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1 Introduction.

Throughout this paper, we denote the set of all fixed points of a mapping T
by F (T ), T 0 = E, where E denotes the mapping E : C → C defined by Ex = x,
respectively.

Let C be a nonempty subset of a real normed linear space X. Let T be a
self-mapping of C. T is said to be asymptotically nonexpansive if there exists a
real sequence {λn} ⊂ [0, +∞), with limn→∞λn = 0, such that ‖Tnx − Tny‖ ≤
(1 + λn)‖x− y‖, for all x, y ∈ C. T is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖,
for all x, y ∈ C.

It was proved in [3] that if X is uniformly convex and if C is bounded closed
convex subset of X, then every asymptotically nonexpansive mapping has a fixed
point.

Let T, I : C → C, then T is called I-quasi nonexpansive on C if ‖Tu − f‖ ≤
‖Iu − f‖ for all u ∈ C and f ∈ F (T ) ∩ F (I). T is called I-asymptotically quasi-
nonexpansive if there exists a sequence {λ′k} ⊂ [0,∞) with limk→∞λ′k = 0 such
that ‖T ku− f‖ ≤ (λ′k +1)‖Iku− f‖ for all u ∈ C and f ∈ F (T )∩F (I) and k ≥ 1.

In 2005, Khan and Hafiz [5] introduced the following iterative scheme with
errors for a pair of nonexpansive mappings as follows: for any given x1 ∈ C,

xn+1 = anSyn + bnxn + cnun,
yn = a′nTxn + b′nxn + c′nvn,

n ≥ 1, (1.1)
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where {an}, {bn}, {cn}, {a′n}, {b′n}, {c′n} are real sequences in [0, 1) with an + bn +
cn = 1 = a′n + b′n + c′n and {un}, {vn} are bounded sequences in C.

In 2006, Jeong and Kim [4] generalize the scheme (1.1) for a pair of asymp-
totically nonexpansive mappings.

In the past few decades, many results on fixed points of asymptotically non-
expansive, quasi-nonexpansive and asymptotically quasi-nonexpansive mappings
have been obtained in Banach space and metric spaces (see, e.g., [2,6,7]). Very
recently, Temir and Gul [9] obtained the weakly almost convergence theorems for
I-asymptotically quasi-nonexpansive mapping in Hilbert space. Tian, Chang and
Huang [10] got the strong convergence for a finite family of non-self asymptotically
quasi-nonexpansive-type mappings in Banach spaces.

Definition 1.1. Let T : C → C be an I-asymptotically quasi-nonexpansive
mapping, I be a asymptotically nonexpansive mapping on C, where C is nonempty
closed convex subset of a Banach space X. Then Ishikawa iterative scheme with
errors is the sequences of {xn} defined by, for given x0 ∈ C,

yn = α′nTnxn + β′nxn + γ′nvn,
xn+1 = αnInyn + βnxn + γnun,

n ≥ 0, (1.2)

where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n} are real sequences in (0,1) with αn+βn+
γn = 1 = α′n + β′n + γ′n and {un}, {vn} are bounded sequences in C.

In this paper, we show that scheme (1.2) converges strongly to a common
fixed point of I−asymptotically quasi-nonexpansive mappings in uniformly convex
Banach spaces ( in section 3) or in Banach spaces ( in section 4).

2 Preliminaries.

Definition 2.1. Let X be a Banach space, C a nonempty subset of X. Let
T : C → C. Then T is said to be

(1) demiclosed at y if whenever {xn} ⊂ C such that xn ⇀ x ∈ C and Txn → y
then Tx = y.

(2) semi-compact if for any bounded sequence {xn} in C such that ‖xn −
Txn‖ → 0 as n → ∞, there exists a subsequence {xnk

} of {xn} such that {xnk
}

converges strongly to some x∗ in K.
(3) completely continuous if the sequence {xn} in C converges weakly to x0

implies that {Txn} converges strongly to Tx0.
(4) uniformly L-Lipschitzian mapping if for arbitrary x, y ∈ C, we have ‖Tnx−

Tny‖ ≤ L‖x− y‖, where n = 1, 2, · · · and L is a positive constant.
We restate the following lemmas which play important roles in our proofs.
Lemma 2.1 [5]. Let {αn}, {βn}, {γn} and {µn} be four nonnegative real se-

quences satisfying αn+1 ≤ (1+γn)(1+µn)αn +βn, for all n ≥ 1. If
∑∞

n=1 µn < ∞,∑∞
n=1 γn < ∞ and

∑∞
n=1 βn < ∞, then limn→∞αn exists.
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Lemma 2.2 [1]. Let X be a real uniformly convex Banach space, C a
nonempty closed convex subset of X. If T is asymptotically nonexpansive mapping
of C into itself, then E − T is demiclosed at zero.

Lemma 2.3 [8]. Let C be a nonempty closed bounded and convex subset of a
uniformly convex Banach space X. Let 0 < b ≤ ln ≤ c < 1, ∀n ≥ 1, and let {xn}
and {yn} be two sequences in C with lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a,
and limn→∞ ‖lnxn + (1− ln)yn‖ = a, where a ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

3 Strong convergence for I-asymptotically quasi-
nonexpansive mappings in uniformly convex Ba-
nach spaces

Lemma 3.1. Let C be a nonempty closed convex subset of uniformly convex
Banach space X. Let T : C → C be an I-asymptotically quasi-nonexpansive
mapping with sequence {ln} ⊆ [1,∞) such that

∑∞
n=1(ln − 1) < ∞, I be an

asymptotically nonexpansive mapping on C with sequence {kn} ⊆ [1,∞) such
that

∑∞
n=1(kn − 1) < ∞. Suppose the sequence {xn} is generated by (1.2), where∑∞

n=1 γn < ∞,
∑∞

n=1 γ′n < ∞. If F1 = F (T ) ∩ F (I) 6= ∅, then limn→∞‖xn − x∗‖
exists for any x∗ ∈ F1.

Proof. Since {un}, {vn} are bounded sequences in C, there exists M > 0
such that ‖un − x∗‖ ≤ M, ‖vn − x∗‖ ≤ M , for all n ∈ N and x∗ ∈ F1. Setting
kn = 1 + rn, ln = 1 + sn. Since

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞, so∑∞

n=1 rn < ∞,
∑∞

n=1 sn < ∞. For any x∗ ∈ F1, we have

‖xn+1 − x∗‖ = ‖αnInyn + βnxn + γnun − x∗‖
≤ αn‖Inyn − x∗‖+ (1− αn − γn)‖xn − x∗‖+ γn‖un − x∗‖
≤ αn(1 + rn)‖yn − x∗‖+ (1− αn − γn)‖xn − x∗‖+ γnM

≤ αn(1 + rn)‖α′n(Tnxn − x∗) + (1− α′n − γ′n)(xn − x∗) + γ′n(vn − x∗)‖
+(1− αn − γn)‖xn − x∗‖+ γnM

≤ αnα′n(1 + rn)(1 + sn)‖Inxn − x∗‖+ αn(1 + rn)‖(1− α′n − γ′n)(xn − x∗)
+γ′n(vn − x∗)‖+ (1− αn − γn)‖xn − x∗‖+ γnM

≤ αnα′n(1 + sn)(1 + rn)2‖xn − x∗‖+ αnγ′n(1 + rn)M
+αn(1− α′n − γ′n)(1 + rn)‖xn − x∗‖+ (1− αn − γn)‖xn − x∗‖+ γnM

≤ αnα′n(1 + sn)(1 + rn)2‖xn − x∗‖+ αn(1− α′n)(1 + rn)2(1 + sn)‖xn − x∗‖
+αnγ′n(1 + rn)M + (1− αn)(1 + rn)2(1 + sn)‖xn − x∗‖+ γnM

≤ (1 + rn)2(1 + sn)‖xn − x∗‖+ (1 + rn)αnγ′nM + γnM.

Since
∑∞

n γn < ∞,
∑∞

n γ′n < ∞, thus it follows from Lemma 2.1 that limn→∞ ‖xn−
x∗‖ exists. This completes the proof.

Lemma 3.2. Let X be a uniformly convex Banach space and C be a nonempty
bounded closed convex subset of X. Let T, I, {xn} be same as Lemma 3.1, where
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a ≤ αn ≤ b, a ≤ α′n ≤ b for all n ≥ 0 and some a, b ∈ (0, 1). If T is an uniformly
L-Lipschizian mapping and F1 6= ∅, then limn→∞ ‖Txn − xn‖ = limn→∞ ‖Ixn −
xn‖ = 0.

Proof. By Lemma 3.1, for any x∗ ∈ F1, limn→∞ ‖xn − x∗‖ exists. Assume
limn→∞ ‖xn − x∗‖ = c ≥ 0. Since

‖yn − x∗‖ = ‖α′nTnxn + γ′n(vn − xn) + (1− α′n)xn − x∗‖
≤ α′n‖Tnxn − x∗‖+ γ′n‖vn − x∗‖+ (1− α′n − γ′n)‖xn − x∗‖
≤ α′n(1 + sn)‖Inxn − x∗‖+ γ′n‖vn − x∗‖+ (1− α′n − γ′n)‖xn − x∗‖
≤ α′n(1 + sn)(1 + rn)‖xn − x∗‖+ (1− α′n − γ′n)‖xn − x∗‖+ γ′n‖vn − x∗‖
≤ α′n(1 + sn)(1 + rn)‖xn − x∗‖+ (1− α′n)(1 + sn)(1 + rn)‖xn − x∗‖+ γ′n‖vn − xn‖
≤ (1 + sn)(1 + rn)‖xn − x∗‖+ γ′nM.

Taking limsup on both sides in above inequality, we obtain

lim sup
n→∞

‖yn − x∗‖ ≤ c. (3.1)

Since ‖Inyn − x∗ + γn(un − x∗)‖ ≤ (1 + rn)‖yn − x∗‖ + γnM. By (3.1), we
have lim supn→∞ ‖Inyn − x∗ + γn(un − x∗)‖ ≤ c. And ‖xn − x∗ + γn(un − x∗)‖ ≤
‖xn−x∗‖+γnM, which implies lim supn→∞ ‖xn−x∗+γn(un−x∗)‖ ≤ c. Further,
limn→∞‖xn+1 − x∗‖ = c means that

lim
n→∞

‖αn(Inyn − x∗ + γn(un − x∗)) + (1− αn)(xn − x∗ + γn(un − x∗))‖ = c.

It follows from Lemma 2.3 that

lim
n→∞

‖Inyn − xn‖ = 0. (3.2)

Next,

‖xn − x∗‖ ≤ ‖xn − Inyn‖+ ‖Inyn − x∗‖
≤ ‖xn − Inyn‖+ (1 + rn)‖yn − x∗‖

gives that c = limn→∞ ‖xn−x∗‖ ≤ lim infn→∞ ‖yn− x∗‖. By (3.1) limn→∞ ‖yn−
x∗‖ = c.

Since ‖Tnxn − x∗ + γ′n(vn − x∗)‖ ≤ (1 + sn)(1 + rn)‖xn − x∗‖ + γ′nM and
‖xn − x∗ + γ′n(vn − x∗)‖ ≤ ‖xn − x∗)‖ + γ′nM, we have lim supn→∞ ‖Tnxn −
x∗ + γ′n(vn − x∗)‖ ≤ c and lim supn→∞ ‖xn − x∗ + γ′n(vn − x∗)‖ ≤ c. Further,
limn→∞‖yn − x∗‖ = c means that

lim
n→∞

‖α′n(Tnxn − x∗ + γ′n(vn − x∗)) + (1− α′n)(xn − x∗ + γ′n(vn − x∗))‖ = c

By Lemma 2.3, we have

limn→∞‖Tnxn − xn‖ = 0. (3.3)
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Also,

‖Inxn − xn‖ ≤ ‖Inxn − Inyn‖+ ‖Inyn − xn‖
≤ (1 + rn)‖xn − yn‖+ ‖Inyn − xn‖
= (1 + rn)‖a′n(xn − Tnxn) + γ′n(x∗ − vn) + γ′n(xn − x∗)‖

+‖Inyn − xn‖
≤ α′n(1 + rn)‖xn − Tnxn‖+ γ′n(1 + rn)‖x∗ − vn‖

+γ′n(1 + rn)‖xn − x∗‖+ ‖Inyn − xn‖
≤ α′n(1 + rn)‖xn − Tnxn‖+ γ′n(1 + rn)M

+γ′n(1 + rn)‖xn − x∗‖+ ‖Inyn − xn‖.
Taking limsup on both sides in the above inequality, we have

lim sup
n→∞

‖Inxn − xn‖ ≤ 0.

That is
lim

n→∞
‖Inxn − xn‖ = 0. (3.4)

In addition,

‖xn+1 − xn‖ = ‖αnInyn + (1− αn − γn)xn + γnun − xn‖
= ‖αn(Inyn − xn) + γn(un − x∗) + γn(x∗ − xn)‖
≤ αn‖Inyn − xn‖+ γn(x∗ − xn)‖+ γnM,

thus it follows from (3.2) that

limn→∞‖xn+1 − xn‖ = 0. (3.5)

Hence,

‖Txn − xn‖ ≤ ‖Tnxn − xn‖+ ‖Tnxn − Txn‖
≤ ‖Tnxn − xn‖+ L‖Tn−1xn − xn‖
≤ ‖Tnxn − xn‖+ L‖Tn−1xn − Tn−1xn−1‖

+L‖Tn−1xn−1 − xn‖
≤ ‖Tnxn − xn‖+ L2‖xn − xn−1‖

+L‖Tn−1xn−1 − xn−1‖+ L‖xn−1 − xn‖,
By (3.3) and (3.5), we have

limn→∞‖Txn − xn‖ = 0. (3.6)

On the other hand,

‖Ixn − xn‖ ≤ ‖Inxn − xn‖+ ‖Inxn − Ixn‖
≤ ‖Inxn − xn‖+ k1‖In−1xn − xn‖
≤ ‖Inxn − xn‖+ k1‖In−1xn − In−1xn−1‖+ k1‖In−1xn−1 − xn‖
≤ ‖Inxn − xn‖+ k1kn−1‖xn − xn−1‖+ k1‖In−1xn−1 − xn−1‖

+k1‖xn−1 − xn‖,
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by (3.4) and (3.5), we have

limn→∞‖Ixn − xn‖ = 0. (3.7)

This completes the proof.
Theorem 3.3. Let X be a uniformly convex Banach space and C, T, I, {xn}

be same as in Lemma 3.2. If I is a semi-compact mapping and F1 6= ∅, then {xn}
converges strongly to a common fixed point of T and I.

Proof. Since I is semi-compact mapping, {xn} is bounded and limn→∞‖xn−
Ixn‖ = 0, then there exists a subsequence {xnj} of {xn} such that {xnj} converges
to x∗. It follows from Lemma 2.2, x∗ ∈ F (I). In addition, since T is an uniformly
L-Lipschizian mapping and limn→∞‖xn − Txn‖ = 0. So ‖x∗ − Tx∗‖ = 0. This
implies that x∗ ∈ F (I) ∩ F (T ). Since the subsequence {xnj

} of {xn} such that
{xnj

} converges strongly to x∗ and limn→∞‖xn−x∗‖ exists, then {xn} converges
strongly to the common fixed point x∗ ∈ F1. The proof is completed.

Theorem 3.4. Let X be a uniformly convex Banach space and C, T, I, {xn}
be same as in Lemma 3.2. If I is completely continuous mapping and F1 6= ∅, then
{xn} converges strongly to a common fixed point of T and I.

Proof. By Lemma 3.1, {xn} is bounded. Since limn→∞‖xn − Ixn‖ =
limn→∞‖xn − Txn‖ = 0, then {Txn} and {Ixn} are bounded. Since I is com-
pletely continuous, that exists subsequence {Ixnj} of {Ixn} such that {Ixnj} → p
as j → ∞. Thus, we have limj→∞‖xnj − Txnj‖ = limj→∞‖xnj − Ixnj‖ = 0.
So, by the continuity of I and Lemma 2.2, we have limj→∞‖xnj − p‖ = 0 and
p ∈ F (I). Further,

‖Txnj − p‖ ≤ ‖Txnj − xnj‖+ ‖xnj − Ixnj‖+ ‖Ixnj − p‖ (3.8)

Thus, limnj→∞‖Txnj − p‖ = 0. This implies that {Txnj} converges strongly to
p. Since T is uniformly L-Lipschzian, T is continuous. So, p = Tp. Hence p ∈ F1.
By Lemma 3.1, limn→∞‖xn− p‖ exists. Thus limn→∞‖xn− p‖ = 0. The proof is
completed.

4 Strong convergence for I-asymptotically quasi-
nonexpansive-type mappings in Banach spaces

Definition 4.1. Let X be a real Banach space, C be a nonempty closed convex
subset of X. Then

(1) T : C → C is called asymptotically nonexpansive-type if

lim sup
n→∞

{ sup
u,v∈C

[‖T ku− T kv‖ − ‖u− v‖]} ≤ 0

for all k ≥ 1.
(2)T : C → C is called asymptotically quasi-nonexpansive-type if

lim sup
n→∞

{sup
u∈C

[‖T ku− f‖ − ‖u− f‖]} ≤ 0
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for all f ∈ F (T ) and k ≥ 1.
(3)Let I : C → C. T is called I-asymptotically quasi-nonexpansive-type if

lim supn→∞{supu∈C [‖T ku − f‖ − ‖Iku − f‖]} ≤ 0 for all f ∈ F (T ) ∩ F (I) and
k ≥ 1.

Remark 4.2. It follows from Definition 4.1 that
(a) If T : C → C is an asymptotically nonexpansive mapping, then T is an

asymptotically nonexpansive-type mapping;
(b) if F (T ) is nonempty and T : C → C is an asymptotically nonexpansive-

type mapping, then T is an asymptotically quasi-nonexpansive-type mapping;
(c) if T, I : C → C, T is an I-asymptotically quasi-nonexpansive mapping,

then T is an I-asymptotically quasi-nonexpansive-type mapping.
Theorem 4.3. Let X be a real Banach space and C be a nonempty closed

convex subset of X. Let T : C → C be an I-asymptotically quasi-nonexpansive-
type mapping, I be an asymptotically nonexpansive-type mapping on C. Sup-
pose the sequence {xn} is generated by (1.2) with

∑∞
n=1 αn < ∞,

∑∞
n=1 α′n <

∞,
∑∞

n=1 γn < ∞,
∑∞

n=1 γ′n < ∞. If the common fixed point set F1 = F (T )∩F (I)
is nonempty, then the sequence {xn} converges strongly to a common fixed point
of T and I, if and only if lim infn→∞ d(xn, F ) = 0.

Proof. The necessity is obvious.
Next we prove the sufficiency. For any given p ∈ F1, since {un}, {vn} are

bounded sequences in C, we may set M1 = sup{‖un − p‖, ‖vn − p‖}.
Since T is an I-asymptotically nonexpansive-type mapping, I is an asymptot-

ically nonexpansive-type mapping and {xn}, {yn} ⊂ C, for any given ε > 0, there
exists a positive integer n0 such that for all n ≥ n0 and any u ∈ F1

‖Tnx− u‖ − ‖Inx− u‖ < ε
‖Inx− u‖ − ‖x− u‖ < ε,

(4.1)

Hence for any n ≥ n0, it follows from (1.2) and (4.1) that

‖xn+1 − p‖ = ‖αnInyn + βnxn + γnun − p‖
≤ αn‖Inyn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αn{‖Inyn − p‖ − ‖yn − p‖}+ αn‖yn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αnε + αn‖yn − p‖+ βn‖xn − p‖+ γnM1.
≤ αnε + αn‖yn − p‖+ (1− αn)‖xn − p‖+ γnM1.

(4.2)
Next,

‖yn − p‖ = ‖α′nTnxn + β′nxn + γ′nun − p‖
≤ α′n‖Tnxn − p‖+ β′n‖xn − p‖+ γ′n‖un − p‖
≤ α′n{‖Tnxn − p‖ − ‖xn − p‖}+ α′n‖xn − p‖+ β′n‖xn − p‖+ γ′n‖un − p‖
≤ α′nε + (α′n + β′n)‖xn − p‖+ γ′nM1.
≤ α′nε + ‖xn − p‖+ γ′nM1.

(4.3)
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From (4.2) and (4.3), as n ≥ n0 we have

‖xn+1 − p‖ ≤ αnε + αn(α′nε + ‖xn − p‖+ γ′nM) + (1− αn)‖xn − p‖+ γnM1

≤ ‖xn − p‖+ An, (4.4)

where An = αn(1 + α′n)ε + αnγ′nM1 + γnM1, n ≥ 1. Since
∑∞

n=1 αn < ∞,∑∞
n=1 α′n < ∞,

∑∞
n=1 γn < ∞ and

∑∞
n=1 γ′n < ∞, we have that Σ∞n=1An < ∞.

By the arbitrariness of p ∈ F , from (4.4) we have

inf
p∈F1

‖xn+1 − p‖ ≤ inf
p∈F1

‖xn − p‖+ An, ∀n ≥ n0,

and so we have
d(xn+1, F1) ≤ d(xn, F1) + An, ∀n ≥ n0. (4.5)

By Lemma 2.1, the limit limn→∞ d(xn, F1) exists. By the condition
lim infn→∞ d(xn, F1) = 0, we have

lim
n→∞

d(xn, F1) = 0. (4.6)

For any ε > 0, since limn→∞ d(xn, F1) = 0, there exists natural number n1

such that when n ≥ n1, d(xn, F1) < ε
3 . Thus, there exists x∗ ∈ F1 such that for

above ε there exists positive integer n2 ≥ n1 such that as n ≥ n2

‖xn − x∗‖ <
ε

2
.

Now for arbitrary n,m ≥ n2, consider

‖xn − xm‖ ≤ ‖xn − x∗‖+ ‖xm − x∗‖ <
ε

2
+

ε

2
= ε.

This implies {xn} is a cauchy sequence in C. Since C is a closed subset of X,
there exists p∗ ∈ C such that xn → p∗.

By the routine method, it is easy to show that F1 is a closed set. If d(p∗, F1) >
0. For any p ∈ F1, we have ‖p∗ − p‖ ≤ ‖p∗ − xn‖+ ‖xn − p‖. This implies that

d(p∗, F1) ≤ ‖p∗ − xn‖+ d(xn, F1). (4.7)

Letting n → ∞ in (4.7) and noting (4.6), it gets d(p∗, F1) ≤ 0. This is a contra-
diction. So d(p∗, F1) = 0, hence p∗ ∈ F1. The proof is completed.

By Remark 4.2 and Theorem 4.3, we can directly obtain the following corollary.
Corollary 4.4. Let X be a real Banach space and C be a nonempty closed

convex subset of X. Let T : C → C be an I-asymptotically quasi-nonexpansive
mapping with sequence {ln} ⊆ [1,∞) such that

∑∞
n=1(ln − 1) < ∞, I be an

asymptotically nonexpansive mapping on C with sequence {kn} ⊆ [1,∞) such
that

∑∞
n=1(kn − 1) < ∞. Suppose the sequence {xn} is generated by (1.2), where∑∞

n=1 αn < ∞,
∑∞

n=1 α′n < ∞,
∑∞

n=1 γn < ∞,
∑∞

n=1 γ′n < ∞. If the common fixed
point set F1 = F (T )∩F (I) is nonempty, then the sequence {xn} converges strongly
to a common fixed point of T and I, if and only if liminfn→∞d(xn, F ) = 0.
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