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Abstract : Investigation was made on the performance of the high-order Gener-
alized Maximum Entropy (GME) estimators, namely Rényi and Tsallis GME, in
the nonlinear kink regression context with an aim to replace the Shannon entropy
measure. Used for performance comparison was the Monte Carlo Simulation to
generate the sample size n = 20 and n = 50 with various error distributions. Then,
the obtained model was applied to the real data. The results demonstrate that
the high-order GME estimators are not much different from the Shannon GME
estimator and are not completely superior to the Shannon GME in the simula-
tion study. Nevertheless, according to the MAE criteria, Rényi and Tsallis GME
perform better than the Shannon GME. Thus, it can be concluded that high-
order GME estimator can be used as alternative tool in the nonlinear econometric
framework.

Keywords : Shannon; Rényi; Tsallis; generalized maximum entropy; Kink re-
gression.

1 Introduction

The concept of entropy was originally proposed by Shannon [1] under the in-
formation theory. Over the last several decades, entropy theory has played a major
role in different areas where it has been successfully exploited and the related lit-
erature has grown dramatically. In this study, we focus on the econometric area,
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particularly the model estimation. After that, Janyes [2] developed the Shan-
non entropy measure and proposed a maximum entropy to uncover the unknown
probability distribution of undetermined problems. Later, there have been several
researchers who developed the entropy measure such as Rényi [3] measure which
is the generalization of Shannon entropy and Tsallis [4] measure which is obtained
through the joint generalization of the averaging procedures and the concept of
information gain([5]).

Then, Golan et al. [6] generalized the maximum entropy of Jaynes [2] and
introduced a generalized maximum entropy (GME) based on Shannons entropy-
information measure to recover the unknown probability distribution of the regres-
sion model problem and for solving linear inverse problems. So, their suggested
that Golan et al. [6] have considered applications of GME when the model is
ill-conditioned and have linear inverse problems and suggested that GME is a fea-
sible alternative method of estimation. The estimated parameters of the model are
reparametrized as the expected values of discrete probability distribution defined
on bounded supports. The computation of the GME is straightforward as the
objective entropy measure is maximized subject to the constraints imposed by the
model structure, data and other additive constraints. With its several advantages
for the data limitation and unknown distribution of the error, GME has been
widely used in various fields, political science, communications and information,
engineering, physics, finance, and economics. (see [7] , [5], and [8])

Later, the study of Golan and Perloff [9] proposed higher-order entropy, namely
Rnyi and Tsallis measures, as the new objective function of the GME estimator.
They found that these two high-order entropy perform better than the Shannon’s
entropy, as these two estimations showed the lower mean squared error when com-
pared to the Shannon’s entropy for some values of order α , where α = {1, 2, ...}.

In the previous literature, we found that GME are widely employed in the
linear regression. Regression analysis can be considered one of the most widely
used data analysis techniques in engineering, social sciences, biology, data mining,
pattern recognition, etc. Generally speaking, this model is used to investigate the
effect of the set of independent variables on the dependent variable. Nevertheless,
the application of GME in non-linear model is limited. There are a few works such
as Zheng and Gohin [10] which proposes a generalized maximum entropy (GME)
approach to estimate nonlinear dynamic stochastic decision models. They found
that the GME approach provides a similar accuracy level but much higher com-
putational effciency for nonlinear models and shows favorable properties for small
sample size data. Futhermore, the work of Sriboonchitta et al. [11] that applied
the GME to estimate the unknown parameter in the nonlinear kink regression
model [12]. We note that the regression function of this model is continuous, but
the slope changes suddently at a kink point (threshold).

Inspired by the work of Golan and Perloff [9] that showed the high-order GME
in linear model could outperform the conventional GME in terms of lower mean
squared error, we in this paper apply the high order GME in the kink regression
by replacing Shannon entropy measure with Rényi entropy and Tsallis entropy.
Each of these entropy measures are indexed by a single parameter.
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In this study, the kink regression model and GME are presented in Section
2. Section 3 provides an experiment study of GME kink regression. Section 4
presents an application study for our model by using the real data of the United
States and Thailand. Finally, conclusion is provided in Section 5.

2 Methodology

2.1 Kink Regression Model

Our two regimes Kink regression model takes the form

Yt = β−1 (x1,t − γ1) + β+
1 (x1,t − γ1)+, . . . ,

+ β−K(xK,t − γK) + β+
K(xK,t − γK) + β0Zt + εt

(2.1)

where Yt is [T × 1] continuous dependent variable at time t, xk,t is a matrix
of (T × K) continuous independent variables at time t, and Zt is the regime
independent exogenous variable. The linear relationship appears among Yt and
Zt, while the relationship between Yt and xk,t is non-linear as their relationship
changes at the unknown location called threshold or kink point γK . However,
the kink regression function model is continuous in the variables xk,t and Zt, but
the slope with respect to xk,t is discontinuous at the threshold or kink point γK .
Then, β is a matrix of (T ×K×2) coefficients of unknown parameters and consist
of (β1

−, ..., βK
−) and (β1

+, ..., βK
+) with respect to variable x′k,t for value of

x′k,t ≤ γk, respectively and the coefficients with respect to variable x′k,t for value
of x′k,t > γk. According to Hansen [12], the regressor variables are subject to
regime-change at kink point (γ1, ..., γK) thus these regressors can be separated into
two regimes. Furthermore, the assumption of the error term εt is the distribution
can be not normal E(εt) = 0.

2.2 Generalized Maximum Entropy Estimator

For a random vector x with K discrete values xk, each with a probability
pk = P (xk) and p = {p1, . . . , pk} where pk is a proper probability mass function,
the Shannon measure is

H (x) = −
∑
k

pk log pk, (2.2)

where 0 log 0 = 0 and
∑
k

pk = 1. The two families of information measure are

indexed by an order α. The Renyi measure is

HR
α (x) =

1

1− α
log
∑
k

pαk , (2.3)

and the Tsallis measure is

HT
α (x) = c

∑
kp
α
k − 1

1− α
, (2.4)
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where the value of c is a positive constant and depends on the particular units used.
For simplicity, we set c = 1. (see [9]). Both Renyi and Tsallis measures become
the Shannon measure as a special case when α→ 1. Rather than searching for the
point estimates (β−1 ), ·, β−k and (β+

1 ), ·, β+
k ,we can view these unknown parameters

as expectations of random variables with M support value for (k), Z = [z1, ·, zK ]
where zk = [zk1, ·, zkm] for all k = 1, ·,K. Note that zk1 and zkm denote the lower
and upper bound. In this study, we apply these three measures as the objective
function in the GME estimator to estimate the parameters β−k and β+

k which can
be reparametrized as

β−k =
∑
m

p−kmz
+
km, xk,t ≤ γk

β+
k =

∑
m

p−kmz
+
km, xk,t > γk

(2.5)

where p−km and p+km are M dimensional estimated probability distributions defined
on the set of support z−km and z+km. For the threshold or kink point, it can be
computed by

γk =
∑
m

hkmqkm, (2.6)

where qkm is a vector of qk = [q
k1
, ..., q̄km], while q

k1
and q̄km are lower and upper

bound of supports. Likewise, the error term εt is also computed by

εt =
∑
m

wtmvtm (2.7)

εt is also constructed as the mean value of random variable v where vt = [vt1, ...., vtM ]
is the support value and wt is an M dimensional proper probability weight defined
on the set vt. From the reparametrized unknown variables β−k ,β+

k , γk, and εt, we
can rewrite Eq(2.1) as

Yt =
∑
m

p−1mz
−
1m

(
x1,t ≤

∑
m

h1mq1m

)
−

+
∑
m

p+1mq
+
1m

(
x1,t >

∑
m

h1mq1m

)
+

+, . . . ,+
∑
m

p−Kmz
−
Km

(
x1,t ≤

∑
m

hKmqKm

)
−

+
∑
m

p+Kmq
+
Km

(
x1,t >

∑
m

hKmqKm

)
+

+
∑
m

wtmvtm

(2.8)
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Note that: For simplicity, we consider kink regression without Zt variable. Then,
we can construct our GME model as in the followings

H (p, h, w) = arg max {H (p) +H (h) +H (w)} ≡ −
∑
k

∑
m

p−km log p−km

−
∑
k

∑
m

p+km log p+km −
∑
k

∑
m

hkm log hkm −
∑
t

∑
m

wtm logwtm
(2.9)

H (p, h, w) = arg max {H (p) +H (h) +H (w)} ≡ 1

1− α
log
∑
k

∑
m

pα,−km

+
1

1− α
log
∑
k

∑
m

pα,+km +
1

1− α
log
∑
k

∑
m

hαkm +
1

1− α
∑
k

∑
m

wαtm

(2.10)

H (p, h, w) = arg max {H (p) +H (h) +H (w)}

≡ 1

1− α

(∑
k

∑
m

pα,−k − 1

)
+

1

1− α

(∑
k

∑
m

pα,+k − 1

)

+
1

1− α

(∑
k

∑
m

hαkm − 1

)
+

1

1− α

(∑
t

∑
m

wαtm − 1

)
.

(2.11)

These objective functions are subject to the following constraints

Yt =
∑
m

p−1mz
−
1m(x1,t −

∑
m

h1mq1m)

−

+
∑
m

p+1mz
+
1m(x1,t −

∑
m

h1mq1m)

+

+, ...,+
∑
m

p−imz
−
im(xi,t −

∑
m

himqim)

−

+
∑
m

p+imz
+
im(xi,t −

∑
m

himqim)

+

+
∑
m

wtmvtm

(2.12)

∑
m

p−km = 1,
∑
m

p+km = 1,
∑
m

hkm = 1,
∑
m

wtm = 1 (2.13)

where p, h, and w are the probability on the interval [0,1]. If we consider one
regressor (k = 1), this optimization problem can be solved by

L = H (p, h, w) + λ1 (θ) + λ2

(
1−

∑
m

p−km

)

+ λ3

(
1−

∑
m

p+km

)
+ λ4

(
1−

∑
m

hkm

)

+ λ5

(
1−

∑
m

wtm

) (2.14)
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where λi , i = 1, ..., 5 are the vectors of Lagrange multipliers for the data constraint
as well as the additive constraint on the unknown probabilities and weights for
the parameter and error, respectively. Summing up the objective entropy function
subject to the kink regression in problem in Eq. 2.12 and additional restrictions in
Eq. 2.13, we can solve by the Lagrangian method and then the first-order condition

to get the optimal unique solution
_

p
−
1m,

_

p
+

1m,
_

h1m and
_

wtm. Thus, the solution of
the Shannon GME, Renyi GME, and Tsallis GME model are the following:

1. Shannon GME

_

p
−
1m =

exp(−z−1m
∑
t

_

λ1t(x
′
1,t −

∑
m
h1mq1m)

−
)∑

m
exp(−z−1m

∑
t

_

λ1t(x′1,t −
∑
m
h1mq1m)

−
)
, (2.15)

_

p
+

1m =

exp(−z+1m
∑
t

_

λ1t(x
′
1,t −

∑
m
h1mq1m)

+

)∑
m

exp(−z+1m
∑
t

_

λ1t(x′1,t −
∑
m
h1mq1m)

+

)
, (2.16)

_

wtm =
exp(−

_

λ1tv1m)∑
m

exp(−
_

λ1tv1m)
, (2.17)

_

h1m =

exp

−

∑
t

_

λ1tp
−
1mz

−
1m(x′1,t −

∑
m

q1m)

−

−
∑
t

_

λ1tp
+
1mz

+
1m(x′1,t −

∑
m

q1m)

+




∑
m

exp

−

∑
t

_

λ1tp
−
1mz

−
1m(x′1,t −

∑
m

q1m)

−

−
∑
t

_

λ1tp
+
1mz

+
1m(x′1,t −

∑
m

q1m)

+




(2.18)

2. Renyi GME

_

p
−
1m =


(

1− α
α

) exp(−z−1m
∑
t

_

λ1t(x
′
1,t −

∑
m
h1mq1m)

−
)∑

m
exp(−z−1m

∑
t

_

λ1t(x′1,t −
∑
m
h1mq1m)

−
)


1/(α−1)

, (2.19)

_

p
+

1m =


(

1− α
α

) exp(−z+1m
∑
t

_

λ1t(x
′
1,t −

∑
m
h1mq1m)

+

)∑
m

exp(−z+1m
∑
t

_

λ1t(x′1,t −
∑
m
h1mq1m)

+

)


1/(α−1)

, (2.20)
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_

wtm =


(

1− α
α

)
exp(−

_

λ1tv1m)∑
m

exp(−
_

λ1tv1m)


1/(α−1)

, (2.21)

_

h1m =



(
1− α
α

) exp

−

∑
t

_

λ1tp
−
1mz

−
1m(x′1,t −

∑
m

q1m)

−

−
∑
t

_

λ1tp
+
1mz

+
1m(x′1,t −

∑
m

q1m)

+




∑
m

exp

−

∑
t

_

λ1tp
−
1mz

−
1m(x′1,t −

∑
m

q1m)

−

−
∑
t

_

λ1tp
+
1mz

+
1m(x′1,t −

∑
m

q1m)

+






1/(1−α)

(2.22)

3. Tsallis GME

_

p
−
1m =

{(
1− α
α

)[∑
m

_

λ1mz
−
1m(x′1,t −

∑
m

h1mq1m)

−

+ λ2k

]}1/(α−1)

(2.23)

_

p
+

1m =

{(
1− α
α

)[∑
m

_

λ1mz
+
1m(x′1,t −

∑
m

h1mq1m)

+

+ λ3k

]}1/(α−1)

(2.24)

_

w1m =

{(
1− α
α

)[∑
m

_

λ1mv1m + λ5t

]}1/(α−1)

(2.25)

_

h1m =


(

1− α
α

)
∑
m

λ1mp
−
1mz

−
1m(x′1,t −

∑
m

q1m)

−

−
∑
m

λ1mp
+
1mz

+
1m(x′1,t −

∑
m

q1m)

+

− λ4k




1/(α−1)

.

(2.26)

In addition,by taking the second derivative of the Lagrangian with respect

to
_

p
−
1m,

_

p
+

1m,
_

h1m and
_

wtm.The hessian matrix for the GME linear regression
problem must be negative definite, and this ensures that the entropy maximization
problem can reach a unique global solution. Finally, these obtained probabilities
are then used to compute the parameter estimates in the kink regression model,
threshold parameter and error term as provided respectively in Eq.2.15 - Eq.2.26.
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3 Experiment Study

In this section, we use a Monte Carlo simulation to examine the finite sample
performance of alpha-order GME, as known as high-order GME. Then, the per-
formance of two high-order GMEs are compared with Shannon GME in terms of
the Bias and Mean Squared Error (MSE) of parameters. To this end, we consider
the following model

Yt = β0 + β−1 (x1,t − γ1)− + β+
1 (x1,t − γ1)+ + εt (3.1)

In the data simulation, we firstly simulate a random sample (x) from normal
distribution with mean equal to one and variance equal to one. The true values for
coefficient parameters β0, β−,β+, and γ are set to be 1, 2, -1, and 3 respectively.
However, to make a fair comparison, we generated the error term from normal
and non-normal distributions which consist of N(0, 1), t(0, 1, 4), and Unif(−2, 2).
Then, we generated a new sample during each Monte Carlo iteration by using the
true values of coefficient parameters as specified above with the sample size 25
and 50 observations. Moreover, we determine the number of support points equal
to 3 and we also specify the parameter support to be symmetric about the true
parameters. The three support points consist ofz = [−5, 0, 5] as the support of
intercept term, v = [−3, 0, 3] as the support of error term, and h = [−10, 0, 10] as
the support of threshold. Finally, the performance of various model is evaluated
in terms of Bias and MSE for each parameter which are given by

Bias = R−1
R∑
r=1

(
φ̃r − φr

)
,

and

MSE = R−1
R∑
r=1

(
φ̃r − φr

)2
.

where φ̃r and φr are the estimated value and true value, respectively. R is the
number of replications.

According to Tables 1-6, we found that Shannon GME seems to outperform
the high α-order GME (both Renyi and Tsallis) in terms of lower MSE and Bias,
especially, β− and β+ provide a strong accuracy when compared with Renyi and
Tsallis GMEs. We can see that whether the sample size is n = 20 or n = 40,
the bias and MSE are not much different, which suggests that the performance of
GME seems to be affected little when a sample size is increased. The Bias and
MSE are not much different with the normal and non-normal error distributions.
In terms of threshold, Shannon GME estimator seems to be better in capturing
threshold, except Tsallis GME estimator when the number of observations is 50
and error distribution is uniform. Then, when the high- αorder GME estimator
are higher, the Bias and MSE seem to be higher in almost all cases.
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Table 1: Experiment result of Kink regressions 25 observations with N(0, 1)
errors

GME
Mean Square Error (MSE) Bias

β0 β− β+ γ β0 β− β+ γ

Shannon 0.8842 0.0152 0.0455 1.3169 0.6223 0.0772 0.1287 0.6480

Renyi

α = 2 1.0700 0.0457 0.0437 2.8457 0.8793 0.1447 0.1798 1.3984

α = 3 0.9454 0.0616 0.0595 3.4481 0.8292 0.2348 0.2166 1.7204

α = 4 0.8434 0.0818 0.0526 3.4346 0.7931 0.2388 0.1905 1.6082

α = 5 0.9740 0.0758 0.0506 3.3555 0.8534 0.2013 0.2033 1.6293

Tsallis

α = 2 1.0055 0.0436 0.0514 2.3027 0.7579 0.1376 0.1770 1.1174

α = 3 0.9680 0.0906 0.0573 3.3604 0.8900 0.2186 0.2237 1.6432

α = 4 1.4248 0.0669 0.0626 3.7045 1.0148 0.2058 0.2339 1.8147

α = 5 1.5283 0.1064 0.0600 3.2126 1.1166 0.2597 0.2121 1.5149

Table 2: Experiment result of Kink regressions 25 observations with
t(0, 1, 4) errors

GME
Mean Square Error (MSE) Bias
β0 β− β+ γ β0 β− β+ γ

Shannon 0.3254 0.0231 0.0266 1.5047 0.3311 0.0970 0.1051 0.7250

Renyi

α = 2 0.4080 0.0505 0.0272 2.2311 0.5018 0.1784 0.1293 1.1890

α = 3 0.8248 0.0484 0.0442 2.9423 0.7463 0.1962 0.1916 1.6092

α = 4 0.7648 0.0451 0.0383 2.4944 0.8052 0.1713 0.1773 1.3557

α = 5 0.8030 0.0588 0.0517 2.9639 0.8138 0.1942 0.2121 1.5892

Tsallis

α = 2 0.5555 0.0428 0.0284 1.9820 0.4859 0.1402 0.1115 0.9116

α = 3 0.8329 0.0545 0.0376 2.3977 0.7863 0.1661 0.1795 1.3107

α = 4 0.9599 0.0325 0.0450 2.3312 0.8402 0.1262 0.1857 1.2163

α = 5 0.8306 0.0415 0.0559 2.8382 0.7386 0.1767 0.2121 1.6004
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Table 3: Experiment result of Kink regressions 25 observations with
Unif(−2, 2) errors

GME
Mean Square Error (MSE) Bias
β0 β− β+ γ β0 β− β+ γ

Shannon 0.4234 0.0095 0.0092 0.3328 0.3985 0.069 0.0525 0.3865

Renyi

α = 2 0.366 0.0369 0.0298 1.2198 0.457 0.1246 0.1312 0.9411

α = 3 0.7108 0.0558 0.0477 2.2841 0.7108 0.1676 0.1988 1.4458

α = 4 0.4894 0.0476 0.0274 1.477 0.5976 0.1548 0.1409 1.0884

α = 5 0.6679 0.0658 0.0253 1.4995 0.6779 0.2044 0.1305 1.0906

Tsallis

α = 2 1.0299 0.0437 0.0255 1.0335 0.7811 0.1487 0.1212 0.7405

α = 3 0.6054 0.0485 0.0251 1.32 0.5837 0.1437 0.1169 0.9197

α = 4 1.1335 0.045 0.0401 1.2801 0.8421 0.1168 0.161 0.9347

α = 5 2.0212 0.0616 0.0499 1.6711 1.2508 0.173 0.1977 1.1395

Table 4: Experiment result of Kink regressions 50 observations with N(0, 1)
errors

GME
Mean Square Error (MSE) Bias
β0 β− β+ γ β0 β− β+ γ

Shannon 0.0464 0.0136 0.0035 0.6246 0.1349 0.0504 0.0325 0.3857

Renyi

α = 2 0.9444 0.0224 0.0425 2.2115 0.8332 0.1030 0.1760 1.2244

α = 3 0.6038 0.0407 0.0373 2.4301 0.7017 0.1710 0.1670 1.4405

α = 4 0.6640 0.0348 0.0351 2.1293 0.7189 0.1517 0.1693 1.3122

α = 5 0.8635 0.0388 0.0378 2.4502 0.7941 0.1604 0.1709 1.3425

Tsallis

α = 2 0.4750 0.0216 0.0261 1.5307 0.4495 0.0917 0.1117 0.8353

α = 3 1.0947 0.0295 0.0369 2.1336 0.9115 0.1335 0.1803 1.3904

α = 4 1.1288 0.0186 0.0421 2.1534 0.9751 0.0976 0.1874 1.4133

α = 5 1.1736 0.0238 0.0434 2.5972 1.0141 0.1324 0.1910 1.4837
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Table 5: Experiment result of Kink regressions 50 observations with
t(0, 1, 4) errors

GME
Mean Square Error (MSE) Bias
β0 β− β+ γ β0 β− β+ γ

Shannon 0.7198 0.0091 0.0332 1.3994 0.5435 0.0610 0.1051 0.6946

Renyi

α = 2 1.4313 0.0333 0.0543 2.3292 1.0227 0.1447 0.2040 1.2723

α = 3 0.9469 0.0250 0.0574 2.4758 0.8308 0.1141 0.2100 1.3536

α = 4 1.2527 0.0364 0.0622 3.0052 0.9834 0.1466 0.2074 1.5506

α = 5 0.9933 0.0380 0.0504 2.9124 0.9191 0.1655 0.2082 1.6543

Tsallis

α = 2 0.6048 0.0317 0.0397 1.4375 0.5243 0.1354 0.1303 0.8350

α = 3 1.1429 0.0327 0.0547 2.5068 0.9475 0.1493 0.1935 1.3588

α = 4 1.1399 0.0447 0.0449 2.9902 0.9843 0.1800 0.1940 1.5935

α = 5 1.4863 0.0445 0.0618 3.1913 1.1516 0.1665 0.2276 1.7271

Table 6: Experiment result of Kink regressions 50 observations with
Unif(−2, 2) errors

GME
Mean Square Error (MSE) Bias
β0 β− β+ γ β0 β− β+ γ

Shannon 0.5330 0.0391 0.0559 0.9139 0.5348 0.1036 0.1641 0.6575

Renyi

α = 2 0.3884 0.0039 0.0181 0.5000 0.5592 0.0507 0.1148 0.5692

α = 3 0.4382 0.0140 0.0352 0.7110 0.4926 0.0846 0.1450 0.7710

α = 4 0.4528 0.0034 0.0396 0.9204 0.6105 0.0495 0.1673 0.8722

α = 5 0.5727 0.0136 0.0204 0.6902 0.6374 0.0873 0.1199 0.7625

Tsallis

α = 2 0.2694 0.0018 0.0063 0.1351 0.3916 0.0312 0.0632 0.2874

α = 3 0.7942 0.0136 0.0330 0.3749 0.7998 0.0811 0.1530 0.5268

α = 4 0.8093 0.0351 0.0430 0.5190 0.7731 0.1444 0.1854 0.6315

α = 5 0.6848 0.0157 0.0253 0.2778 0.6868 0.0722 0.1257 0.4457

4 Case Study

In this section, the high α-order GMEs proposed in this paper are applied
to the real data and compared to the Shannon GME estimator. We consider the
growth/debt problem of Reinhart and Rogoff [13], and follow the scheme of Hansen
[12] who suggested that the growth of economy tends to slow down when the
government debt relative to GDP exceeds a threshold. Thus, we applied our model
in US and Thai economy. Our data set are collected from Reinhart and Rogoff
[13] consisting of yearly data of GDP growth and Debt/GDP ratio for US and
Thailand. The data cover the period 1996 2010 with 15 observations for Thailand
and the period 1961 2010 with 50 observations for US. In these two datasets, we
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choose the economic growth as the dependent variable, while Debt/GDP ratio is
defined as independent variable. The GDP growth and Debt/GDP ratio for US
and Thailand are illustrated in Figures 1 and 2, respectively.
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Figure 1: GDP growth and Debt/GDP ratio of USA 1961 2010
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Figure 2: GDP growth and Debt/GDP ratio of Thailand 1996 2010

In these two cases, as we do not have any information about the possible range
of the support vectors, we fix them to be as large as possible. In particular, all the
support vectors for the regression parameters (β0, β

−, andβ+) are fixed to [30,0,30]
whereas the support vectors for the residual terms are computed according to the
three-sigma-rule [3σ, 0, 3σ] where σ is the standard deviation of GDP growth. In
the kink parameter γ, the information of this parameter is very important part for
our model, thus, we fix the support vectors for this parameter around the mean
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of Debt/GDP ratio, say x̄− 0.2x̄, x̄, x̄+ 0.2x̄. That is, we set the lower and upper
bounds to be 20% far from the mean. We note that the researcher needs to make
sure that the real kink value is located within this range, otherwise we may obtain
unreliable parameter estimate.

In the first US dataset, the results show that the coefficient (β−, β+) have a
positive effect during economic recession (regime 1) and its had a negative effect
during economic rising, it means that Debt/GDP ratio has a positive effect during
economic recession and vice versa for economic boom which seems to correspond
to the Keynesian economics. These results reveal that USA has a strong economic
structure like other advanced countries.

Moreover, we can see that there exist two patterns of results. First, Shannon
measure has a steep positive slope for low Debt/GDP ratio then switches to a
negative slope at kink point around 40%. Meanwhile, Reni measure and Tsallis
measures have a low positive slope for low Debt/GDP ratio and then switches to
a negative slope at kink point around 40%.

Table 7: Coefficients (standard errors) from Kink regression application of
US

GME β0 β− β+ γ MAE

Shannon 5.1158(0.5761) 0.3931(0.1113) -0.1033(0.0280) 40.6128 1.5169

Renyi

α = 2 3.7740(0.6185) 0.1944(0.1196) -0.0533(0.0301) 40.6077 1.6454

α = 3 3.6903(0.6258) 0.1839(0.1210) -0.0562(0.0304) 40.6074 1.6901

α = 4 3.7110(0.6290) 0.1909(0.1216) -0.0629(0.0306) 40.609 1.7162

α = 5 3.6861(0.6354) 0.1963(0.1228) -0.0666(0.0309) 40.6099 1.7475

Tsallis

α = 2 5.1204(0.5761) 0.3950(0.1113) -0.1016(0.0280) 40.6128 1.5122

α = 3 5.0807(0.5781) 0.3893(0.1108) -0.1040(0.0282) 40.6713 1.526

α = 4 4.9539(0.5825) 0.3775(0.1111) -0.1040(0.0284) 40.7086 1.5481

α = 5 4.8592(0.5918) 0.3624(0.1088) -0.1042(0.0290) 40.9892 1.5756

Table 8: Coefficients (standard errors) from Kink regression application of
Thailand

GME β0a β− β+ γ MAE

Shannon -0.5150(1.9939) -0.2205(0.1608) 1.0610(0.4486) 49.6376 3.8529

Renyi

α = 2 -0.5041(1.9750) -0.2199(0.1585) 1.0610(0.4541) 49.8151 3.8246

α = 3 -0.5082(1.9806) -0.2199(0.1592) 1.0610(0.4524) 49.7627 3.8325

α = 4 -0.5164(1.9974) -0.2782(0.1606) 1.0610(0.4554) 49.747 3.9692

α = 5 -0.5163(1.9969) -0.2782(0.1605) 1.0610(0.4556) 49.752 3.9684

Tsallis

α = 2 -0.5190(2.0073) -0.2782(0.1618) 1.0610(0.4522) 49.6481 3.9848

α = 3 -0.5179(2.0033) -0.2782(0.1613) 1.0610(0.4535) 49.6882 3.9785

α = 4 -0.5190(2.0074) -0.2782(0.1618) 1.0610(0.4522) 49.6475 3.9848

α = 5 -0.5234(1.9997) -0.2781(0.1627) 0.9575(0.4279) 49.2245 3.9084
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Figure 3: Kink plot of US data
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Figure 4: Kink plot of Thai data

The results from Table 8 seem contradictory to Keynesian economic approach
which suggests that Debt/GDP ratio should have a positive effect on economic
growth during economic recession (regime 1). In Thailands economy, the Debt/GDP
ratio had a negative effect during economic recession. We suspect that the Thai
economic structure may not change in our sample period as we have only 15 ob-
servations over the 15 yearss period and Thai economic structure is different from
advanced countries. However, according to Figure 4, we may say that the higher
Debt/GDP ratio may not contribute to a high growth for the Thai economy as the
economic performance may not strong enough for returning the debt efficiently.
But, when the Debt/GDP ratio is greater than kink point (around 49%), the effect
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of Debt/GDP ratio switches to a positive slope.

Finally, it is important to compare the estimators in this real application study
by considering mean absolute error (MAE). MAE of an estimator measures the
average of the difference between the real value and what is estimated. Small MAE
value is needed in statistics because it is closer to actual data and leads to a better
estimator. In this study, best estimator would be chosen based on the smallest
value of MAE. Tables 7-8 show MAE in the last column for each estimator and
it is found that the smallest MAE is obtained from the Tsallis GME with order 2
and Renyi GME with order 2, respectively, for US and Thai datasets.

5 Conclusion

In this paper, we apply the GME estimator which is able to solve the ill-posed
problem or the limited data problems. We are following the work of Sriboonchitta
et al. [11] and then we aim to replace Shannon GME estimator by high-order
GME estimators consisting of Renyi and Tsallis. We then demonstrate the per-
formance of high-order GME estimator to compare with that of Shannon GME
estimator with various error distributions. Simulation results validate that the
high-order GME estimators can provide accurate estimates for all unknown pa-
rameters. However, the Shannon GME estimator can capture the threshold or
kink point better than high-order GME estimators, except the case of error distri-
bution is uniform and the observation number is 50. Furthermore, we can see that
the number of observations seems to be affected a little, the Bias and MSE are not
much different. Likewise, the Bias and MSE values are not much different under
the wide range of the error distributions. When the alpha-order gets higher, the
Bias and MSE seem to be higher in almost all cases. The application results show
that both Renyi and Tsallis GME estimators can provide accurate estimates for
all unknown parameters of both countries and the results of both estimators are
not much different from the Shannon GME. However, these two estimators seem
to show a better performance than the conventional GME in terms of MAE. Thus,
we can conclude that high-order GME estimator can be used as alternative tool.
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