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Abstract : Present manuscript proposed a shifted panel autoregressive (PAR)
model through structural break assumption. A Bayesian estimation method is de-
veloped considering known from of prior information. Since expression of posterior
distribution under different loss functions is in complicated form, therefore Gibbs
sampler technique is used to obtain the conditional posterior distribution. A sim-
ulation and empirical study for proposed shifted panel AR(1) model is carried out
to record the performance of the Bayes estimators and compared with the classical
procedures such as maximum likelihood and least square estimator. A realization
of real data set is also explored to illustrate the prospective interpretation of the
proposed model.
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1 Introduction

In statistics, parameter estimation is a concept to make implication about
unknown quantities of interest related to a real data set. It has equal importance
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in time series model associated with structural break. The issue of estimation
in time dependent model contains a vast amount of literature in statistics, time
series, econometric etc. Albert and Chib [1] and Barnett et al. [2] proposed
a Bayesian method via Gibbs sampling not only to estimate the parameters in
autoregressive model but also enforcement of stationarity, identification of outliers
and missing observations. Bai and Perron [3] and Wang and Zivot [4] addressed
the issue of estimation and testing of multiple structural breaks occurring in linear
and autoregressive model respectively. Meligkotsidou et al. [5] applied Bayesian
approach to test the unit root hypothesis in autoregressive model when structural
break is present in level, trend and error variance.

For the development of estimation procedure and model selection in panel data
model related to structural break(s) mainly came into picture after 20th century.
De Wachter and Tzavalis [6] introduced GMM model selection criterion like AIC,
BIC, HOIC and classical hypothesis test approach to detect the break point in
panel data model and found that GMM-HQIC criterion is performs similar as
classical hypothesis test. Bai [7] developed consistency and limiting distribution
of break point in panel data model and estimated the parameters by least square
and quasi maximum likelihood method. Lee and Yu [8] estimated the spatial panel
autoregressive model including individual effect using maximum likelihood and
observed that parameter consistency is based on data transformation technique
and quasi maximum likelihood estimator. Kim [9] applied sum of square residuals
method to estimate the deterministic time trend break in large panels. Safadi et al.
[10] studied Bayesian methodology in panel AR(p) model and obtained predictive
distribution with application in genetic evaluation of beef cattle. Lin and Ng
[11] proposed two-step Pseudo threshold and K-means clustering estimators for
estimating the parameter in panel data heterogeneity model.

More work regarding estimation, identification and testing the structural break
in the panel data model has been carried out by many authors like De Watcher and
Tzavalis [12], Chan et al. [13] etc. under the condition that model is heterogeneous
or homogeneous in presence of endogenous and exogenous variables. Jirata et
al. [14] had discussion on the application of panel data estimation using two-
stage and GLS estimator for heterogeneity as well as endogenous explanatory
variables. Lee and Yu [15] studied space-time filter in linear panel data model
for estimation of coefficients and disturbance errors. Kessler and Munkin [16]
proposed Bayesian estimation via Gibbs sampling procedure for non linear panel
data model with fractional dependent and endogenous variable. Baltagi et al.
[17] studied change point estimation in large dimensional panel data model with
stationary or non-stationary regressor. Qian and Su [18] proposed penalized least
squares and penalized method of moments to estimate panel data model with
unknown number of breaks.

In the above literature, parameters have been estimated by classical methods
such as ordinary least square, quasi maximum likelihood, penalized principal com-
ponent etc. Some of the parameters estimation have been extended by using Gibbs
sampler and Metropolis-Hastings (MH) algorithm in Bayesian inference under the
availability of some prior information. In this paper, we have estimated the param-
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eters of panel autoregressive model in consideration of break point in all parameters
i.e. autoregressive coefficient, mean and error variance. A Bayesian approach is
used to estimate the model parameters and compared with the classical techniques
using the mean squared error. For this, we have derived conditional posterior dis-
tribution using known prior distribution under the Gibbs sampler technique. A
simulation study is prepared to know the performance. Also, an application on
agriculture production of fertilizer is illustrated. A realization of empirical study
is also completed for better interpretation of the proposed estimation procedure
for the proposed model.

2 Model Specification

The form of our model is extension of univariate AR(1) model having break
point in autoregressive coefficient, intercept and error variance as considered by
Meligkotsidou et al. [19]. Let us consider the following panel data time series
model of order one (PAR(1)) with n cross sectional units and T time-periods in
which a single structural break point may occur at any time-point TB .

yit =

{
µi1 + uit for t = 1, 2, ..., TB

µi2 + uit for t = TB + 1, ..., T
(2.1)

where i = 1, 2, .., n, stochastic error uit follows PAR(1) process (see Equation
(2.2)) and ε′its are assumed to be identical and independently distributed (i.i.d.)
normal random variable.

uit =

{
ρ1ui,t−1 + σ1εit for t = 1, 2, ..., TB

ρ2ui,t−1 + σ2εit for t = TB + 1, ..., T
(2.2)

Utilizing Equation (2.2) in Equation (2.1), we get the following model

yit =

{
ρ1yit−1 + (1− ρ1)µi1 + σ1εit for t = 1, 2, ..., TB

ρ2yit−1 + (1− ρ2)µi2 + σ2εit for t = TB + 1, ..., T
(2.3)

The main interest of study is to estimate the parameters ρ1, ρ2, µi1, µi2, σ1 and
σ2 under Bayesian framework and compare with classical estimators. It can be
seen that this model can nest different models that consider break point in only
one or two parameters or no break point. In a model comparison setting, we may
consider various models obtained from Equation (2.3) under the condition that
the parameters are having break or no break. First, we assume that these is no
break point in autoregressive coefficient (Bai [7]), Model (2.3) is reduced to

yit =

{
ρyit−1 + (1− ρ)µi1 + σ1εit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi2 + σ2εit for t = TB + 1, ..., T
(2.4)
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Further, consider that there is break in intercept term only, then model reduces
to (Bai [7])

yit =

{
ρyit−1 + (1− ρ)µi1 + σεit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi2 + σεit for t = TB + 1, ..., T
(2.5)

On the other hand, we can consider the case where intercept term is equal
in both segments, while error variance and autoregressive coefficient are different
(Pesaran [20]), then Model (2.3) becomes

yit =

{
ρ1yit−1 + (1− ρ1)µi + σ1εit for t = 1, 2, ..., TB

ρ2yit−1 + (1− ρ2)µi + σ2εit for t = TB + 1, ..., T
(2.6)

There is break only in variance, then Model 2.6 becomes (Bai [7])

yit =

{
ρyit−1 + (1− ρ)µi + σ1εit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi + σ2εit for t = TB + 1, ..., T
(2.7)

If there is no structural break in the error variance, Model (2.3) is considering
break in autoregressive coefficient as well as intercept term (De Wachter & Tzavalis
[12]), i.e.,

yit =

{
ρ1yit−1 + (1− ρ1)µi1 + σεit for t = 1, 2, ..., TB

ρ2yit−1 + (1− ρ2)µi2 + σεit for t = TB + 1, ..., T
(2.8)

and further ignoring break in intercept term (Liu et al. [21]), the model becomes

yit =

{
ρ1yit−1 + (1− ρ1)µi + σεit for t = 1, 2, ..., TB

ρ2yit−1 + (1− ρ2)µi + σεit for t = TB + 1, ..., T
(2.9)

Finally, if no break is considered in any parameter (Levin et al. [22]), then
model (2.3) reduces to standard panel autoregressive model, i.e.,

yit = ρyit−1 + (1− ρ)µi + σεit for t = 1, 2, ..., T (2.10)

3 Bayesian Inference

Bayesian inference is an approach that apply Bayes rule in order to make
probability estimate of a hypothesis which utilize the available prior information.
Prior distribution gives us information about unknown parameter, one may use
both informative and non-informative priors. For present study, we are considered
the following prior distribution given in Schotman and Van Dijk [23] and Phillips
[24].

P (ρj) =
1

1− lj
; lj < ρj < 1 and lj > −1 (3.1)
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P (σ2
j ) =

d
cj
j

Γ(cj)
(σ2

j )−cj−1exp

[
− dj
σ2
j

]
; cj , dj > 0 (3.2)

P (µij) =
1

(2π)
1
2 τjσj

exp

[
− 1

2τ2j σ
2
j

(µij − ϑij)2
]

; −∞ < ϑ <∞; τ > 0 (3.3)

In prior distribution, some unknown constant is also there, known as hyper
parameter. For simplification, we have assumed all hyper-parameters to be known
and chosen such that it appropriately prcised the form of unknown parameters.
Using the likelihood function that contains sample information with available prob-
abilistic parametric information in form of joint prior distribution, the posterior
distribution is given as

π (Θ|y) = K

 (σ2
1)
−
(

nTB+n

2 +c1+1
)
(σ2

2)
−
(

n(T−TB)+n

2 +c2+1
)
dc11 d
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− 1
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2

+ 2d1

+
1
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2

}
− 1

2σ2
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2

+
1

τ22

n∑
i=1

(µi2 − ϑi2)
2

+ 2d2

}]
(3.4)

From decision theory view point, in order to select the best estimator from the
posterior distribution, a loss function must be specified in Bayesian inference. We
have considered two loss functions: (1) A symmetric loss function which associate
equal importance to the losses due to overestimation and underestimation in terms
of equal magnitude and popularly known as squared error loss function (SELF)
introduced by Gauss [25], (2) An asymmetric loss function known as entropy loss
function (ELF) proposed by Calabria and Pulcini [26], stated that an over estima-
tion may cause more seriousness than that of under estimation or vice versa. The
notation of SELF and ELF loss functions are given as

LS(θ, θ̂) =
(
θ̂ − θ

)2
LE(θ, θ̂) =

(
θ̂

θ

)
− ln

(
θ̂

θ

)
− 1

Bayes estimator of any parametric function under SELF and ELF is posterior
mean and (E(θ−1|y))−1 respectively. A major difficulty to carry out the Bayes
procedure is that we do not get closed expression due to multiple integral in our
posterior distribution.
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4 Conditional Posterior Distribution

Using equation (3.4), conditional posterior distribution of each parameter is
derived which may depend or not depend on other parameters conditionally. For
computing the conditional posterior distribution of a particular parameter, one
may integrate equation (3.4) with respect to other parameters and get the ex-
pression. Therefore, we have used Gibbs sampler technique to solve the integrals
involve there in.

4.1 Conditional Posterior Distribution of Parameter
at Pre-Break Point

π (µi1|ρ1, y, TB) ∝

[
τ21

n∑
i=1

TB∑
t=1

(yit − ρ1yi,t−1)
2

+ 2d1τ
2
1 +

n∑
i=1

ϑ2i1 −
n∑

i=1

(B(ρ1))
2

A(ρ1)

+A(ρ1)

n∑
i=1

(
µi1 −

B(ρ1)

A(ρ1)

)2
]−(nTB+n

2 +c1
)

(4.1)

The shape of µi1 follow a 3-parameter non-central Student t-distribution with
nTB + 2c1 degree of freedom.

π
(
σ2
1 |ρ1, y, TB

)
∝
(
σ2
1

)−(nTB
2 +c1

)
exp

[
− 1

σ2
1

{
d1 +

1

2

n∑
i=1

(
TB∑
t=1

(yit − ρ1yi,t−1)
2

+
ϑ2i1
τ21
− (B(ρ1))

2

τ21A(ρ1)

)}]
(4.2)

The conditional posterior distribution of σ2
1 is inverse gamma distribution.

π
(
ρ1|µi1, σ

2
1 , y, TB

)
∝ exp

− n∑
i=1

TB∑
t=1

(yit−µi1)
2

2σ2
1

(
ρ1 −

(yit−µi1) (yit−1−µi1)

(yit−µi1)
2

)2


(4.3)

The form of ρ1 is truncated normal distribution over the interval (l1, 1)

where

A(ρ1) =τ21TB(1− ρ1)2 + 1

B(ρ1) =τ21 (1− ρ1)

TB∑
t=1

(yit − ρ1yi,t−1) + ϑi1
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4.2 Conditional Posterior Distribution of Parameter
at Post-Break Point

π (µi2|ρ2, y, TB) ∝

[
τ22

n∑
i=1

T∑
t=TB+1

(yit−ρ2yi,t−1)
2

+ 2d2τ
2
2 +

n∑
i=1

ϑ2i2 −
n∑

i=1

(D(ρ2))
2

C(ρ2)

+C(ρ2)

n∑
i=1

(
µi2 −

D(ρ2)

C(ρ2)

)2
]−(n(T−TB)+n

2 +c2
)

(4.4)

The shape of µi2 follow a 3-parameter non-central Student t-distribution with
n(T − TB) + 2c2 degree of freedom.

π
(
σ2
2 |ρ2, y, TB

)
∝
(
σ2
2

)−(n(T−TB)

2 +c2
)

exp

[
− 1

σ2
2

{
d2+

1

2

n∑
i=1

(
T∑

t=TB+1

(yit−ρ2yi,t−1)
2

+
ϑ2i2
τ22
− (D(ρ2))

2

τ22C(ρ2)

)}]
(4.5)

The conditional posterior distribution of σ2
2 is inverse gamma distribution.

π
(
ρ2|µi2, σ

2
2 , y, TB

)
∝ exp

− n∑
i=1

T∑
t=TB+1

(yit−µi2)
2

2σ2
2

(
ρ2−

(yit−µi2) (yit−1−µi2)

(yit−µi2)
2

)2


(4.6)

The form of ρ2 is truncated normal distribution over the interval (l2, 1).
where

C(ρ2) =τ22 (T − TB)(1− ρ2)2 + 1

D(ρ2) =τ22 (1− ρ2)

T∑
t=TB+1

(yit − ρ2yi,t−1) + ϑi2

5 Simulation Study

Data can be analyzed properly in any field of science with the help of statistics.
Statistics interpret the results in an approved manner with the help of simulation
exercise. Simulation is a flexible methodology to analysis the behaviour of a pro-
posed study and compare the performances. In simulation, generate a random
sample random in such a way that generated series analyze the problem and sum-
marize the results. It is one of the most widely used quantitative method because
it is so flexible and can yield so many useful results.
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Present section consist a simulation study to measure and examine the per-
formance of proposed estimators. The performance of estimators are compared
with other classical estimators using mean squared error based on simulated time
series. Therefore, we have generated different size of series T = {120, 160, 200}
with single break point at different position TB = {T/4, T/2, 3T/4} under the
assumption that break occurs in all panels is same. For series generation, ini-
tial observations are taken as yi0 = {10, 15, 20} having three cross sectional units
(n=3). The true value of parameters before and after the break is assumed to be
different and prior distribution of these parameters contained hyper parameters
which are also be known. For the autoregressive parameters, consider changes
near the unit root, i.e. ρ1 = 0.90 and ρ2 = 0.95 with consideration of hyper
parameter value of uniform prior is l1 = 0.8ρ1 and l2 = 0.8ρ2. The true value
of intercept term at per-break point is µi1 = {13, 14, 15} and post-break point
is µi2 = {21, 22, 23} while the hyper parameters are ϑi1 = yi0, ϑi2 = ȳi., τ

2
1 = 8

and τ22 = 16. The initial value of error variance for making the simulation study
is σ2

1 = 0.1 and σ2
2 = 0.2. The hyper parameter of error variance can be cho-

sen such that prior may be known as non informative prior. For this we choose
c1 = d1 = c2 = d2 = 0.01, i.e., variance nature is same, however short effect may
change the variance value (see Meligkotsidou et al. [19]).

For complex and multiple integrals involved in posterior distribution, Markov
Chain Monte Carlo (MCMC) technique is used which attempt to simulate a sam-
ple draws from posterior distribution. There are two popular MCMC methods,
namely Gibbs sampler (Geman and Geman [27]) and Metropolis-Hastings (MH)
algorithm (Hastings [28]). Here we used Gibbs sampler that provided the pa-
rameter estimate from the conditional posterior distributions using true values.
Applying the actual value of the parameters and using the simulated series, es-
timate the parameter using conditional posterior distribution and calculated the
mean squared error (MSE). The Gibbs algorithm simulation process consists the
following steps:

1. Start with k=1 and initial value of µ0
i1, µ

0
i2, σ

2,0
1 , σ2,0

2 , ρ01, ρ
0
2 at jth stage.

2. Using Gibbs sampling, generate posterior samples from conditional posterior
distribution.

3. Repeat steps 1-2 for all k= 1, 2,..., M and record the value of parameters
after M iteration.
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Table 1: AV and MSE of the estimators at pre-break point parameters with
varying T and TB

T 120 160 200

TB T/4 T/2 3T/4 T/4 T/2 3T/4 T/4 T/2 3T/4

µ11

OLS
12.8073 12.9155 12.9896 12.8742 12.9635 12.9725 12.8824 12.9443 12.9796
0.4053 0.1627 0.1125 0.2913 0.1507 0.0843 0.2651 0.1013 0.0737

MLE
12.7682 12.8980 12.9780 12.8419 12.9512 12.9644 12.8592 12.9347 12.9744
0.4053 0.1676 0.1127 0.2913 0.1522 0.0847 0.2651 0.1027 0.0737

SELF
12.8794 12.9280 13.0033 12.8902 12.9734 12.9917 12.9014 12.9540 12.9932
0.3637 0.1601 0.1064 0.2672 0.1454 0.0830 0.2526 0.1008 0.0728

ELF
12.8794 12.9280 13.0033 12.8902 12.9734 12.9917 12.9014 12.9540 12.9932
0.3814 0.1602 0.1064 0.2727 0.1454 0.0830 0.2602 0.1008 0.0731

µ12

OLS
13.9521 14.0317 14.0171 14.0835 14.0306 13.9881 13.9871 14.0160 14.0179
0.3733 0.1755 0.1014 0.2490 0.1192 0.0747 0.1830 0.0936 0.0625

MLE
13.9521 14.0317 14.0171 14.0835 14.0306 13.9881 13.9871 14.0160 14.0129
0.3733 0.1750 0.1010 0.2472 0.1186 0.0749 0.1830 0.0936 0.0625

SELF
13.9723 14.0303 14.0134 14.0635 14.0305 13.9821 14.0011 14.0122 14.0100
0.3590 0.1696 0.0984 0.2369 0.1185 0.0728 0.1801 0.0924 0.0602

ELF
13.9703 14.0261 14.0136 14.0576 14.0232 13.9848 13.9907 14.0138 14.0099
0.3538 0.1696 0.0984 0.2369 0.1185 0.0728 0.1812 0.0926 0.0602

µ13

OLS
15.3226 15.1256 15.0788 15.2481 15.1066 15.0761 15.1563 15.0445 15.0421
0.4887 0.1784 0.1300 0.3671 0.1284 0.0923 0.2465 0.0970 0.0699

MLE
15.2829 15.1092 15.0684 15.2161 15.0948 15.0688 15.1326 15.0353 15.0370
0.4887 0.1762 0.1300 0.3671 0.1283 0.0923 0.2465 0.0966 0.0697

SELF
15.2040 15.1045 15.0510 15.1932 15.0760 15.0471 15.1191 15.0185 15.0217
0.4346 0.1760 0.1288 0.3198 0.1297 0.0998 0.2317 0.0958 0.0697

ELF
15.2040 15.1044 15.0510 15.1932 15.0760 15.0470 15.1191 15.0185 15.0217
0.4170 0.1760 0.1283 0.3133 0.1278 0.0993 0.2281 0.0958 0.0696

σ21

OLS
0.1468 0.1268 0.1201 0.1379 0.1206 0.1181 0.1289 0.1195 0.1181
0.0039 0.0015 0.0007 0.0031 0.0008 0.0005 0.0018 0.0006 0.0005

MLE
0.0945 0.0970 0.0986 0.0977 0.0973 0.0983 0.0964 0.0991 0.0989
0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001

SELF
0.1044 0.1020 0.1020 0.1050 0.1011 0.1008 0.1023 0.1021 0.1009
0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

ELF
0.1021 0.1009 0.1012 0.1033 0.1002 0.1003 0.1010 0.1014 0.1005
0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001

ρ1

OLS
0.8742 0.8790 0.8876 0.8770 0.8858 0.8907 0.8798 0.8869 0.8879
0.0018 0.0011 0.0005 0.0016 0.0007 0.0005 0.0013 0.0006 0.0004

MLE
0.8742 0.8790 0.8876 0.8770 0.8858 0.8907 0.8798 0.8869 0.8879
0.0018 0.0011 0.0005 0.0016 0.0007 0.0005 0.0013 0.0006 0.0004

SELF
0.8872 0.8911 0.8976 0.8907 0.8961 0.8992 0.8924 0.8962 0.8953
0.0010 0.0007 0.0004 0.0010 0.0005 0.0004 0.0009 0.0004 0.0003

ELF
0.8860 0.8904 0.8971 0.8897 0.8956 0.8988 0.8916 0.8958 0.8950
0.0011 0.0008 0.0004 0.0010 0.0005 0.0004 0.0009 0.0004 0.0003
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Table 2: AV and MSE of the estimators at post-break point parameters
with varying T and TB

T 120 160 200

TB T/4 T/2 3T/4 T/4 T/2 3T/4 T/4 T/2 3T/4

µ21

OLS
20.7912 20.8184 20.2179 20.9388 20.6770 20.6801 20.8946 20.8229 20.6412
1.1483 2.1233 7.8962 0.7813 1.4999 3.0693 0.6445 1.0334 2.5645

MLE
20.7915 20.8182 20.0460 20.9387 20.6770 20.5629 20.8945 20.8226 20.6409
1.1178 2.0601 7.8961 0.7745 1.4733 3.0570 0.6415 1.0133 2.5647

SELF
21.0274 21.0881 20.6299 21.0614 20.9149 20.6793 21.0124 20.9710 20.7516
1.0019 1.9363 3.8158 0.6827 1.3789 2.7385 0.6056 0.9274 2.2114

ELF
20.9593 20.9861 20.6300 21.0256 20.8443 20.6829 20.9807 20.9219 20.7298
1.0020 1.9364 4.1136 0.6827 1.3789 2.7490 0.6054 0.9273 2.1941

µ22

OLS
21.8604 21.6798 21.1971 21.9628 21.8518 21.7840 21.8957 21.8320 21.7186
0.9963 1.6893 6.0073 0.7942 1.3469 3.5373 0.6390 1.1022 2.5688

MLE
21.8604 21.6796 21.0434 21.9626 21.8517 21.7885 21.8958 21.8316 21.7183
0.9962 1.6890 6.0063 0.7745 1.3139 3.5440 0.6289 1.0907 2.5686

SELF
22.1423 21.9663 21.5710 22.0287 22.0710 21.8535 22.0111 22.0129 21.8404
1.0023 1.6992 3.2872 0.7223 1.1910 2.5980 0.6141 1.0282 2.1918

ELF
22.0752 21.8709 21.5711 22.0061 22.0026 21.8186 21.9797 21.9660 21.7310
0.9854 1.6620 3.5326 0.7224 1.1910 2.5339 0.6142 1.0282 2.1497

µ23

OLS
22.7807 22.5848 22.3242 22.8338 22.7840 22.9362 22.9233 22.8721 22.6728
1.3973 2.0027 6.9035 0.7889 1.3545 3.1224 0.7611 1.0031 2.7211

MLE
22.7809 22.5846 22.1929 22.8337 22.7840 22.9395 22.9230 22.8720 22.6724
1.3351 2.0027 6.9035 0.7692 1.3045 3.1137 0.7536 0.9946 2.7205

SELF
23.0767 22.8766 22.6888 23.0110 23.0399 22.9726 23.0409 23.0280 22.7791
1.1367 1.8177 3.9065 0.7002 1.0666 2.3822 0.6980 0.9644 2.0766

ELF
23.0095 22.7821 22.6887 22.9694 22.9787 22.9588 23.0114 22.9842 22.6801
1.1369 1.8004 4.1329 0.7001 1.0666 2.3477 0.6980 0.9642 2.0515

σ22

OLS
0.2065 0.2047 0.2061 0.2039 0.2093 0.2076 0.2049 0.2048 0.2054
0.0005 0.0006 0.0017 0.0003 0.0005 0.0009 0.0002 0.0003 0.0007

MLE
0.1973 0.1940 0.1865 0.1972 0.1990 0.1921 0.1982 0.1959 0.1930
0.0004 0.0005 0.0011 0.0002 0.0003 0.0006 0.0002 0.0003 0.0005

SELF
0.2006 0.1995 0.1989 0.1995 0.2033 0.2021 0.1997 0.1991 0.2010
0.0004 0.0005 0.0010 0.0002 0.0003 0.0006 0.0002 0.0003 0.0005

ELF
0.1990 0.1972 0.1944 0.1984 0.2016 0.1986 0.1989 0.1978 0.1983
0.0004 0.0005 0.0010 0.0002 0.0003 0.0006 0.0002 0.0003 0.0005

ρ2

OLS
0.9418 0.9384 0.9293 0.9435 0.9393 0.9387 0.9437 0.9418 0.9383
0.0002 0.0004 0.0011 0.0002 0.0003 0.0006 0.0001 0.0002 0.0004

MLE
0.9418 0.9384 0.9293 0.9435 0.9393 0.9387 0.9437 0.9418 0.9383
0.0002 0.0004 0.0011 0.0002 0.0003 0.0006 0.0001 0.0002 0.0004

SELF
0.9489 0.9459 0.9348 0.9493 0.9461 0.9441 0.9489 0.9475 0.9446
0.0001 0.0003 0.0006 0.0001 0.0002 0.0003 0.0001 0.0002 0.0003

ELF
0.9488 0.9457 0.9344 0.9491 0.9460 0.9438 0.9488 0.9474 0.9443
0.0001 0.0003 0.0006 0.0001 0.0002 0.0003 0.0001 0.0002 0.0003
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For each generated series, classical and Bayes estimates have been calculated
from the posterior samples. This process is repeated 5000 times, and average es-
timates (AV) and MSE of the estimators are obtained. The simulation results are
summarized in Tables 1-2. As seen in Table 1, MSE for all estimators are decreas-
ing as size of the series is increasing. When break point is considered from near to
bottom of a series, MSE is decline. Both assumed classical method, ordinary least
square (OLS) and maximum likelihood estimators (MLE) show approximately
same magnitudes for their MSE. This shows that OLS is equally applicable as
MLE for estimating the parameters exclude σ2

1 . For error variance, MSE of MLE
is approximately same as Bayes estimator under SELF. Under Bayes estimator,
ELF gives better estimates as compare to SELF in terms of smaller MSE value
under ELF except ρ1. Overall we concluded that Bayes estimator gives better es-
timates as compare to classical estimators because additional information is added
about the parameters to reduce the MSE and improve the average estimates. It
can also observed by considering the suitable hyper parameter values in the prior
distribution.

One can seen from Table 2, increase the size of a series, MSE for all estimators
decreases as similarly recorded in Table 1. Consider different break point position,
MSE is increasing because size of the series is decreasing after the break point. In
classical approach, MLE give better estimates as compare to OLS because mag-
nitude of MSE of MLE is less than OLS estimates. In Bayes estimation, SELF
and ELF having approximately equal performance in terms of MSE. For error
variance, both Bayes estimators have similar value with MLE in terms of their
MSE. Thus, simulated data provided that Bayes estimators are good approxima-
tion technique to estimate the parameters with reduces MSE because conditional
posterior distribution are coming in conditional closed form distribution which
shape is approximately similar as prior distribution.

6 Real Data Analysis

In this section, we target to study a real series and demonstrate the use of
proposed model in financial, economical, agricultural and so many series. To jus-
tify our theoretical results, we have taken data from a yearly book “Agricultural
Statistics at a Glance 2014 ”which is piled up by Directorate of Economics &
Statistics, Department of Agriculture & Cooperation, Government of India. This
provides statistical data on a broad area of agricultural commodities. For analysis
purpose, import series of different fertilizers namely Nitrogen (N), Phosphate (P),
potash (K) are taken which covered the period from 1980-81 to 2013-14, and con-
sidered this fertilizers as a panel. First of all, identified break point, compared with
different models and then estimate the parameters using classical and Bayesian es-
timators. In R language, a command “strucchange ”developed by Kleiber et al.[29]
which find out the break point from individual series. With the help of this, we
identify the structural break which is recorded in the Table 3.
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Table 3: Structural break present in different fertilizers
Break point Fertilizers

N P K
T1 24 25 16
T2 28 - 24

From Table 3, two breaks are present in fertilizers series N and K whereas one
break is present in fertilizer series P, to change the structure of the model. The
lowest break point is 16 and highest break point is 28. Therefore, we identify a
single break in between 16 to 28 where proposed model is well suitable. For this,
we use Akaike information criterion (AIC) and Bayes information criterion (BIC)
to fitting the model in the import fertilizers series and determine the break point
where AIC and BIC have minimum value. For best fitted model, we have estimated
the parameter using maximum likelihood estimate and evaluate the value of AIC
and BIC. It is observed that minimum value of AIC and BIC at TB = 23 which
is shown in Table 4. So, we use TB = 23 as a structural break for our proposed
model.

Table 4: Fitting the proposed model in fertilizers series under different
break point

Break Point -LogL AIC BIC

16 292.447 604.8946 630.5381
17 291.663 603.3256 628.9691
18 291.701 603.4026 629.0460
19 291.124 602.2488 627.8923
20 347.515 715.0299 740.6734
21 290.117 600.2335 625.8769
22 287.157 594.3139 619.9574
23 284.208 588.4168 604.0602
24 286.827 593.6543 619.2977
25 290.221 600.4427 626.0861
26 299.427 618.8541 644.4976
27 304.539 629.0770 654.7205
28 312.459 644.9176 670.5611

After knowing the break point, next step is to compare the applicability of the
proposed model with other models given in Section (2). In Table 5, models are
(i) proposed model (ii) break in intercept and error variance (iii) break in autore-
gressive coefficient and error variance (iv) break in autoregressive coefficient and
intercept (v) break in error variance (vi) break in intercept (vii) break in autore-
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gressive coefficient (viii) no break. To check the adequacy of model based on real
series, all models mentioned above are computed for AIC and BIC which is shown
in Table 5. The smaller value of information criterion corresponding to better fit
of fertilizers series. In this table, one can easily see that panel AR(1) model where
break is present in intercept, error variance and autoregressive coefficient having
minimum AIC and BIC value. Thus, proposed model fitted well to this data set
as compare to other models, specially without break model. Then, the classical
as well as Bayesian estimates of this series for panel AR(1) model which consider
break in all parameters are summarized in Table 6.

Table 5: Comparing various model by using information criterion
Model -LogL AIC BIC

PAR(ρ1, ρ2, µi1, µi2, σ1, σ2) 284.2084 588.4168 604.0602
PAR(ρ, µi1, µi2, σ1, σ2) 291.5556 601.1112 624.1903
PAR(ρ1, ρ2, µi1, µi2, σ) 291.6030 601.2060 624.2852
PAR(ρ1, ρ2, µi, σ1, σ2) 292.4919 602.9838 626.0629
PAR(ρ, µi, σ1, σ2) 290.8094 593.6189 609.0049
PAR(ρ, µi1, µi2, σ) 290.6285 597.2571 617.7719
PAR(ρ1, ρ2, µi, σ) 294.9445 601.8890 617.2750
PAR(ρ, µi, σ) 305.2156 620.4312 633.2530

Table 6: Classical and Bayes estimates of parameter based on import of
fertilizers series at TB = 23

Parameter OLS MLE SELF ELF

µ11 7.8229 7.8229 8.0339 7.1495
µ12 5.7765 5.7765 6.1084 5.2454
µ13 12.8207 12.8207 13.5626 12.6645
σ21 16.8789 14.2187 16.9125 16.4869
ρ1 0.6087 0.6087 0.6951 0.6803
µ21 42.8628 42.8627 41.6199 41.5698
µ22 26.4481 26.448 25.6386 23.8211
µ23 24.5149 24.5149 25.62 23.5058
σ22 60.4658 52.3612 46.5135 43.7864
ρ2 0.5898 0.5898 0.6571 0.6439
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7 Realization of Empirical Data

Realization of a data is an idea to decide whether real series give appropriate
results for this model or not under control condition. To check this, we have
generated a series based on our proposed model using estimated values of real
data. The generated series is compared with statistic value of standard panel
AR(1) model and result is shown in Figure 1. At break point 23, AIC and BIC
shows smaller value as compare to panel AR(1) model which gives similar result
as recorded in real fertilizer series. Thus, proposed model is well fitted for this
generated series, and its estimated values are given in Table 7.

Figure 1: Break point identification under realization of the real series

Table 7: Classical and Bayes estimates under realization of the real series
Parameter OLS MLE SELF ELF

µ11 6.7897 6.7897 6.9283 6.7489
µ12 12.2024 12.2024 13.532 12.6326
µ13 11.0318 11.0318 11.5135 10.3498
σ21 32.6038 30.9623 30.1087 29.5276
ρ1 0.4454 0.4454 0.5754 0.5495
µ21 32.2276 32.2275 39.7964 35.3317
µ22 23.3193 23.3193 24.3577 23.6828
µ23 22.5701 22.5701 28.4783 24.9348
σ22 106.7774 98.1452 114.2143 113.8955
ρ2 0.5717 0.5717 0.8151 0.7933



Bayesian Estimation for Fully Shifted Panel AR(1) Time Series Model 181

8 Conclusion

In the proposed study, we examined the various types of parameter estima-
tion in panel autoregressive time series model with structural break in intercept,
autoregressive coefficient and error variance. A comparative study has been done
to conclude that the Bayesian estimator gives better results in comparison with
least square and maximum likelihood estimators. We conclude that our proposed
model is well fitted in simulated and import fertilizers series. Realization of real
data also analyzed that it correctly identified the break point. Thus, the Bayesian
estimator is better than general classical estimator. The work may be extends for
other models like model with time trend and non-normal error.
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