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Abstract : This study introduces a new measure of dependence for financial studies in
the context of nonlinear modelling, termed as the logistic smooth transition (LST) cop-
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1 Introduction
Measures of dependence among random variables have been proposed and investi-

gated empirically in various applications including economics and finance. The conven-
tional method for measuring dependence was introduced by Karl Pearson in 1895, as
Pearson correlation. However, this method came with a strong assumption of the sta-
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tistical linear dependence (Patton, [1]). This is unreliable and unrealistic for financial
and economic applications that usually involve nonlinear correlation. Many dependency
measures have been proposed after that to address this deficiency in which one of the
well-known methods is Copula. Roughly, this method is simply a multivariate cumulative
distribution function whose marginal distributions are uniform on the interval [0, 1]. Since
copula is more flexible, there are many exiting studies in financial and economic pieces of
literature that used it to measure the dependency among random variables. However, its
use for capturing the nonlinear structure of dependence is still limited. Researchers have
initiated proposals to incorporate the nonlinear structure and copula in modeling such as
Rodriguez [2], Silvennoinen and Teräsvirta [3], Pastpipatkul, Yamaka and Sriboonchitta
[4], and BenSada, Boubaker and Nguyen [5]. Most of them applied the Markov-switching
(MS) approach of Hamilton [6] to the Copula to measure the dependence-switching phe-
nomenon between financial variables. The switching in the dependence-switching copula
model depends on an unobserved state variable governed by the Hidden Markov process.

The usual approach, however, has some limitations. First is the assumption of the
switching regime governed by the first-order Markov chain, i.e. the current state variable
depends on its immediate past value. However, this assumption is not likely to hold as the
long memory of the regime change might exist. In addition, the model incorporates less
prior information about the switching process. The switching process then may not reflect
the real nonlinear structure dependence of the financial variables. Second is the transition
function. According to the MS, the transition function relies on a filtered probability and
does not incorporate the threshold variable. Thus, the information about the threshold
point or break point in the MS-copula is concealed. Moreover, the Copula describing the
dependence between the two variables may happen to change with time. Then the usual
approach is to have two regimes, each with its own copula.

Therefore, this study proposes to modify the usual approach by assuming that there is
a smooth transition between the regimes. This study applies the logistic transition function
of Silvennoinen and Teräsvirta [3] to the Copula model and proposes a logistic smooth
transition (LST) copula. The appealing feature of this model is an ability to capture grad-
ual changes and sudden transition of dependence patterns. This method will allow the
dependence structure between random variables to vary across different regimes. This
dependence measure resembles the threshold (or change point) and smooth parameter.
Moreover, in the estimation, Copula parameter can work separately from the parameters
of a marginal model. That is, we first estimate the marginal distributions, while the de-
pendence parameter is estimated in the second step through our proposed LST copula
model. The asymptotic relative efficiency of the two-stage estimation maximum likeli-
hood estimation was suggested and proved by Joe [7]. He mentioned that the two-stage
estimation procedure was equivalent to the maximum likelihood estimation, and it was
efficient enough to reach the global maximum and easy to be converged.

To assess the performance of the proposed dependence measure, the logistic smooth
transition (LST) copula, we will perform two experiments: a Monte Carlo simulation and
an empirical study. In the empirical study, we measure the relationship between bond
yields of advanced economies and those of the United States. The economics literature
shows that the interest rate in advanced countries that governments pay to borrowers in the
long term depends on external factors, especially and importantly the yields of U.S. Trea-
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sury securities and monetary policy imposed by the Federal Reserve (Poghosyan, [8]).
In addition, these correlations may contain a structural change as the yields are likely
to covary when financial markets are heading down and up. Recently, for example, the
world interest rates have been declined nearly the same in all advanced economies due to
unprecedented forces. This finding suggests that the dependences among bond yields are
not constant over time. Therefore, this study will estimate the dependency between the
interest rates of six advanced economies (Canada, France, Germany, Italy, Japan, and the
United Kingdom) and the United States using our smooth transition copula model.

The remainder of this paper proceeds as follows. In Section 2 we develop the logistic
smooth transition copula model and describe its estimation strategy. In Section 3 we use
a Monte Carlo simulation study to investigate the accuracy of our estimation. In Section
4 the empirical results are described. Conclusions are given in Section 5.

2 Methodology
This section is subdivided into: 2.1) a review of bivariate copula, which briefly ex-

plains the concept of bivariate copula and structure, 2.2) Logistic smooth transition cop-
ula, which is our proposed model, and 2.3) estimation technique

2.1 A Review of Bivariate Copula
According to Nelson [9], an n-dimensional copula C (u1, ...,un) is a multivariate dis-

tribution function in [0, 1] whose marginal distributions are uniform in the interval [0, 1].
For the bivariate case, let x1 and x2 be continuous random variables that represents two
bond returns with marginal distribution function F1(x1) and F2(x2); and let H(x1,x2) be
a joint distribution and C() be a copula cumulative distribution function that completely
describes the dependence structure between the two series

H (x1,x2) =C (F1(x1),F2(x2)) . (2.1)

If F1(x1) and F2(x2) are continuous, then the copula C associated with H is unique and
may be obtained by

C (u1,u2) = H
(
F−1

1 (u1),F−1
2 (u2)

)
, (2.2)

where u1 and u2 are cumulative distribution function of standardized residuals which are
all uniform on the interval [0,1]. Usually, we can measure the dependence of the random
variable by θC. F−1

1 (u1) and F−1
2 (u2) are inverse cumulative distribution functions.

2.2 Logistic Smooth Transition Copula
We now present our nonlinear dependence structure copula model called Logistic

smooth transition (LST) copula. Although our model can have more than two regimes,
we only focus on the simple two-regime case throughout the study. This model combines
the copula theory with Smooth Transition model of Silvennoinen and Teräsvirta [3]. Ba-
sically, the model is constructed in a similar way as introduced in the Markov Switching
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copula model, but the Hamiltons filtered probability (Hamilton, [6]) is replaced by logis-
tic cumulative distribution function. This function is used as a smooth transition function
in order to allow the copula parameter to switch across the regimes. We generalize the
1 regime copula dependence in Eq. (2.1) by introducing the logistic transition function
G(vt ,γ,τ) which is assumed to be continuously differentiable with respect to the speed
or smoothness (γ) and threshold (τ) parameters. Our model can be specified using the
following model

C
(
u1,u2

∣∣θC
S ,γ,τ

)
= G(vt ,γ,τ)t ·H

(
F−1

1 (u1),F−1
2 (u2)

∣∣θC
S=1

)
+

(1−G(vt ,γ,τ)t) · H
(
F−1

1 (u1),F−1
2 (u2)

∣∣θC
S=2

) , (2.3)

where θC
S is the regime-dependent parameter with value assumed to be θC

S=1 for high
dependence regime and θC

S=2 for low dependence regime. The logistic transition function
is defined as

G(vt ,γ,τ)t = (1+[−γ(vt − τ)])−1 , (2.4)

where is the threshold variable, which is a generated sequential number between 0 and
1 with equal distance, say vt = [0,0.01,0.02, ...,1]T ., where the length of is equal to the
number of observation T . We generate this threshold variable on the interval [0, 1] due
to the marginal distributions u1 and are uniform in the [0, 1]. Therefore, the threshold
parameter can search the break point between 0 and 1. We note that when γ → ∞, our
model becomes the Sudden switch Threshold copula. When γ → 0, our model becomes
the one regime bivariate copula.

2.3 Estimation
In estimation, two step-estimation or the Inference Function of Margins (IFM) method

(Joe and Xu, [10]) is used in this study as the one step estimation normally could be com-
putationally intensive in the case of large parameter estimates as it requires the param-
eters of the margins and the parameters of the dependence and probability to be jointly
estimated. Generally speaking, the method consists of estimating the parameters of the
univariate marginal distributions in the first step and then using these estimates to estimate
the dependence parameters in the second step. In this study, a AR(1)-GARCH(1,1) (this
model will be explained later) is employed for estimating the marginal distributions in
the first step, while Gaussian, Student-t, Gumbel, Clayton, Frank, or Joe copulas are used
individually as a copula function in the second step.

We can write the likelihood for our problem as follows:

f (y1,y2) = f (φ1 |y1) · f (φ2 |y2) ·
2

∏
S= j

c
(
u1,u2

∣∣θC
S= j,γ,τ

)
, (2.5)

where c(u1,u2

∣∣∣θC
S= j,γ,τ) = ∂C

(
u1,u2

∣∣θC
S ,γ,τ

)
/∂u1∂u2 is the density function of the

logistic smoothed transition bivariate copula in Eq. (2.3). f (φ1 |y1) and f (φ2 |y2) are the
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marginal density function of y1 and y2, respectively. Then, we can write the log-likelihood
as

logf(Θ |y1,y2) = log f (φ1 |y1)+ log f (φ2 |y2) +
2

∑
S= j

logc(u1,u2
∣∣θC

S= j,γ,τ ), (2.6)

where y1 and y2 are bond yields of US and another country. ΘS = {φ1,φ2,θ
C
S ,γ,τ} is the

vector of all unknown parameters in the model. This estimation is straightforward, and
we can estimate each AR(1)-GARCH(1,1) model in the first step:

_

φ m = argmax
θm

T

∑
t=1

log l(φm |ym) ,m = 1,2. (2.7)

We then collect the coefficients in a vector:
_

φ =
{_

φ 1,
_

φ 2

}
and used these marginal param-

eters as the fixed parameters in our full likelihood Eq. 2.6. Thus, in the second step, we
estimate only the two regime dependence parameters and or smoothness (γ) and threshold
(τ) parameters jointly as

_

ΘSt = argmax
_
Φ

T

∑
t=1

[
2

∑
S= j

logc(u1,u2
∣∣θC

S= j,γ,τ ) log l(
_

φ 1 |y1) + log l(
_

φ 2 |y2)

]
(2.8)

Under certain regularity conditions, the IFM estimator verifies the property of asymp-
totic normality and can be seen as a highly efficient estimator compared to the one step
estimation (Joe, [7]).

3 Simulation Study

In this section, we conduct a Monte Carlo simulation study to evaluate the perfor-
mance of our proposed model. We exhibit different dependence structures that can be
included by the LST Copula model and investigate the accuracy of the maximum likeli-
hood estimation method using simulated data. Here, these data are drawn from six copula
families namely Gaussian, Student-t, Gumbel, Clayton, Frank, or Joe copulas. Then, we
simulate the data form the two-regime LST Copula model

C
(
u1,u2

∣∣θC
S ,γ,τ

)
= G(vt ,γ = 20,τ = 0.4)t · H

(
F−1

1 (u1),F−1
2 (u2)

∣∣θC
S=1

)
+

(1−G(vt ,γ = 20,τ = 0.4)t) · H
(
F−1

1 (u1),F−1
2 (u2)

∣∣θC
S=2

) ,

(3.1)
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Table 1: Simulation sesults for Case 1, 2 and 3
T=100 Gaussian Student-t Gumbel Clayton Joe Frank

θC
S=1

0.387
(0.099)

0.350
(0.117)

2.797
(0.313)

0.599
(0.090)

3.069
(0.345)

3.984
(0.890)

θC
S=2

0.089
(0.034)

0.553
(0.395)

1.852
(0.255)

0.351
(0.172)

1.343
(0.276)

1.531
(0.380)

γ
25.055
(3.299)

30.359
(9.259)

50.266
(19.918)

40.336
(16.836)

50.226
(30.506)

9.942
(0.861)

τ
0.344
(0.042)

0.068
(0.377)

0.417
(0.035)

0.353
(0.041)

0.224
(0.121)

0.152
(0.203)

T =500 Gaussian Student-t Gumbel Clayton Joe Frank

θC
S=1

0.635
(0.049)

0.560
(0.044)

2.631
(0.124)

0.515
(0.046)

2.511
(0.146)

3.405
(0.391)

θC
S=2

0.135
(0.055)

0.048
(0.101)

1.530
(0.096)

0.303
(0.079)

1.693
(0.142)

1.203
(0.261)

γ
17.760
(2.578)

10.286
(5.266)

32.859
(0.120)

33.156
(10.226)

34.589
(6.569)

11.511
(8.323)

τ
0.337
(0.085)

0.330
(0.064)

0.321
(0.027)

0.367
(0.061)

0.360
(0.026)

0.251
(0.106)

T =1000 Gaussian Student-t Gumbel Clayton Joe Frank

θC
S=1

0.540
(0.027)

0.567
(0.030)

2.565
(0.085)

0.549
(0.031)

2.682
(0.109)

2.667
(0.269)

θC
S=2

0.107
(0.055)

0.090
(0.081)

1.579
(0.082)

0.329
(0.058)

1.505
(0.125)

1.261
(0.163)

γ
20.216
(0.022)

10.026
(4.392)

23.277
(0.099)

20.006
(0.002)

26.088
(0.637)

15.126
(2.556)

τ
0.353
(0.015)

0.365
(0.031)

0.298
(0.026)

0.357
(0.052)

0.361
(0.019)

0.312
(0.022)

( ) denotes standard error

Consider three scenarios as follows:
1. Case 1: Gaussian and Student-t dependence parameters for regime 1 and

2 are, respectively, set to be θC
S=1 = 0.4 and θC

S=2 = 0.1. In the case of
Student-t copula, we set degree of freedom of this copula to be 5 for both
regimes

2. Case 2: Clayton dependence parameters for regime 1 and 2 are, respectively,
set to be θC

S=1 = 0.5 and θC
S=2 = 0.3.

3. Case 3: Gumbel, Frank, and Joe dependence parameters for regime 1 and
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2 are, respectively, set to be θC
S=1 = 2.5 and θC

S=2 = 2.

We simulated 100 bivariate data sets using the aforementioned parameters. Sample
size T=100, 500, and 1,000 are used for all cases. We then fitted the simulated data sets
and obtained the average of 100 parameter estimates and their standard deviations.
Table 1 presents the simulated results where columns denote the averages of 100 parame-
ter estimates and their standard deviations shown in the bracket for each copula family. It
is found that the mean parameters are close to the true values and become closer when the
sample size increases. The standard deviations are lower when the sample size increases.
The two-regime copula parameters are estimated with a considerably high degree of accu-
racy. Only some estimated smooth parameters are found not close to the true values. This
simulation study of the estimation method indicates that the two-stage estimation method
tends to have a reliable and accurate prediction. Moreover, if a larger sample size is used,
the higher degree of precision should be obtained.

4 Empirical Study

4.1 Data and Summary Statistics

In this study, we aim to examine the nonlinear dependence structure between the US
bond yields and bond yields of six advanced countries. Therefore, our data consists of
seven government bond returns of advanced countries. We collect monthly 10-year gov-
ernment bond returns of seven G7 member countries namely United States (US), Canada,
France, United Kingdom (UK), Italy, Japan and Germany. The time period spans from
the January 1991 to December 2017. with a total of 331 observations per country. The
summary of descriptive statistics is illustrated in Table 2.

Table 2: Data description
France US UK Canada Italy Japan Germany

Mean -0.002 -0.077 -0.004 -0.003 -0.003 0.010 0.069
Median -0.009 -0.012 -0.007 -0.006 -0.007 -0.019 -0.011

Maximum 1.043 6.000 0.308 0.270 0.340 5.000 18.000
Minimum -0.561 -11.000 -0.270 -0.176 -0.169 -1.684 -1.154
Std. Dev. 0.118 0.976 0.059 0.056 0.061 0.369 1.085
Skewness 4.724 -5.656 0.422 0.840 1.574 7.601 14.572

Kurtosis 44.327 66.806 8.474 6.955 9.986 107.207 233.141
ADF-test [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

[ ] is Maximum Bayes Factor (MBF)
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Figure 1: Nominal yields on long term government bonds over the past 30 years

Table 2 shows a statistical description and test including mean, median, maximum,
minimum, standard deviation, skewness, kurtosis and Augmented Dickey Fuller (ADF)
unit root test. The statistics points out that the average bond returns are smaller than their
standard deviations, indicating relatively high risks in G7 bond markets. We observe that
the means of bond returns of France, US, UK, Canada, Italy are positive. On the other
hands, the means of Japan and Germany are negative. The volatility of bond returns of
US and Germany are relatively high when compared to other markets. Furthermore, all
returns have a distribution that is slightly right-tailed (positive skewness), except for US.
Their kurtosis values are higher than the kurtosis value of the normal distribution (3).
These characteristics indicate non-normality, asymmetry, and heavy tails for all series.
Finally, stationary test is conducted, and the results show that our returns are strongly
stationary, according to the zero Maximum Bayes Factor (MBF).

The modeling procedure adopted follows the steps described in Section 2. First the
AR(1)-GARCH(1,1) with Student-t is estimated to obtain the standardized volatility for
all bond returns. Then, the LST copula is conducted to measure the dependence between
the volatility of US bond and those of other bond markets.
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4.2 Marginal Distribution Modeling
Next, we discuss the specification of marginal models. In this study, we use AR(1)-

GARCH(1,1) as the marginal model for the first step of two-stage maximum likelihood.
Specifically, the model is expressed as

yt = a0 +a1yt−1−a2εt−1 + εt , (4.1)

εt = σtzt , (4.2)

σ
2
t = w+αε

2
t−1 +βσ

2
t−1, (4.3)

Where σ2 is conditional variance obtained from the GARCH(1,1) process in Eq. (4.3).
φ = {a0,a1,a2,w,α,β ,ν} is the vector of model parameters, where ν is the shape pa-
rameter of Student-t distribution. zt is a standardized residual which is assumed to have
Student-t distribution. Then, the standardized residuals are to be transformed into a uni-
form distribution in (0,1) using cumulative Student-t distribution. We note that these
marginal parameters are plugged in the full likelihood of the LST copula and then esti-
mate the dependence parameter in two regimes.

Table 3: Marginal estimation results
a0 a1 w α β ν

France -0.016 0.241 0.006 0.648 0.351 2.760
(0.007) (0.055) (0.002) (0.149) (0.078) (0.244)

US -0.009 0.303 0.000 0.328 0.671 4.708
(0.003) (0.058) (0.000) (0.105) (0.082) (1.200)

UK -0.004 0.302 0.000 0.185 0.801 27.058
(0.003) (0.056) (0.000) (0.075) (0.091) (44.124)

Canada -0.006 0.214 0.000 0.061 0.938 6.346
(0.003) (0.055) (0.000) (0.031) (0.053) (2.109)

Italy -0.006 0.266 0.000 0.192 0.796 9.098
(0.003) (0.057) (0.000) (0.082) (0.088) (4.364)

Japan -0.016 0.101 0.002 0.639 0.360 3.522
(0.004) (0.059) (0.001) (0.161) (0.103) (0.570)

Germany -0.010 0.244 0.001 0.659 0.340 3.152
(0.003) (0.060) (0.000) (0.147) (0.074) (0.393)

( ) denotes standard error

The results of the marginals estimation are presented in Table 3. Apparently, the
sum of the estimated parameters α + β is close to 1 for all cases. This means that the
unconditional variance of the error terms is finite where the conditional variance evolves
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over time and is persistent. The estimated shape parameters of the Student-t distribution
indicate the benefits of employing Student-t distribution to approximate the true shape
of our returns. We then transform the standardized residuals generated from AR(1) -
GARCH(1,1) model through the cumulative Student-t distribution. These uniform series
are later used to model the dependence structure between the marginal distributions of
each pair of US bond and an advanced bond market.

4.3 Model Comparison and the Estimation Results
Before discussing the empirical results, this study estimates the 1-regime copula

model, including Gaussian, Student-t, Gumbel, Clayton, Frank, or Joe copulas. Then,
we compare the performance of our proposed model to these single regime models by
solely looking at the information criterion (AIC, BIC) approach as reported in Table 4. It
is found that four out of six pairs (the US against France, UK, Canada, and Germany) are
in favour of the 2-regime model as they have lower AIC and BIC compared to the single
regime model. This result indicates that there exists a nonlinear dependence structure
between bond markets and 1-regime copula which has been intensively employed in the
literature may not be reliable in some financial markets. When considering the copula
functions, we find the evidence that Frank copula yields the lowest AIC and BIC in US-
UK, US-Italy and US-Germany pairs, Joe for US-Japan pair Student-t for US-France pair
and Gaussian for US-Canada pair.

Table 5 presents the parameter estimates, Kendalls tau, tail dependence and robust
standard errors. Details of how to compute from a theoretical Kendalls tau and tail de-
pendence can be found in Joe [11]. Table 5 presents the estimated results of the best
fitting models. We note that τ and γ are the threshold and speed or smooth parameter,
respectively. We can see that the threshold parameter is 0.6852 for the pair of US-France,
0.6602 for US-UK, 0.6530 for US-Canada and 0.6562 for US-Germany. Interestingly,
the threshold parameters of these four pairs are slightly different, though we expect that
there might be a similar pattern of government bond yields in G7. The 2-regime es-
timated dependence parameters for US-France, US-UK, US-Canada, US-Germany, and
the 1-regime estimated dependence parameters for US-Italy and US-Japan are reported in
Table 5. First, let us consider US-Italy and US-Japan pairs, the dependence -measured
by Kendalls tau- of US-Italy pair is higher than the US-Japan pair. It indicates the close
relationship between the monetary policy of the US and Italy. For the other four pairs, the
best fitting copula is LST copula. We can observe that the dependence between US bond
yields and other bond yields in the 2-regimes model are different where the dependence
of the 1-regime model is higher than that of the 2-regime model for all pairs. US-France is
the only case in which we have an evidence of a tail dependence structure across regimes.
This indicates a strong dependence between the US and France bond yields in the extreme
event, such as economic boom and bust. Likewise, we also find that the US-Canada pair
is the only case that exhibits a different sign of dependence between the two regimes. The
theoretical Kendalls tau is 0.5086 for regime 1 switching to -0.0135 in the regime 2. This
case provides strong evidence of switching parameters between regimes.
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Figure 2 reports the estimated transition functions where the vertical axis is proba-
bility and the horizontal axis is time. This figure illustrates that the level of dependence
between the interest rates of the four advanced countries and the US switch from the low
dependence regime to the high dependence regime almost at the same time, i.e. during
2007-08 and later for the pair of the US-France. This period coincides with the financial
crisis in 2007-2008 known as the global financial crisis. The plots of the estimated tran-
sition show that the level dependency is stronger during this period as confirmed by the
greater magnitude of Kendalls tau values as presented in Table 5. However, the switching
does not suddenly happen but gradually occurs as a smooth transition. This is likely to
happen in most economic situations.

Table 4: Model Comparison
2-regime Gaussian Student-t Clayton Gumbel Joe Frank
US vs. France -54.82 -62.35 -39.73 -54.88 -47.11 -36.57

-39.65 -47.18 -24.56 -39.71 -31.93 -21.4
US vs. UK -65.84 -42.34 -31.59 -58.88 -44.72 -74.72

-50.67 -27.17 -16.42 -43.71 -29.55 -59.55
US vs. Canada -63.94 -37.97 -43.24 -48.6 -32.55 -60.46

-48.77 -22.8 -28.07 -33.43 -17.37 -45.29
US vs. Italy 5.13 35.35 4.8 4.17 4.35 14.95

20.3 50.52 19.97 19.34 19.52 30.12
US vs. Japan 31.01 31.01 4.05 4.79 6.78 6.23

46.18 46.18 19.23 19.96 21.95 21.4
US vs. Germany -26.67 1.33 -10.1 -14.03 -6.26 -32.35

-11.51 6.51 -5.06 -1.13 8.9 -17.18
1-regime Gaussian Student-t Clayton Gumbel Joe Frank
US vs. France -10.46 -49.08 -11.29 -16.75 -17.56 -11.21

-6.67 -41.5 -7.5 -12.96 -13.76 -7.42
US vs. UK -12.53 -18.42 -4.38 -19.92 -16.21 -21.87

-8.73 -10.84 -0.58 -16.13 -12.41 -18.08
US vs. Canada -12.11 -17.09 -1.83 -18.76 -15.82 19.76

-8.32 -9.51 1.97 -14.96 -12.03 -15.96
US vs. Italy 1.94 5.67 2 2.01 2.01 1.94

5.74 13.26 5.8 5.8 5.8 5.73
US vs. Japan 1.23 3.68 2 1.27 -0.67 1.55

5.02 11.26 5.79 5.07 3.12 5.34
US vs. Germany -9.42 -10.54 -0.8 -11.01 -7.45 -14.56

-5.63 -2.95 3 -7.22 -3.66 -10.76

Note: The first row is AIC value and the second row is BIC value of each model. Bold
number indicates the lowest value.
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Table 5: Estimation results

Model
1-regime
Copula

2-regime Logistic
Smooth Transition Copula

θ θS=1 θS=2 γ τ

US vs. France 0.822 0.569
(Student-t) (0.056) (0.071) 59.189 0.685

[0.614] [0.385] (24.488) (0.028)
{0.472,0.472} {0.246,0.246}

US vs. UK 7.192 0.146
(Frank) (0.146) (0.427) 100.000 0.660

[0.571] [0.016] (51.012) (0.010)
{0.000,0.000} {0.000,0.000}

US vs. Canada 0.717 -0.014
(Gaussian) (0.039) (0.066) 11.226 0.653

[0.509] [-0.021] (0.259) (0.011)
{0.000,0.000} {0.000,0.000}

US vs. Italy 0.086
(Frank) (0.350)

[0.010]
{0.000,0.000}

US vs. Japan 1.0285
(Joe) -0.04

[0.016]
{0.000,0.038}

US vs.Germany 4.577 0.065
(Frank) (0.684) (0.528) 55.265 0.656

[0.429] [0.007] (6.490) (0.011)
{0.000,0.000} {0.000,0.000}

Note: Degree of freedom of Student-t copula are not provided. ( ) is standard error, [ ] is
theoretical Kendalls tau associated with dependence copula parameter. are the lower
and upper tail dependences respectively.

5 Conclusion
The presence of the structural shift in the dependence has been challenged by many

empirical studies, however, the models used to deal with this issue are limited if not
scarce. In this study, we introduce a new nonlinear dependence structure copula called
smooth transition copula model. Unlike the conventional nonlinear dependence model,
e.g. Markov Switching (MS) copula, the smooth transition copula is the regime switching
model in which the transition probability function is governed by the logistic function
with threshold and smooth parameters. The advantage feature of this model is an ability
to capture gradual change and sudden transition of dependence patterns. Therefore, the
model allows the dependence structure between random variables to vary across different
regimes. The two-step maximum likelihood is used in this study to estimate the parame-
ters in GARCH model and the smooth transition copula separately. The accuracy of the
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estimation is proved by the Monte Carlo simulation study and empirical study. The results
show that the two-stage estimation method is accurate and reliable for our model and can
be improved further if a larger data set is used. Finally, we apply our model to investi-
gate the dependence between the US bond yields and the yields of six advanced countries
in G7. Several copula families for both one-regime and two-regime copula models are
compared using the AIC and BIC. It is found that four out of six pairs confirm the supe-
riority of LST copula over the single regime model. According to the empirical results,
this paper provides evidence that the dependence structure between the US bond yields
and other bond yields in G7 changed after the occurrence of the financial crisis in 2007.

 

 

Figure 2: Estimated transition functions over time



134 Thai J. Math. (Special Issue, 2019)/ P. Maneejuk et al.

Acknowledgement : The author would like to thank the research Administration Center,
Chiang Mai University for Financial supports.

References
[1] Patton, A. J. (2012). A review of copula models for economic time series. Journal

of Multivariate Analysis, 110, 4-18.

[2] Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal
of empirical finance, 14(3), 401-423.
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