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Abstract : Proposed is a Markov Switching copula with mixture distribution regimes
for modeling the dependence of agricultural commodity futures. This model involves
different dependence structures that can characterize the dependence behaviors in dif-
ferent regimes as the copula function in each regime can be different from that in an-
other regime. By permitting different copula structure, this model is able to capture more
complex dynamic patterns of daily movement of agricultural commodity futures (sugar,
coffee, corn, wheat and soybean). The criteria as Akaike Information Criterion(AIC),
Bayesian Information Criterion (BIC) and Log-Likelihood (LL) are based in-sample sta-
tistical performance have suggested that our model is superior to the single regime copula
and two-regime Markov Switching copula in 9 out of 10 cases. This result reveals that
the high and the low dependence of agricultural commodity futures exhibit a different
dependence structure.
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1 Introduction
Recently, agricultural commodity futures have experienced somewhat synchronizing

sequences of price trends and large price fluctuations. The rapid adjustments of agricul-
ture commodities were in the spotlight following the food crises in late 2007 and early
2008, and again more recently in summer and fall of 2010 which have brought the issue
about the price volatility into greater attention among researchers and investors in agri-
culture commodity future [1]. The investigation of how agricultural commodity futures
interact with one another is of utmost importance, but the conclusions from previous stud-
ies regarding this issue are not unanimous. There are those who advocate that agricultural
commodity futures exist in positive correlation, while others state just the opposite [2].
Thus, appropriately quantifying this dependence is of great importance in portfolio and
risk management, option pricing and hedging.

Up until now, many empirical studies have shown the importance of several econo-
metric approaches when investigating the links across commodity prices, especially
GARCH and copula-based techniques. These models together are useful for capturing
dependence or contagion effects related to volatility observations. The GARCH models
can incorporate stylized facts of commodity returns, such as conditional heteroscedastic-
ity and excess kurtosis, mostly by considering elliptical distributions. The copula-based
models are a powerful and suitable framework, especially for dealing with nonlinear and
tail dependence between random variables [3]. However, some recent studies raise the
issue of the unsuitability of the time-invariant copula. Two main approaches have been
proposed to deal with this issue. The first allows the parameters in a copula function to
change over time such as dynamic copula of Patton [3] while the second allows the struc-
ture of copula function to shift across states or regimes of the economy such as Rodriguez
[4] and Chollete et al. [5].

Numerous studies found that the estimated correlation coefficient between random
variables will likely suggest a structural change (see, [6], [7], [8]). They found that there
is an increase in correlation during the economic downtrend, while the correlation is low
during economic uptrend. Therefore, the single regime copula approach fails to address
this issue. Hence, we aim to deal with structural shifts in dependence through the Markov
switching copula model. The characteristic of the model is that the copula function is
subject to structural change according to a Hidden Markov process [6]. This approach
permits for variability in the dependence structure, and it assumes that the copula param-
eter shifts across economic regimes [5].

However, the Markov switching copula model, as mentioned in the above paragraph,
which has been limited to analyze the case of mixture distribution regimes. That is this
model generally assumes the same copula function across two or more regimes which may
not true in the reality. Maneejuk et al. [9] suggested that the financial time series could
exhibit a mixture of distributions or populations, as a result of different characteristics
of the data associated with different regimes, for example, distinct economic behaviors
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during economic upturn and downturn. So, we also expect that there might be a different
copula function for different regimes.

Therefore, this study aims to develop the Markov switching of Rodriguez [4] and
Chollete et al. [5] by allowing the different regime to have different copula function. The
model is thus used to uncover the dependence and tail dependence among agricultural
commodity futures where the dependence. may change according to the copula function.
This model can well capture the potential dependence structure changes regime between
positive and negative correlation across the agricultural commodity futures. Also, it pro-
vides complement for research framework to the prior studies that have relied on one
copula regime over the whole sample period. In other words, we will allow the model to
have different copula function across regimes, {1, ...,h}, so, the copula density function,
c(u,v) for regime 1 can be either the same or different for other regimes. To simplify our
analysis, we focus on two-regime Markov Switching model which is mostly implemented
in the literature.

In our approach, in the first step we estimate the marginal distributions, while the
dependence parameter is estimated in a second step through our proposed model. The
GARCH functions as a filter to remove the serial dependence in the conditional means and
conditional variances. Then, several combinations of two copula functions for two-regime
model are estimated. To the best of our knowledge, this is the first attempt to extend
flexibility the Markov Switching copula model. This is to say we allow the possibility
of having two copulas from different copula classes. We then apply it to investigate the
dependence among agricultural commodity futures.

The organization of the paper is the following. Section 2 describes methodology.
Section 3 presents the data description. Section 4 presents estimated results. Section 5
provides some concluding remarks.

2 Methodology
In this section, the dependences between agricultural commodity futures pairs are

modeled using a Markov Switching copula with mixture distribution regimes. In this
study, we use two stage estimation method to estimate our proposed model, this method
is also named as inference for the margins (IFM) [10]. Therefore, we can separate our
estimation into two parts, namely, marginal and copula estimations. In this study, we
employ a simple generalized autoregressive conditional heteroscedasticity (GARCH) with
normal distribution to construct the marginal distributions and our model is used in the
second step. We note that we consider the case of bivariate copula model in order to
simplify our model and reduce the complexity of the model.

2.1 GARCH Model
The margins of agriculture futures series are modelled using GARCH model of Boller-

slev [11]. This enables us to gain some important stylized facts of agriculture returns such
as volatility clustering and also obtain approximate i.i.d. (independent and identically dis-
tributed) residuals that are suitable for further copula approach. Referring to most of the
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previous literature ([6], [7], [8]) we conduct a simple GARCH (1,1) specification which
can be written as

yt = c+ εt = c+σtzt (2.1)

σ
2
t = ω +αεt−1 +βσ

2
t−1, (2.2)

where yt is the futures return, ω is intercept term and σ2 is conditional variance of futures
returns obtained from the GARCH process in Eq. (2.2). c is the constant term of mean
Eq. (2.1). It is quite obvious the structure of GARCH (1, 1) consisting of parameter α

and β which are assumed to be greater than zero and their summation must be less than
1. εt = σtzt is error term where zt is a sequence of i.i.d. random variables with zero mean
and unit variance and assumed to have normally distributed.

2.2 Dependence Modeling through Copula Function
Copula is the function that joins multivariate distribution functions of their uniform

marginal distribution function [12]. Sklar [13] stated that a joint distribution can be fac-
tored into margins and a dependence function called a copula. In the bivariate case, if
we assume x1 and x2 to have bivariate function F and univariate marginal distribution
functions F(x1) and F(x2), then exists a bivariate copula C, such that

F(x1,x2) =C(F(x1),F(x2)) =C(u,v) (2.3)

The copula function C(u,v) is used to capture the dependence structure between
uniform variables u = F(x1)and v = F(x2) . If the marginals are continuous, then C is
uniquely determined on Ran(F(x1))×Ran(F(x2)). Then, to obtain the function (called
copula) density, Eq.(2.3) is differentiated. So, the bivariate copula density function c can
be written by

c(u,v) =
∂C(F1(x1),F2(x2))

∂c(u,v)
. (2.4)

2.3 Families of Copulas
In this subsection, we briefly present the bivariate copula density function used in

this study. Here, we consider two classes, namely Elliptical copulas and Archimedean
copulas.

2.3.1 Elliptical Copulas

Elliptical copulas are suitable for modeling the dependence structure in symmetric
data. This class includes a Gaussian copula and t-copula.

1) Gaussian copula
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Consider a case of two-dimensional copula, the density of the Gaussian copula is
given by [14]

cG(u,v |θG ) =

Φ−1(u∫
−∞

Φ−1(v))∫
−∞

1
2π
√

1−θG
exp
(

x2
1 + x2

2−2θGx1x2

2(1−θ 2
G)

)
dx1x2, (2.5)

where Φ is bivariate standard normal cumulative distribution and θG is the correlation
parameter of copula lying in the interval [−1,1].

2) Students t copula
Students t copula is described as a copula function with fat tail. θT is the parameter of

the copula lying in the interval [−1,1]. t−1
v () denotes the inverse distribution function of

a Student’s t random variable with degree of freedom v. In bivariate case, we can define
the probability density function of the students t copula as

cT (u,v |θT ) =

tv−1(u)∫
−∞

tv−1(v)∫
−∞

1
2π
√

1−θT
exp
(

x2
1 + x2

2−2θT x1x2

v(1−θ 2
T )

)−(v+2)/2

dx1x2, (2.6)

where td(v,0,θT ) is the standard univariate student-t distribution with v degree of free-
dom, mean 0 and variance (v+2)/2.

2.3.2 Archimedean Copulas

In order to capture asymmetric dependency in the tails, we must employ a copula
which separately parameterizes either left or right tail. In the estimation, this class of
copula allows modeling the dependence with only one parameter. The probability func-
tion of the bivariate Archimedean copulas, consisting density of the Clayton, Gumbel,
Ali-Mikhail-Haq (AMH) and Frank. Clayton copula exhibits left-tailed asymmetry and
Gumbel copula exhibits right-tailed asymmetry. Ali-Mikhail-Haq (AMH) copulas ex-
hibits both negative and positive tail dependence. Frank copula is the only symmetric
Archimedean copula.

1) Clayton copula
The Clayton copula is one of the asymmetric copulas exhibiting greater dependence

in a negative tail than the one in a positive. This copula is given by

cC(u,v |θC ) =
(

1+(u−θC − v−θC −1)
)−1/θC

, (2.7)

where θC is the degree of dependence on the value of 0 < θC < ∞. If θC → ∞, the
Clayton copulas will have a positive dependence. But if θC = 0, it will correspond to
independence.

2) Gumbel copula
The density function of Gumbel copula is defined by

cG(u,v |θG ) = exp
(
−
[
(− lnu)θG +(− lnv)θG

])1/θG
, (2.8)

where the parameter θG is the degree of dependence on the value 1 < θG < ∞.
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3) The Ali-Mikhail-Haq (AMH) copulas
The Ali-Mikhail-Haq copula according to Ali et al. (1978) is defined by

cA(u,v |θA ) =
uv

1−θ(1−u)(1− v)
, (2.9)

where θA ∈ [−1,1]. It may be noted that AMH copula is one of the Archimedean copu-
las which has parameter lies on a closed interval between −1 and 1 and describes both,
positive and negative, dependence.

4) Frank copula
The density function of Frank copula can be defined by

cF(u,v |θF ) =−θ
−1
F log

(
1+

(e−θF (u)−1)(e−θF (v)−1)
e−θF −1

)
, (2.10)

where θF is the degree of dependence −∞ < θF < ∞.

2.4 Mixture Regimes Switching Copula Model
As we mentioned in the introduction section, this study proposed Markov Switching

copula with mixture regimes model; therefore, we introduced the model properties and
characteristics in the section. The idea behind this model is like the conventional one but it
is generalized by allowing the copula function to be different across two regimes. That is
the model allows the dependence copula parameter to reflect the real behavior of the data
differently between two regimes. The regime switching is managed by a hidden variable
at time t (St). Let St be the state variable, which is believed to have two states (k = 2),
namely low dependence regime and high dependence regime. The joint distribution of
F(x1,x2) conditional on St , is defined as

F(x1,x2) = Pr(St = 1) ·C1(u,v,θSt=1)+Pr(St = 2) ·C2(u,v,θSt=2), (2.11)

where θSt=1 and θSt=2 are the dependence parameter in regime 1 and 2, respectively. C1(·)
and C2(·)are the copula functions which can be different across two regimes. We expect
that this generalized model could provide more flexibility to the Markov Switching copula
model. Pr(St = 1) is the probabilities of regime 1 at time t. Pr(St = 2) = (1−Pr(St = 1))
is the probabilities of regime 2 at time t. The unobservable regime St is regulated by the
first order Markov chain, which is featured by the following transition probabilities P:

Pi j = Pr(St = j |St = i) and
2

∑
j=1

pi j = 1, i, j = 1,2, (2.12)

where pi j is the probability of switching from regime i to regime j, and these transition
probabilities can be written in the form of a transition matrix as follows:

P =

[
p11 p12 = 1− p11

p21 = 1− p22 p22

]
(2.13)
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As the St is latent variable and Pr(St = 1) and Pr(St = 2) are not observable, thus, we
apply Hamilton’s (1989) filter. Accordingly, the transition probability matrix drives the
regime probabilities which in turn define the density function of the complete dataset.
Explicitly, the filtered process for 2 regimes is defined as

Pr(St = 1 |wt) =
ct(u,v |St = 1,wt−1)Pr[St = 1 |wt−1 ] · p11

∑
2
k=1 ct(u,v |St = k,wt−1)Pr[St = k |wt−1 ]

(2.14)

Pr(St = 2 |wt) = (1−Pr(St = 1 |wt) ) p22, (2.15)

where wt and wt−1 is all parameters and data of our model at time t and t−1, respectively.
This regime probabilities Pr(St = 1 |wt) at time t, conditional on information until time
t are captured by the transition probability matrix P. With this recursive procedure it is
straightforward to forecast the regime probabilities for time t = {1, ...,T}

2.5 Estimation Procedure

Estimation of the model parameters is done by maximum likelihood. The joint condi-
tional density function is obtained by differentiating Eq. (2.11), and thus the full-sample
log-likelihood takes the form

logL = ∑
T
t=1 log f1(ϕ1)+ log f2(ϕ2)+

log [(St = 1) · c1(u,v,θSt=1)+(St = 2) · c2(u,v,θSt=2) ] ,
(2.16)

where f1(ϕ1) and f2(ϕ2) are the conditional marginal density of GARCH (1,1) model in
Eqs. (2.1-2.2), where ϕ = {c,ω,α,β}. c1(u,v,θSt=1) and c2(u,v,θSt=2) are the copula
densities for regime 1 and 2, respectively. We note that the two-stage Maximum Like-
lihood estimation is used in this study as the full log-likelihood in this model may be
difficult to maximize and thus we decompose the log-likelihood of this model into two
parts: GARCH (1,1) and Markov Switching copula. Thus, we first restricted the GARCH
(1,1) part to be regime independent process and estimate the GARCH parameter in the
first step estimation. Then, the obtained parameters in the first step are plug in the full
likelihood Eq. (2.16) as a fixed parameter in the second estimation step.

_
ϕ i = argmax

ϕi

T

∑
t=1

log fi(ϕi), i = 1,2 (2.17)

_

θ = argmax
T

∑
t=1

log [Pr(St = 1) · c1(u,v,θSt=1)+Pr(St = 2) · c2(u,v,θSt=2) ] (2.18)
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3 Data Descriptive Statistics
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Figure 1: Plot of agricultural commodity futures returns

In this paper, our data consist of five agriculture futures prices. Sugar, coffee, corn,
wheat and soybean are selected as the representative for agriculture market. The main
reasons of our data sample selection is that these futures prices are well known and nor-
mally considered as the asset in the portfolios. We use daily data from January 4, 2000
to October 17, 2018. The data were collected from Bloomberg. The descriptive statistics
for agricultural commodity futures returns are reported in Table 1. The skewness statis-
tics show that the returns exhibit either negative or positive skewness. Additionally, the
kurtosis is higher than normal distribution kurtosis (kurtosis=3). This indicates that that
our futures returns may not have a normal distribution. Thus, Jarque-Bera test is used
to confirm our hypothesis. In this study, we use Minimum Bayes factor (MBF) as the
tool for checking the significant result. This MBF can be considered as an alternative of
p-value [16]. The result shows that the MBF values for all series are 0.0000, indicting
a decisive evidence supporting a non-normality of our series. Furthermore, the unit root
test is performed to check whether our data are stationary. As shown by MBF values, we
have a strong evidence for supporting the stationarity of our data. Figure 1 depicts the
historical evolution of return trends for commodities. All the agricultural commodities
have a similar behavioral trend over time.
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Table 1: Data Descrition

SOYBEAN COFFEE CORN SUGAR WHEAT
Mean 0.000 0.000 0.000 0.000 0.000
Median 0.000 0.000 0.000 0.000 0.000
Maximum 0.076 0.166 0.128 0.131 0.088
Minimum −0.138 −0.129 −0.269 −0.136 −0.100
Std. Dev. 0.016 0.021 0.018 0.021 0.020
Skewness −0.824 0.230 −0.618 −0.156 0.156
Kurtosis 8.723 6.653 15.969 6.084 4.919
Jarque-Bera 7242.835 2768.232 34659.890 1962.341 771.837
MBF Jarque-Bera 0.000 0.000 0.000 0.000 0.000
Probability 0.000 0.000 0.000 0.000 0.000
Unit Root −69.672 −71.635 −68.869 −70.289 −69.931
MBF Unit Root 0.000 0.000 0.000 0.000 0.000

Note: MBF computed by MBF01(p) =
{
−exp(1)p log p for p < 1/exp(1)

1 for p≥ 1/exp(1) , where p is

p− value (see [17] and [18])

4 Empirical Results

4.1 Univariate Results

Table 2: GARCH (1,1) estimation results

Parameter Sugar Coffee Corn Wheat Soybean

σ2 −0.000047
(0.9853)

−0.000107
(0.9263)

0.00014
(0.8129)

0.000089
(0.9391)

0.000239
(0.4429)

ϖ
0.000003
(0.0012)

0.000006
(0.0000)

0.000003
(0.3155)

0.000002
(0.0031)

0.000003
(0.0566)

α
0.03485
(0.0000)

0.032562
(0.0000)

0.047929
(0.0000)

0.032961
(0.0000)

0.060813
(0.0000)

β
0.958884
(0.0000)

0.954137
(0.0000)

0.946197
(0.0000)

0.961327
(0.0000)

0.927468
(0.0000)

Note: () is MBF, MBF computed by MBF01(p) =
{
−exp(1)p log p for p < 1/exp(1)

1 for p≥ 1/exp(1) ,

where p is p− value (see [17] and [18])
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Table 2 reports the estimates for the conditional marginal distributions of the daily
log returns of agriculture commodity futures. The results of GARCH (1,1) show that
α +β of each data are quite close to unity indicating a high volatility persistence. These
results indicate that our returns have long-run persistence and there are volatility shock
effects in our returns. In this study, we use Minimum Bayes Factor (MBF) as the tool for
checking the significant result. This MBF can be considered as an alternative of p-value
(Held and Ott, 2016). If 1¡MBF ¡1/3, 1/3¡MBF¡1/10, 1/10¡MBF¡1/30, 1/30¡MBF¡1/100,
1/100¡MBF¡1/300 and MBF¡1/300, there are a chance that the MBF favors the weak
evidence, moderate evidence, substantial evidence, strong evidence, very strong evidence
and decisive evidence for H1 : β 6= 0 respectively.

Table 3: Model Selection

Agriculture pair Single regime
Copula

Criteria

AIC BIC LL
Sugar-Coffee Frank −254.36 −247.87 128.18
Sugar-Corn AMH −111.3 −104.81 56.65
Sugar-Wheat AMH −105.24 −98.74 53.62
Sugar-Bean AMH −127.41 −120.92 64.71
Coffee-Corn Frank −116.31 −109.81 59.15
Coffee-Wheat Gaussian −120.33 −113.83 61.17
Coffee-Bean Student-t −141.52 −128.53 72.76
Corn-Wheat Student-t −2588.9 −2575.9 1296.45
Corn-Bean Student-t −2086.96 −2073.97 1045.48
Wheat-Bean Student-t −960.06 −947.07 482.03

Table 4: Model Selection (continue)

Agriculture pair Markov Switching copula Criteria

regime 1 regime 2 AIC BIC LL
Sugar-Coffee Frank Frank −789.81 −784.48 398.9
Sugar-Corn Clayton Clayton −256.51 −251.19 132.26
Sugar-Wheat Clayton Clayton −342.01 −336.68 175
Sugar-Bean Clayton Clayton −205.46 −200.14 106.73
Coffee-Corn Student-t Student-t −262.32 −267.65 127.16
Coffee-Wheat Student-t Student-t −205.44 −210.77 98.72
Coffee-Bean Gaussian Gaussian −192.88 −187.55 100.44
Corn-Wheat Gaussian Gaussian −2697.41 −2692.08 1352.7
Corn-Bean Gaussian Gaussian −2219.3 −2213.97 1113.65
Wheat-Bean Student-t Student-t −1989.16 −1983.83 998.58
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Table 5: Model Selection (continue)

Agriculture
pair

Markov Switching copula
with mixture regimes Criteria

regime 1 regime 2 AIC BIC LL
Sugar-Coffee Gumbel Frank −792.79 −787.46 400.39
Sugar-Corn Frank AMH −343.97 −338.64 175.98
Sugar-Wheat Frank AMH −399.86 −394.53 203.93
Sugar-Bean Clayton Gaussian −238.18 −232.86 123.09
Coffee-Corn Clayton Frank −257.91 −252.58 132.95
Coffee-Wheat Gaussian Frank −355.04 −349.71 181.52
Coffee-Bean Gaussian Clayton −196.72 −191.39 102.36
Corn-Wheat Clayton Frank −2782.9 −2777.58 1395.45
Corn-Bean Frank Clayton −2232.14 −2226.82 1120.07
Wheat-Bean AMH Student-t −2103.84 −2098.51 1055.92

Table 3-5 report model selection by AIC, BIC and Log-Likelihood (LL) criteria for
the comparison of various copula specifications. Ten pairs of agriculture futures margins
are investigated in our analysis (see, Column 1 of Table 3). In this study, six single regime
copulas, six conventional Markov Switching copula, and thirty Markov Switching copula
with mixture regimes are compared. All copula models are estimated using the same
residuals which result from the filtering with univariate GARCH models. As we need to
deal with many model specifications copula models and our page space is limited, thus,
in this section, the best fit model of single regime copula, conventional Markov Switching
copula and Markov Switching copula with mixture regimes classes. The best fit models
for each pair are presented in each row. As shown in Table 3-5, we find that our proposed
model is superior to the two conventional models with respect to AIC, BIC and LL in
the most pairs, except for Coffee-Corn pair. This result indicates that the dependence
structure between two regimes can be different. This is to say; the dependence structure
of each regime could be explained by different copula functions. This result confirms the
higher performance of our proposed model in these applications.

Table 6 presents the estimated results for the best fit models for each pair of agricul-
tural commodities. Columns 2 and 3, present the copula parameter estimates for both two
regimes, while Columns 4-5, provide the theoretical Kendalls tau value corresponding to
the bivariate copula parameter value. Columns 6-9 provide the theoretical tail dependence
coefficients corresponding to the bivariate copula parameter value. The computation of
these Kendalls tau value and tail dependence coefficient are referred to Joe [19]. The re-
sults show that all the copula parameters show a positive correlation for both two regimes,
however, the degree of dependence between regime 1 and 2 are different. We observe that
the positive values of regime 1 are larger than regime 2. This indicates that regime 1 can
be viewed as high dependence regime, while regime 2 can be viewed as low dependence
regime. However, it is difficult to interpret the results from the copula parameter, so we
can explain the correlation for each pair based on the Kendalls tau value and tail depen-
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dence coefficient. Corresponding to copula parameter results, we also obtain the positive
correlation for all agriculture commodity pairs.

To gain more insight regarding the optimal copulas listed in Table 6, we consider next
their implied tail dependence. The tail dependence measures the probability of simultane-
ous large losses or profits in both assets, which is a good indicator of systemic risk under
extreme market conditions, say turmoil and peak markets. In general, the values of either
upper or lower tail dependence are positive. It means the degree of co-movement when
agriculture commodities futures are under the extreme movements in the same direction.

Table 6: Dependence and Tail dependence of 5 Agriculture futures pairs

Pairs of agriculture
Copula parameter Dependence Tail dependence

regime 1 regime 2 regime 1 regime 2
regime 1 regime 2

lower upper lower upper
Sugar-Coffee
(Gumbel-Frank)

88.217 1.495 0.989 0.055 0.000 0.992 0.000 0.000

Sugar-Corn
(Frank-AMH)

50.780 0.404 0.226 0.101 0.000 0.000 0.000 0.000

Sugar-Wheat
(Frank-AMH)

73.392 0.384 0.097 0.095 0.000 0.000 0.000 0.000

Sugar-Soybean
(Clayton-Gaussian)

69.967 0.132 0.972 0.085 0.990 0.000 0.000 0.000

Coffee-Corn
(Clayton - Frank)

10.313 0.965 0.838 0.106 0.764 0.764 0.083 0.083

Coffee-Wheat
(Gaussian-Frank)

0.137 99.488 0.087 0.960 0.000 0.000 0.000 0.000

Coffee-Soybean
(Gaussian-Clayton)

0.304 0.017 0.197 0.009 0.000 0.000 0.000 0.000

Corn-Wheat
(Clayton-Frank)

14.304 5.074 0.877 0.461 0.952 0.000 0.000 0.000

Corn-Soybean
(Frank-Clayton)

4.615 82.916 0.432 0.314 0.468 0.000 0.000 0.000

Wheat-Soybean
(AMH- Student-t)

0.723 0.583 0.203 0.155 0.000 0.000 0.103 0.103

() presents the copula function
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Table 7: The transition probability parameters

Pair of agriculture regime 1 regime 2 p11 p22

Sugar-Coffee Frank Gumbel 0.1066 0.9617
Sugar-Corn Frank AMH 0.0145 0.9548
Sugar-Wheat Frank AMH 0.0001 0.956
Sugar-Soybean Clayton Gaussian 0.0001 0.9585
Coffee-Corn Clayton Frank 0.0001 0.9625
Coffee-Wheat Gaussian Frank 0.9587 0.0423
Coffee-Soybean Gaussian Clayton 0.9986 0.9983
Corn-Wheat Frank Clayton 0.9577 0.0191
Corn- Soybean Clayton Frank 0.0112 0.9559
Wheat- Soybean Student-t AMH 0.9824 0.9901

The probability of staying in regime 1 and 2 are provided in Table 7. p11 is the
probability of being in the low dependence regime at time t that is conditional on being
in the same regime at t−1 while p22 is defined as the probability of the high dependence
regime. This table reports the transition probability parameters of 10 pairs of agriculture
commodity futures. The estimated transition probabilities of p11 and p22 are mostly close
to 1, except for p11 of Sugar-Corn, Sugar-Wheat, Sugar-Soybean, Sugar-Coffee , and
Coffee-Corn and p22 of Corn-Wheat. These results reveal that the probability of staying in
the same regime is, in the most cases, highly persistent. However, it is interesting to have
a low regime persistency for Sugar-Corn, Sugar-Wheat, Sugar-Soybean, Sugar-Coffee,
Coffee-Corn and Corn-Wheat pairs. So, we may say that the dependence of Sugar and
other agricultural commodity futures may not be stable in the high dependence regime.
Intuitively, the dependence between Sugar and the others are quite low and the duration
of staying in the high dependence regime is lower than the low dependence regime.

Lastly, our results show the high performance of our model over the conventional
models. Our study can confirm that there is a heterogenous dependence structure between
high and low dependence regimes. Therefore, using the same copula structure for both
regimes may lead to unreliable dependence results.

5 Conclusion
In this study, we allow the dependence structure of a random variables to be different

across two regimes. We generalize the Markov Switching copula which assumes that
the dependence function is the same for regime 1 and regime 2. To achieve this goal,
we consider six copulas from two classes of copula function, namely Archimedean and
Elliptical copulas. Several copula combinations are introduced to our proposed model. To
show the performance of our proposed model, we apply the model to study the agricultural
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commodity futures: sugar, coffee, corn, wheat and soybean. From these data sets, we
conduct ten pairs of futures in our analysis.

We compare the performance of our model with another two conventional models,
namely single regime copula, two-regime Markov Switching copula models. The com-
parison criteria used in this study are log-likelihood, AIC and BIC. To choose the best
model, we will look at the minimum AIC and BIC and maximum log-likelihood. The re-
sults have suggested that the Markov Switching copula with mixture distribution regimes
model is superior to the single-regime copula and two-regime Markov Switching copula
model. We find that 9 out of 10 cases prefer our proposed model.

Finally, we mention that the dependence between agriculture commodity futures have
a specific feature in the sense that a different copula structure is detected across two
regimes. There is however a time varying dependence for random variables along the sam-
ple period, and this study does not account for. In the future research, Markov Switching
dynamic copula may be applied to the time-varying analysis.
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