from one stage to another stage at the kink point. In other words, there are
two or more regimes of the casual effect. However, this sudden change is in fact difficult
to exist in the real data analysis as the behavior of data is rather characterized by gradual
change. Therefore, we modify a sudden-switch kink regression model with unknown
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threshold to a smooth-switch kink regression model. This model is called smooth kink
regression throughout this paper.

This paper aims at estimating the parameters of this model and it can be achieved
by various estimation techniques such as Ordinary least squares (OLS) and Maximum
Likelihood (ML) estimators. However, these classical frequentist methods are often faced
with the poor estimation such as biased and inconsistent results under the nonlinear model
context. This is because the nonlinear model needs a large sample data in order to split
the data into two or more regimes.

Nevertheless, the large sample size is not always obtainable in various fields of re-
search. In particular, the studies involving primary data research with real people will
have small data due to high cost of conducting in-person interviews. Not only the limita-
tion in the primary data studies, the studies involving secondary data, which is a research
data that has previously been gathered by government public services departments, li-
braries, internet searches and censuses, also face with the small sample size of the data
as some data are difficult to collect, for example population of the country, household
debts, and other macroeconomic variables. Collecting these data is a time-consuming
process, thus, the limited data problem will lead to ill-posed problem which arises when
the amount of sample information is insufficient for model estimation. In other words,
the model contains more parameters than can be justified by the data [4],[5]. When the
data is small, it sometime reduces the performance and efficiency of model estimation. In
addition, Stein [6] showed that it is inadmissible when the number of coefficients in the
model is large. It is widely understood, the larger sample size of data can bring the higher
probability of finding a significant result [7]. Button et al. [8] suggested that when the
sample is limited, it is often hard to get meaningful results. Therefore, the conventional
estimations are difficult to reach the optimal solution.

To deal with this data limitation, the Bayesian estimation is considered as a common
and reasonable estimator for small data. This estimation does not require a large sample,
as a prior distribution can be incorporated in the model estimation. A smaller data size
model can be estimated without losing any power while retaining precision [9]. Lee and
Song [10] found that Bayesian estimation requires only 1:3 ratio of parameters to obser-
vations. Therefore, it is reasonable here to employ a Bayesian approach for constructing
density distributions based on limited information.

Another concern is that ML and Bayesian estimations are not suitable for estimating
the parameters when the data is not normally distributed. In the case of ML estimation,
Li, Wong, Lamoureux, and Wong suggested that if the assumption of normal distribu-
tion does not hold, it will bring a problem to the confidence interval and standard error
of the estimated parameter, and thereby leading to a wrong significant result. It some-
times produces a biased estimation or even misleading results when the true distribution
of errors may not be normal and may exist with heavy-tailed or skewed nature [11]. In
the Bayesian case, we know that the important step is the simulation from the posterior
distribution using Markov Chain Monte Carlo (MCMC) sampler. However, it is very sen-
sitive to the likelihood, and we need to evaluate the likelihood density, which is difficult,
in order to use MCMC. Due to the complexity of the estimation and model, the likelihood
is generally assumed to have normal likelihood or other parametric likelihood density.
Therefore, there are required to develop a more robust likelihood to make statistical in-
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ference. To this end, throughout the study, the empirical likelihood is considered as it can
relax the strong assumption of normality and get around the limited data problem. Basi-
cally, the empirical likelihood consists of the objective function and constraint function
where the objective function has entropy discrete distribution whilst model equations and
observed information are treated as the constraint function. In short, its a non-parametric
likelihood, which is fundamental for the likelihood-based statistical methodology.

As we mentioned above, there are two issues in this study. First, the smooth kink re-
gression is introduced as a new non-linear econometric model. Second, we concern about
the limitation of the data and unknown likelihood distribution in the real data study, there-
fore, this study uses empirical likelihood to approximate the likelihood in the Bayesian
computation. This estimation is called Bayesian empirical likelihood (BEL). Recently,
BEL method has been discussed by Schennach [12], Fang and Mukerjee [13], Chang
and Mukerjee [14]. The BEL inference has been applied to various time series models.
For examples, Yang and He [15], Zhang and Tang [11] considered BEL estimation in
Quantile model; Chib, Shin and Simoni [16] developed a BEL approach for linear regres-
sion model. Recently, Yamaka, Pastpipatkul, Sriboonchitta [17] extended this estimation
to estimate nonlinear Kink regression model. However, to our knowledge, there is
no work done on the BEL inference on smooth kink regression model yet. So, we de-
velop a BEL inference on our proposed model. Moreover, a Markov Chain Monte Carlo
(MCMC) method is also presented to make Bayesian inference on parameters using the
Metropolis-Hastings algorithm.

The paper is organized as follows. Section 2 presents the smooth kink regression
while Section 3 details the Bayesian empirical likelihood estimation algorithm and the
testing threshold effects in smooth kink regression model is explained. Simulation study
and results are provided in Section 4. The application study is presented in Section 5 and
we conclude with a summary in Section 6.

2 Smooth Kink Regression Model
In this study, two regime Kink regression model is considered, and it relies on.

Yt = β1
−x1t(1−F(γ1,s1))−+β1

+x1tF(γ1,s1)++, ...,

+βK
−xKt(1−F(γK ,sK))−+βK

+xKtF(γK ,sK)++αZt + εt
(2.1)

where t = 1, ...,T . Yt is [T ×1] sequence of response variable at time t, xkt is a matrix of
(T ×K) predictor variables at time t. Zt is the regime independent exogenous variables.
The relationship between Yt and xkt is non-linear while there is a linear relationship be-
tween Yt and Zt . Therefore, the relationship of xkt with Yt changes at the unknown location
threshold or kink point γk, thus β has a matrix of (K×2) unknown coefficient parameters.
In other words, the kink regression function of this model is continuous in the variables
xkt and Zt , but the slope with respect to xkt is discontinuous at the kink point. The param-
eters (β1

+, ...,βK
+) and (β1

−, ...,βK
−) are the coefficients with respect to xktF(γk,sk)+

and with respect to xkt(1−F(γk,sk))− respectively. In other words, the predictor vari-
ables can be separated into two regimes according to unknown threshold parameter of
threshold or kink point γk and smoothed parameter sk. Note that F(γk,sk) is a continuous
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and smooth transition function, which is bounded between [0,1]. In this study, we define
this transition function as a logistic function.

F(γk,sk) =
1

1+ e−sk(γk−xkt )
, (2.2)

where the transition variable can be given as xkt . As we consider the empirical likelihood,
the assumption of the error term εt is relaxed from the normal or any other distributions,
and this study only assumes E(εt) = 0.

3 Bayesian Empirical Likelihood

3.1 Constructing Empirical Likelihood
Since the distribution of errors εt in Eq.(2.1) is unspecified, the likelihood function

is unavailable. Therefore, it is necessary to find an appropriate likelihood. In this study,
adopted is the empirical likelihood (EL) of Owen [18] as an alternative parametric likeli-
hood in our Bayesian estimation. This section of the study will briefly discuss the concept
of empirical likelihood, and its relationship with estimating functions.

Let p1, ..., pT be the set of probability weights allocated to the data and
θ ∈

{
β1
−, ...,βK

−,β1
+, ...,βK

+,α,γ1, ...,γK ,s1, ...,sK
}

. It carries a lot of information
about the stochastic properties of the data. Then, let x−kt = xkt(1−F(γk,sk))− and x+kt =
xktF(γk,sk)+, the empirical likelihood for estimated parameter in Eq.(2.1) , in the spirit of
Owen [19], is

EL(θ) = max
T

∏
t=1

pt . (3.1)

By taking logarithm Eq.(3.1), we have

EL(θ) = max
T

∑
t=1

log pt , (3.2)

where the maximization is subject to the constraints.

T

∑
t=1

pt
∂m(X−it ,X

+
it ;θ)

∂θ
(yt −m(X−it ,X

+
it ;θ)) = 0, (3.3)

T

∑
t=1

pt = 1, (3.4)

where, m(X−it ,X
+
it ;θ) = β1

−x−kt +β1
+x+kt+, ...,+βK

−x−Kt +βK
+x+Kt +αZt .

Sometime the high dimensionality of the parameter space (θ , p1, ..., pT ) makes the
above maximization problem difficult to solve and leads to expressions which are hard
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to maximize. Instead of maximizing EL(θ) with respect to the parameters (θ , p1, ..., pT )
jointly, we use a profile likelihood.

The empirical likelihood, Eq.(3.2), is a crucial constrained profile likelihood where
the constraints are defined in Eqs.(3.3) and (3.4), respectively. Then, we can maximize
the empirical likelihood at each candidate parameter value θ to obtain the optimal pt .
Suppose, we know θ , then the study can write the empirical likelihood as

EL(θ , p1, ..., pT ) = EL(p1, ..., pT ). (3.5)

We then maximize this profile empirical likelihood to obtain (p1, ..., pT ). By conduct-
ing the Lagrange multipliers, the study can maximize the empirical likelihood in Eq.(3.2)
subject to the constraints in Eqs.(3.3) and (3.4) as

L(p,λ0,λ1) = ∑
T
t=1 log(pt)+λ0(∑

T
t=1 pt −1)+λ ′1

∑
T
t=1 pt

∂m(X−it ,X
+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ)),

(3.6)

where λ ∈ R is the Lagrange multipliers. It is a straightforward exercise to show that the
first order conditions for Ł with respect to pt , and setting the derivative to zero, the study
can find that λ0 =−T , and by defining λ =−T λ1, the study obtains the optimal pt as

pt =
1
T

(
1+λ

′ ∂m(X−it ,X
+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ))

)−1

(3.7)

Then, substituting the optimal pt into the empirical likelihood in Eq.(3.5) the study
obtains

EL(θ) = max
T

∏
t=1

1
T

(
1+λ

′ ∂m(X−it ,X
+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ))

)−1

. (3.8)

By taking logarithm, the study gets

logEL(θ) =
T

∑
t=1

log(1+λ
′ ∂m(X−it ,X

+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ))−T log(T ). (3.9)

Computing the profile empirical likelihood at θ involves two step estimations. Firstly,
it is important to solve a nonlinear optimization to obtain pt ,λ , and EL(θi) which depends
on θi. Second step, the profile empirical likelihood is then maximized with respect to
candidate θi. Then, the study proposes another candidate θi to repeat the first step again.
After EL(θi) is computed for all candidates θi, the maximum value of EL(θ̃i) is preferred.
The maximization problem can now be represented as the problem of minimizing Q(λ )

Q(λ ) =−
T

∑
t=1

log(1+λ
′ ∂m(X−it ,X

+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ)). (3.10)

Subject to 0≤ pt ≤ 1, that is

1+λ
′ ∂m(X−it ,X

+
it ;θ)

∂θ
(Yt −m(X−it ,X

+
it ;θ))≥ 1/T (3.11)



222 Thai J. Math. (Special Issue, 2019)/ W. Yamaka and P. Maneejuk

To compute θ , one uses a nested optimization algorithm where the outer maximiza-
tion loop with respect to θ encloses the inner minimization loop with respect to λ . Some
comments on the inner loop and the outer loop are in order. In the application study, the
number of all possible θi can be so large that it becomes infeasible and insensible to eval-
uate them all. Thus, we can employ a standard least square estimator to get the estimated
θLS and specify the sensible range of candidate θi = [−2θLS,2θLS].

3.2 Bayesian Empirical Likelihood for Smooth Kink Regression
The posterior distribution consists of the estimation of empirical likelihood function

and the prior distribution. It is derived using Bayes rule. Let (Ω,A,P) be a probability
space. Let An,n ≥ 1, be a countable, measurable partition of Ω, and B ∈ A be an event
with P(B)> 0.

Then, for any n≥ 1,

P(An |B ) =
P(B |An)P(An)

∞

∑
j=1

P(B
∣∣A j)P(A j)

(3.12)

Indeed, we have

P(An |B ) =
P(An∩B)

P(B)
=

P(B |An) P(An))

P(B)
. (3.13)

And writing

B = B∩Ω = B∩ (∪∞
j=1A j) =U∞

j=1(B∩A j). (3.14)

The study has

P(B) =
∞

∑
j=1

P(B∩A j) =
∞

∑
j=1

P(B
∣∣A j)P(A j) (3.15)

Consider the discrete case, let X ,Y be discrete random variables. Then

P(X = x |Y = y) =
P(Y = y |X = x)P(X = x)

∑x′ P(Y = y |X = x′ )P(X = x′)
, (3.16)

is the conditional density of X given Y . Here, P(X = x) denotes prior density of X , while
P(Y = y) denotes empirical likelihood density. Thus, P(X = x |Y = y)is the posterior
density and the study can rewrite Eq.(3.16) as

P(θ |Y,X ) ∝ EL(θ) ·π(θ), (3.17)

where π(θ)denotes a prior density of each estimated parameter.
To estimate the posterior distribution in Kink regression models, Yang and He [15]

suggested that the value of the empirical likelihood is relatively easy to compute given
θ which makes the MetropolisHastings algorithm of Hastings [20] feasible for sampling
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from the posterior. However, it remains for this study to derive the conditional poste-
rior distribution for unknown parameter θ . If we select a proper prior, the posterior in
Eq.(3.17) is also proper. In this case, it is necessary to first find a working likelihood, and
then a BEL approach is developed to make inference on Kink regression.

For any proposed θ , its profile empirical likelihood ratio is given by

R(θ) = argmax

{
T

∏
t=1

(T pt)

∣∣∣∣∣ T

∑
t=1

pt(Yt −m(X−it ,X
+
it ;θ)) = 0, pt ≥ 0,

T

∑
t=1

pt = 1

}
.

(3.18)

By a standard Lagrange multiplier, the study obtains optimal

pt =
1
T

(
1+λn(θ)

′(Yt −m(X−it ,X
+
it ;θ))

)−1
. (3.19)

Again, substituting the optimal pt into the empirical likelihood ratio in Eq.(3.18) we
obtain

R(θ) = max
T

∏
t=1

1
T

(
1+λn(θ)

′(Yt −m(X−it ,X
+
it ;θ))

)−1
, (3.20)

where λn(θ) satisfies the following equation:

T

∑
t=1

(Yt −m(X−it ,X
+
it ;θ))

1+λ (θ)′(Yt −m(X−it ,X
+
it ;θ))

= 0. (3.21)

Thus, the empirical likelihood function of θ is given by EL(θ) = logR(θ)/T T . The
study can consider this EL(θ) as the likelihood in the posterior density in Eq.(3.17). Note
that to compute θ , one uses a mixed algorithm where the outer MCMC loop with respect
to θ encloses the other inner optimization loop with respect to λ .

This BEL computation is inspired by Yang and He [15]. They suggested that the
value of the empirical likelihood ratio R(θ) is easy to estimate at given θ and so is the
Metropolis-Hastings algorithm for sampler the parameter in the posterior. In this study,
we choose the priors as follows.

We take θ = {β−,β+} to be normally distributed with mean θ0 and variance 0.01, γk
and sk are assumed to have uniform distribution. Hence, the conditional posteriors of Θ,
γk, and sk can be computed as in the following:

1)The conditional posterior distribution for Θ is

θ
∗ =

(
X ′X

(ε ′ε/n)2 +0.01

)−1

×

(
X ′X

(ε ′ε/n)2 θ̃ +0.01(θ0)

)
, (3.22)

where θ̃ = (X ′X)−1X ′Y . And X =
{

X−it ,X
+
it

}
.

2) The conditional posterior distribution for γk can be written as

P(γk |Θ,Y,X ) = ∑
1

EL(θ |Y,X ) ·π(θ), (3.23)
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3) The conditional posterior distribution for sk can be written as

P(sk |θ ,Y,X ) = ∑
1

EL(θ |Y,X ) ·π(θ), (3.24)

To sample all of these parameters based on conditional posterior distribution, the
study employs the Markov chain Monte Carlo, Metropolis-Hastings algorithm for obtain-
ing the sequence of parameter samples from fully conditional distributions. The study
runs the Metropolis-Hastings algorithm for 20,000 iterations where the first 5,000 itera-
tions serve as a burn-in period. For Metropolis-Hastings algorithm, the study applies it to
find Kink value γk where the acceptance ratio is

r =
EL(θ ∗ |Y,X)π(θi−1 |θ ∗ )

EL(θi−1 |Y,X) π(θ ∗ |θi−1)
(3.25)

Then, we set

θ j =

{
θ j−1 i f U < r

θ ∗j i f U > r
, (3.26)

where θ j−1 is the estimated vector of parameter at ( j−1)th draw and θ ∗j is proposal
vector of parameters which are generated from normal distribution N(θ j−1,0.01). U is
Uniform(0,1). This means that if the proposal θ ∗j looks good, keep it; otherwise, keep
the current value θ j−1. By using a MetropolisHastings algorithm, the study estimates the
parameters using the average of the Markov chain on θ as an estimate of θ , when the
posterior density is likely to be close to normal and the trace of θ j looks stationary.

3.3 Bayes Factor for a Kink Effect
Since the nonlinear structure model has been employed in this study, the Bayes fac-

tor, which is a reliable testing procedure in model comparison and Kink effect test in
the Bayesian approach, is developed here. The purpose of this Bayes factor is to check
whether a Kink parameter does significantly exist or not. It can be used to assess the
models of interest namely linear and Kink regression, so that the best fit model will be
identified given a data set and a possible model set. In other words, Bayes factor is a
useful tool for selecting a possible model [21]. Bayes factor is used for the ratio of the
posterior under one model to another model. In this study, we consider the linear model
to be a null model denoted by M1 and the smooth kink model to be an alternative model
denoted by M2. More specifically, Bayes factor BF is given by

BF =
P(Y,X |M1)

P(Y,X−it ,X
+
it |M2)

=

∫
EL(Y,X |θ1)π(θ1 |M1)dθ1∫

EL(Y,X−it ,X
+
it |θ2)π(θ2 |M2)dθ2

(3.27)

where P(Y,X |M1) and P(Y,X−it ,X
+
it |M2) are the posterior density of the null model and

alternative model, respectively. θ1 and θ2 are the vector of parameters of M1 and M2,
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respectively. For choosing the appropriate model, the study follows the idea of Kass and
Raftery [22]. If log(BF) < 2,2 < log(BF) < 6,6 < log(BF) < 10, and log(BF) > 10,
there is a chance that the log(BF) favors the M2 with weak support evidence M1, strong
evidence M1 and decisive evidence for M1, respectively.

4 Simulation Study: A Comparison of Some Estimation
Techniques

Next, we turn our attention to investigating the performance of BEL estimator and
testing whether BEL is robust. We conduct experiment with errors drawn from different
distributions. Errors are generated from either normal or non-normal distributions. In this
experiment, we also compare the BEL estimator to the traditional MLE, Bayesian with
normal likelihood (BAY) and Maximum Empirical likelihood (MEL). In the simulation,
the following equation is used to generate the dataset Yt .

Yt = β0 +β1
−x1t(1−F(γ1,s1))−+β1

+x1t(F(γ1,s1)++ εt , (4.1)

where the true values for parameters α , β1
−, and β1

+ are β0 = 0.5, β1
− = 1, and β1

+ =
−1, respectively. The threshold value is γ1 = 3 and smooth parameter value is s1 =
20. The covariate x1t is independently generated from the standard normal distribution
N(γ1,1) to guarantee that γ1 is located in x1t . To make a fair comparison, the study
considers the following random errors εt : (i) N(0,1), (ii) t(0,1,4) and (iii) Uni f (−2,2).
In this Monte simulation study N = 50 and N = 100. Then, the performance of these
estimators are evaluated through the Bias which is given as

Bias =

∣∣∣∣∣M−1
M

∑
m=1

(θ̃m−θm)

∣∣∣∣∣ , (4.2)

where M = 100 is the number of replications; and θ̃m and θm are , respectively, the es-
timated parameters and their true parameter values. The simulation results are shown in
Tables 1, 2 and 3, respectively.

In Tables 1, 2 and 3, we report bias of parameters under 4 different estimations with
sample sizes N=50 and N=100. Each Table is arranged in 12 rows and 5 columns cor-
responding to the Bias of parameters and estimations, respectively. The traditional MLE
and BAY outperform MEL and BEL estimators for both sample sizes when the error term
is assumed to have normal distribution. As we know that the MLE and BAY are based on
the normal likelihood, thus, it is not surprising that these two estimators perform better
than the estimation based on empirical distribution.
Next, we investigate the performance of the BEL estimator when the errors are generated
from some non-normal distributions, namelyt(0,1,4) and U(−2,2). The estimation re-
sults for the t(0,1,4)case are reported in Table 2. The overall result is different from the
normal error case. MLE and BAY estimators do not have a lower Bias than BEL esti-
mator. We observe the higher Bias of MLE and BAY estimators for both sample sizes.
Similar to the student-t distribution case, we also observe the higher performance of MEL
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and BEL estimators when the errors are generated from uniform distribution. According
to these comparisons, we find that BEL and MEL yield a similar bias result. However,
when we examine the effect of sample size on these two estimators, the performance of
BEL estimator seems to be better than MEL, particularly when N=50.

Table 1: Smooth transition kink regression with N(0,1) errors

MEL BEL MLE BAY
N = 50 Bias Bias Bias Bias

α 0.1444 0.1112 0.041 0.0436
β1
− 0.0484 0.0403 0.0307 0.0379

β1
+ 0.0916 0.0873 0.0012 0.0329

γ1 0.7727 0.6208 0.1261 0.0252
s1 0.1698 0.1341 0.0515 0.0352

N = 100 Bias Bias Bias Bias
α 0.0232 0.0225 0.0116 0.0182

β1
− 0.0234 0.0129 0.0015 0.0068

β1
+ 0.0421 0.0446 0.0116 0.003

γ1 0.0516 0.0742 0.0259 0.0232
s1 0.0648 0.0648 0.0491 0.0078

Table 2: Smooth transition kink regression with t(0,1,4) errors

MEL BEL MLE BAY
N = 50 Bias Bias Bias Bias

α 0.0359 0.0199 0.1045 0.3402
β1
− 0.0178 0.0101 0.0133 0.0278

β1
+ 0.0026 0.0033 0.0039 0.0236

γ1 0.024 0.0262 0.2067 0.1911
s1 0.0103 0.0398 0.2051 0.1842

N = 100 Bias Bias Bias Bias
α 0.0275 0.1536 0.0507 0.0266

β1
− 0.0193 0.0643 0.0046 0.0182

β1
+ 0.0187 0.0013 0.0019 0.0107

γ1 0.0287 0.0171 0.0604 0.0326
s1 0.0301 0.0161 0.0139 0.0469
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This simulation results allow us to conclude that the performance of BEL and MEL
are better than the conventional MLE and BAY when the data are generated from normal
distribution. However, the performance of the BEL estimator in the model performs well
over a wide range of error distributions as it produces an acceptable Bias values compared
with MLE, BAY, and MEL when the errors are generated from both normal and non-
normal distributions. In addition, BEL is found to outperform the competing estimators
with small sample size under various error distributions.

Table 3: Smooth transition kink regression with Uni f (−2,2) errors

MEL BEL MLE BAY
N = 50 Bias Bias Bias Bias

α 0.0178 0.0117 0.0318 0.0402
β1
− 0.0167 0.0119 0.068 0.0233

β1
+ 0.0138 0.0258 0.0371 0.0165

γ1 0.0282 0.015 0.0396 0.0466
s1 0.1692 0.0488 0.0807 0.0953

N = 100 Bias Bias Bias Bias
α 0.0714 0.0119 0.0136 0.041

β1
− 0.0193 0.0166 0.0044 0.0234

β1
+ 0.0331 0.0017 0.0089 0.0133

γ1 0.0024 0.0012 0.0075 0.05
s1 0.0490. 0.0084 0.0033 0.0127

5 Example Data

This section illustrates the performance of the proposed smooth kink regression and
BEL estimation when applied to a real data set. The considered data lasts 39 years of
consumer price index (CPI) and unemployment rate (UNE). We collect the data from
1979 to 2017. We first plot the raw data in Figure 1. These plots motivate our empirical
study, as there exhibits the structural change along the sample period. The movement
of CPI seems to have descending trend before 2000 before changing to be the ascending
trend. Likewise, the movement of UNE series is low along 1980-1990, and then it had
substantially increased and reached the highest value in 2000. We then suspect that there
may involve a regime change in this dataset. The data description is provided in Table 4.
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5.1 Data Analysis
In the application study, the number of all possible θi can be so large that it becomes

infeasible and insensible to evaluate them all. Thus, here we can employ a standard least
squares estimator to get the estimated θLS and specify the sensible range of candidate
θi = [−2θLS,2θLS] . This study investigates the basic question whether the CPI had an
effect on the UNE. Motivated by this, we fit our model for answering this basic question,
which is given as follows:

UNEt = β0 +β1
−CPIt(1−F(γ1,s1))−+β1

+CPI1t(F(γ1,s1)++ εt . (5.1)

Table 4: Data Description

UNE CPI
Mean 3.544445 1.07085

Median 3.341667 0.595587
Maximum 5.541667 7.778582
Minimum 2.016667 -1.35284
Std. Dev. 1.158324 1.804973
Skewness 0.270713 1.590211
Kurtosis 1.67552 6.248693

Observations 39 39
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Figure 1: Annual CPI and UNE of Japan, 1979-2017
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Prior to estimating the smooth kink regression model, we need to confirm the nonlin-
ear behavior in our model. In this study, therefore, nonlinear structure test is conducted
for our data. Bayes factor test is used to determine whether our model appears to have a
nonlinear behavior. Using the Bayes factor formula, the result shown in Table 5 provides
the values of Bayes factor of these two models in which we can observe that the value of
log(BF) is equal to -0.3287. This result means the smooth kink model M2 is more anec-
dotally supported by the data under consideration than the modelM1, and hence, the data
is more likely to have the nonlinear structure. This result suggests rejecting the null hy-
pothesis of linear regression M1 and accepting the alternative hypothesis of smooth kink
regression.

Table 5: Bayes factor of Kink effect

P(Y,X |M1) P(Y,X |M2) BF log(BF) Interpret
Regime 1 vs. Regime 2 121.5668 168.8735 0.7198 -0.3287 Support M2

5.2 Result

Table 6: Coefficients (standard errors) from Kink regression

Parameter Japan

α
4.2428

(-0.0845)

β1
−(regime 1)

-0.1845
(-0.3581)

β1
+(regime 2)

-0.3064
(-0.0473)

γ1
1.3156

(-0.7345)

s1
0.723

(-0.1317)
Acceptance rate 0.7031

The smooth kink regression model is then estimated by BEL estimator, and the es-
timated results are shown in Table 6. In this study, we can interpret regime 1 and 2 as
low and high CPI regime, respectively. Although, CPI is found to have a negative rela-
tionship with UNE, the effects of CPI on UNE are not the same. We observe that CPI
shows negative coefficient (-0.1845) in regime 1 and (-0.3064) in regime 2. Consider the
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Kink or threshold point (γ1), the value of γ1 = 1.3156. Figure 2 depicts the histograms
based on the MCMC Metropolis hasting draws, which gives some basic insight into the
geometry of the posteriors obtained in this application analysis. The results show a good
convergence behavior and it seems to converge to the normal distribution; thus, we can get
accurate posterior inference for parameters that appear to have good mixing. In addition,
the estimation of all 15,000 parameters in posterior draws do not contain zero, indicating
that there is strong evidence of the significant parameter estimates.
Figure 3 plots the smooth kink line of our model. The result illustrates a steep negative
curve for CPI with a kink point around 1.3156, changing to a low negative slope above
that point.
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6 Conclusion
In this study, we proposed a new nonlinear model called smooth kink regression. We

consider the Bayesian empirical likelihood as the estimator of our model. This approach
can relax a strong assumption of normality and the limited data. Although the idea of
BEL approach is not new, this study provides an important addition to the literature by
employing this approach for smooth kink regression model.

The study then conducts a simulation study to show the performance and accuracy of
BEL estimation for our model. The results of the simulation study confirm that BEL esti-
mator can give an accurate result for all unknown parameters. The overall result reveals
that our BEL estimator applied to our model performs well over a wide range of error
distributions. The BEL estimator produces acceptable Bias values compared with MLE,
Bayesian and MEL when the errors are generated from both normal and non-normal dis-
tributions. In addition, BEL can outperform the competing methods with small data under
various error distributions and small sample size.

Finally, the empirical results demonstrate that the consumer price index provides a
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negative effect on unemployment rate for high and low CPI regimes, respectively. Al-
though, the effects of consumer price index on unemployment rate are the same for both
regimes, but the size of the effect of regime 1 is larger than regime 2, confirming the
usefulness of our proposed model under the structural change of the relationship between
predictor and dependent variable.
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