

Convergence of the Ishikawa Iteration Scheme With Errors for *I*-Asymptotically Quasi-Nonexpansive Mappings

S. S. Yao and L. Wang

Abstract : In this paper, we construct an iterative scheme with errors involving *I*-asymptotically quasi-nonexpansive mappings and show that the iterative scheme converges strongly to a common fixed point of *I*-asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space under some appropriate conditions.

Keywords : Common fixed point; *I*-asymptotically nonexpansive mapping; Uniformly convex Banach space.

2002 Mathematics Subject Classification: 47H09, 47J25

1 Introduction.

Throughout this paper, we denote the set of all fixed points of a mapping T by F(T), $T^0 = E$, where E denotes the mapping $E: C \to C$ defined by Ex = x, respectively.

Let C be a nonempty subset of a real normed linear space X. Let T be a self-mapping of C. T is said to be asymptotically nonexpansive if there exists a real sequence $\{\lambda_n\} \subset [0, +\infty)$, with $\lim_{n\to\infty} \lambda_n = 0$, such that $||T^n x - T^n y|| \leq (1+\lambda_n)||x-y||$, for all $x, y \in C$. T is called nonexpansive if $||Tx-Ty|| \leq ||x-y||$, for all $x, y \in C$.

It was proved in [3] that if X is uniformly convex and if C is bounded closed convex subset of X, then every asymptotically nonexpansive mapping has a fixed point.

Let $T, I: C \to C$, then T is called I-quasi nonexpansive on C if $||Tu - f|| \leq ||Iu - f||$ for all $u \in C$ and $f \in F(T) \cap F(I)$. T is called I-asymptotically quasinonexpansive if there exists a sequence $\{\lambda'_k\} \subset [0, \infty)$ with $\lim_{k\to\infty} \lambda'_k = 0$ such that $||T^ku - f|| \leq (\lambda'_k + 1)||I^ku - f||$ for all $u \in C$ and $f \in F(T) \cap F(I)$ and $k \geq 1$.

In 2005, Khan and Hafiz [5] introduced the following iterative scheme with errors for a pair of nonexpansive mappings as follows: for any given $x_1 \in C$,

$$\begin{array}{rcl} x_{n+1} &=& a_n S y_n + b_n x_n + c_n u_n, \\ y_n &=& a'_n T x_n + b'_n x_n + c'_n v_n, \end{array} \quad n \ge 1, \tag{1.1}$$

where $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}$ are real sequences in [0, 1) with $a_n + b_n + c_n = 1 = a'_n + b'_n + c'_n$ and $\{u_n\}, \{v_n\}$ are bounded sequences in C.

In 2006, Jeong and Kim [4] generalize the scheme (1.1) for a pair of asymptotically nonexpansive mappings.

In the past few decades, many results on fixed points of asymptotically nonexpansive, quasi-nonexpansive and asymptotically quasi-nonexpansive mappings have been obtained in Banach space and metric spaces (see, e.g., [2,6,7]). Very recently, Temir and Gul [9] obtained the weakly almost convergence theorems for *I*-asymptotically quasi-nonexpansive mapping in Hilbert space. Tian, Chang and Huang [10] got the strong convergence for a finite family of non-self asymptotically quasi-nonexpansive-type mappings in Banach spaces.

Definition 1.1. Let $T: C \to C$ be an *I*-asymptotically quasi-nonexpansive mapping, *I* be a asymptotically nonexpansive mapping on *C*, where *C* is nonempty closed convex subset of a Banach space *X*. Then Ishikawa iterative scheme with errors is the sequences of $\{x_n\}$ defined by, for given $x_0 \in C$,

$$y_n = \alpha'_n T^n x_n + \beta'_n x_n + \gamma'_n v_n, x_{n+1} = \alpha_n I^n y_n + \beta_n x_n + \gamma_n u_n,$$
 (1.2)

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}$ are real sequences in (0,1) with $\alpha_n + \beta_n + \gamma_n = 1 = \alpha'_n + \beta'_n + \gamma'_n$ and $\{u_n\}, \{v_n\}$ are bounded sequences in C.

In this paper, we show that scheme (1.2) converges strongly to a common fixed point of I-asymptotically quasi-nonexpansive mappings in uniformly convex Banach spaces (in section 3) or in Banach spaces (in section 4).

2 Preliminaries.

Definition 2.1. Let X be a Banach space, C a nonempty subset of X. Let $T: C \to C$. Then T is said to be

(1) demiclosed at y if whenever $\{x_n\} \subset C$ such that $x_n \rightharpoonup x \in C$ and $Tx_n \rightarrow y$ then Tx = y.

(2) semi-compact if for any bounded sequence $\{x_n\}$ in C such that $||x_n - Tx_n|| \to 0$ as $n \to \infty$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges strongly to some x^* in K.

(3) completely continuous if the sequence $\{x_n\}$ in C converges weakly to x_0 implies that $\{Tx_n\}$ converges strongly to Tx_0 .

(4) uniformly *L*-Lipschitzian mapping if for arbitrary $x, y \in C$, we have $||T^n x - T^n y|| \le L ||x - y||$, where $n = 1, 2, \cdots$ and *L* is a positive constant.

We restate the following lemmas which play important roles in our proofs.

Lemma 2.1 [5]. Let $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ and $\{\mu_n\}$ be four nonnegative real sequences satisfying $\alpha_{n+1} \leq (1+\gamma_n)(1+\mu_n)\alpha_n + \beta_n$, for all $n \geq 1$. If $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \beta_n < \infty$, then $\lim_{n\to\infty} \alpha_n$ exists.

Convergence of the Ishikawa iteration scheme

Lemma 2.2 [1]. Let X be a real uniformly convex Banach space, C a nonempty closed convex subset of X. If T is asymptotically nonexpansive mapping of C into itself, then E - T is demiclosed at zero.

Lemma 2.3 [8]. Let C be a nonempty closed bounded and convex subset of a uniformly convex Banach space X. Let $0 < b \leq l_n \leq c < 1$, $\forall n \geq 1$, and let $\{x_n\}$ and $\{y_n\}$ be two sequences in C with $\limsup_{n\to\infty} \|x_n\| \leq a$, $\limsup_{n\to\infty} \|y_n\| \leq a$, and $\lim_{n\to\infty} \|l_n x_n + (1-l_n)y_n\| = a$, where $a \geq 0$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

3 Strong convergence for *I*-asymptotically quasinonexpansive mappings in uniformly convex Banach spaces

Lemma 3.1. Let C be a nonempty closed convex subset of uniformly convex Banach space X. Let $T : C \to C$ be an I-asymptotically quasi-nonexpansive mapping with sequence $\{l_n\} \subseteq [1, \infty)$ such that $\sum_{n=1}^{\infty} (l_n - 1) < \infty$, I be an asymptotically nonexpansive mapping on C with sequence $\{k_n\} \subseteq [1, \infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Suppose the sequence $\{x_n\}$ is generated by (1.2), where $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \gamma'_n < \infty$. If $F_1 = F(T) \cap F(I) \neq \emptyset$, then $\lim_{n\to\infty} ||x_n - x^*||$ exists for any $x^* \in F_1$.

Proof. Since $\{u_n\}, \{v_n\}$ are bounded sequences in C, there exists M > 0 such that $||u_n - x^*|| \le M, ||v_n - x^*|| \le M$, for all $n \in \mathbb{N}$ and $x^* \in F_1$. Setting $k_n = 1 + r_n, \ l_n = 1 + s_n$. Since $\sum_{n=1}^{\infty} (k_n - 1) < \infty, \sum_{n=1}^{\infty} (l_n - 1) < \infty$, so $\sum_{n=1}^{\infty} r_n < \infty, \sum_{n=1}^{\infty} s_n < \infty$. For any $x^* \in F_1$, we have

$$\begin{aligned} \|x_{n+1} - x^*\| &= \|\alpha_n I^n y_n + \beta_n x_n + \gamma_n u_n - x^*\| \\ &\leq \alpha_n \|I^n y_n - x^*\| + (1 - \alpha_n - \gamma_n) \|x_n - x^*\| + \gamma_n \|u_n - x^*\| \\ &\leq \alpha_n (1 + r_n) \|y_n - x^*\| + (1 - \alpha_n - \gamma_n) \|x_n - x^*\| + \gamma_n M \\ &\leq \alpha_n (1 + r_n) \|\alpha'_n (T^n x_n - x^*) + (1 - \alpha'_n - \gamma'_n) (x_n - x^*) + \gamma'_n (v_n - x^*) \| \\ &+ (1 - \alpha_n - \gamma_n) \|x_n - x^*\| + \gamma_n M \\ &\leq \alpha_n \alpha'_n (1 + r_n) (1 + s_n) \|I^n x_n - x^*\| + \alpha_n (1 + r_n) \|(1 - \alpha'_n - \gamma'_n) (x_n - x^*) \\ &+ \gamma'_n (v_n - x^*) \| + (1 - \alpha_n - \gamma_n) \|x_n - x^*\| + \gamma_n M \\ &\leq \alpha_n \alpha'_n (1 + s_n) (1 + r_n)^2 \|x_n - x^*\| + \alpha_n \gamma'_n (1 + r_n) M \\ &+ \alpha_n (1 - \alpha'_n - \gamma'_n) (1 + r_n) \|x_n - x^*\| + (1 - \alpha_n - \gamma_n) \|x_n - x^*\| + \gamma_n M \\ &\leq \alpha_n \alpha'_n (1 + s_n) (1 + r_n)^2 \|x_n - x^*\| + \alpha_n (1 - \alpha'_n) (1 + r_n)^2 (1 + s_n) \|x_n - x^*\| \\ &+ \alpha_n \gamma'_n (1 + r_n) M + (1 - \alpha_n) (1 + r_n)^2 (1 + s_n) \|x_n - x^*\| + \gamma_n M \\ &\leq (1 + r_n)^2 (1 + s_n) \|x_n - x^*\| + (1 + r_n) \alpha_n \gamma'_n M + \gamma_n M. \end{aligned}$$

Since $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \gamma'_n < \infty$, thus it follows from Lemma 2.1 that $\lim_{n\to\infty} ||x_n - x^*||$ exists. This completes the proof.

Lemma 3.2. Let X be a uniformly convex Banach space and C be a nonempty bounded closed convex subset of X. Let $T, I, \{x_n\}$ be same as Lemma 3.1, where

 $a \leq \alpha_n \leq b, a \leq \alpha'_n \leq b$ for all $n \geq 0$ and some $a, b \in (0, 1)$. If T is an uniformly L-Lipschizian mapping and $F_1 \neq \emptyset$, then $\lim_{n \to \infty} ||Tx_n - x_n|| = \lim_{n \to \infty} ||Ix_n - x_n|| = 0$.

Proof. By Lemma 3.1, for any $x^* \in F_1$, $\lim_{n\to\infty} ||x_n - x^*||$ exists. Assume $\lim_{n\to\infty} ||x_n - x^*|| = c \ge 0$. Since

$$\begin{aligned} \|y_n - x^*\| &= \|\alpha'_n T^n x_n + \gamma'_n (v_n - x_n) + (1 - \alpha'_n) x_n - x^*\| \\ &\leq \alpha'_n \|T^n x_n - x^*\| + \gamma'_n \|v_n - x^*\| + (1 - \alpha'_n - \gamma'_n) \|x_n - x^*\| \\ &\leq \alpha'_n (1 + s_n) \|I^n x_n - x^*\| + \gamma'_n \|v_n - x^*\| + (1 - \alpha'_n - \gamma'_n) \|x_n - x^*\| \\ &\leq \alpha'_n (1 + s_n) (1 + r_n) \|x_n - x^*\| + (1 - \alpha'_n - \gamma'_n) \|x_n - x^*\| + \gamma'_n \|v_n - x^*\| \\ &\leq \alpha'_n (1 + s_n) (1 + r_n) \|x_n - x^*\| + (1 - \alpha'_n) (1 + s_n) (1 + r_n) \|x_n - x^*\| + \gamma'_n \|v_n - x_n\| \\ &\leq (1 + s_n) (1 + r_n) \|x_n - x^*\| + \gamma'_n M. \end{aligned}$$

Taking limsup on both sides in above inequality, we obtain

$$\limsup_{n \to \infty} \|y_n - x^*\| \le c. \tag{3.1}$$

Since $||I^n y_n - x^* + \gamma_n (u_n - x^*)|| \le (1 + r_n) ||y_n - x^*|| + \gamma_n M$. By (3.1), we have $\limsup_{n \to \infty} ||I^n y_n - x^* + \gamma_n (u_n - x^*)|| \le c$. And $||x_n - x^* + \gamma_n (u_n - x^*)|| \le ||x_n - x^*|| + \gamma_n M$, which implies $\limsup_{n \to \infty} ||x_n - x^* + \gamma_n (u_n - x^*)|| \le c$. Further, $\lim_{n \to \infty} ||x_{n+1} - x^*|| = c$ means that

$$\lim_{n \to \infty} \|\alpha_n (I^n y_n - x^* + \gamma_n (u_n - x^*)) + (1 - \alpha_n) (x_n - x^* + \gamma_n (u_n - x^*))\| = c.$$

It follows from Lemma 2.3 that

$$\lim_{n \to \infty} \|I^n y_n - x_n\| = 0.$$
 (3.2)

Next,

$$\begin{aligned} \|x_n - x^*\| &\leq \|x_n - I^n y_n\| + \|I^n y_n - x^*\| \\ &\leq \|x_n - I^n y_n\| + (1 + r_n) \|y_n - x^*\| \end{aligned}$$

gives that $c = \lim_{n \to \infty} ||x_n - x^*|| \le \liminf_{n \to \infty} ||y_n - x^*||$. By (3.1) $\lim_{n \to \infty} ||y_n - x^*|| = c$.

Since $||T^n x_n - x^* + \gamma'_n (v_n - x^*)|| \le (1 + s_n)(1 + r_n)||x_n - x^*|| + \gamma'_n M$ and $||x_n - x^* + \gamma'_n (v_n - x^*)|| \le ||x_n - x^*)|| + \gamma'_n M$, we have $\limsup_{n \to \infty} ||T^n x_n - x^* + \gamma'_n (v_n - x^*)|| \le c$ and $\limsup_{n \to \infty} ||x_n - x^* + \gamma'_n (v_n - x^*)|| \le c$. Further, $\lim_{n \to \infty} ||y_n - x^*|| = c$ means that

$$\lim_{n \to \infty} \|\alpha'_n(T^n x_n - x^* + \gamma'_n(v_n - x^*)) + (1 - \alpha'_n)(x_n - x^* + \gamma'_n(v_n - x^*))\| = c$$

By Lemma 2.3, we have

$$\lim_{n \to \infty} \|T^n x_n - x_n\| = 0.$$
(3.3)

Convergence of the Ishikawa iteration scheme ...

Also,

$$\begin{aligned} \|I^{n}x_{n} - x_{n}\| &\leq \|I^{n}x_{n} - I^{n}y_{n}\| + \|I^{n}y_{n} - x_{n}\| \\ &\leq (1+r_{n})\|x_{n} - y_{n}\| + \|I^{n}y_{n} - x_{n}\| \\ &= (1+r_{n})\|a_{n}'(x_{n} - T^{n}x_{n}) + \gamma_{n}'(x^{*} - v_{n}) + \gamma_{n}'(x_{n} - x^{*})\| \\ &+ \|I^{n}y_{n} - x_{n}\| \\ &\leq \alpha_{n}'(1+r_{n})\|x_{n} - T^{n}x_{n}\| + \gamma_{n}'(1+r_{n})\|x^{*} - v_{n}\| \\ &+ \gamma_{n}'(1+r_{n})\|x_{n} - x^{*}\| + \|I^{n}y_{n} - x_{n}\| \\ &\leq \alpha_{n}'(1+r_{n})\|x_{n} - T^{n}x_{n}\| + \gamma_{n}'(1+r_{n})M \\ &+ \gamma_{n}'(1+r_{n})\|x_{n} - x^{*}\| + \|I^{n}y_{n} - x_{n}\|. \end{aligned}$$

Taking limsup on both sides in the above inequality, we have

$$\limsup_{n \to \infty} \|I^n x_n - x_n\| \le 0.$$

That is

$$\lim_{n \to \infty} \|I^n x_n - x_n\| = 0.$$
 (3.4)

In addition,

$$\begin{aligned} \|x_{n+1} - x_n\| &= \|\alpha_n I^n y_n + (1 - \alpha_n - \gamma_n) x_n + \gamma_n u_n - x_n\| \\ &= \|\alpha_n (I^n y_n - x_n) + \gamma_n (u_n - x^*) + \gamma_n (x^* - x_n)\| \\ &\leq \alpha_n \|I^n y_n - x_n\| + \gamma_n (x^* - x_n)\| + \gamma_n M, \end{aligned}$$

thus it follows from (3.2) that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{3.5}$$

Hence,

$$\begin{aligned} \|Tx_n - x_n\| &\leq \|T^n x_n - x_n\| + \|T^n x_n - Tx_n\| \\ &\leq \|T^n x_n - x_n\| + L\|T^{n-1} x_n - x_n\| \\ &\leq \|T^n x_n - x_n\| + L\|T^{n-1} x_n - T^{n-1} x_{n-1}\| \\ &+ L\|T^{n-1} x_{n-1} - x_n\| \\ &\leq \|T^n x_n - x_n\| + L^2\|x_n - x_{n-1}\| \\ &+ L\|T^{n-1} x_{n-1} - x_{n-1}\| + L\|x_{n-1} - x_n\|, \end{aligned}$$

By (3.3) and (3.5), we have

$$\lim_{n \to \infty} \|Tx_n - x_n\| = 0.$$
 (3.6)

On the other hand,

$$\begin{aligned} \|Ix_n - x_n\| &\leq \|I^n x_n - x_n\| + \|I^n x_n - Ix_n\| \\ &\leq \|I^n x_n - x_n\| + k_1\|I^{n-1} x_n - x_n\| \\ &\leq \|I^n x_n - x_n\| + k_1\|I^{n-1} x_n - I^{n-1} x_{n-1}\| + k_1\|I^{n-1} x_{n-1} - x_n\| \\ &\leq \|I^n x_n - x_n\| + k_1 k_{n-1}\|x_n - x_{n-1}\| + k_1\|I^{n-1} x_{n-1} - x_{n-1}\| \\ &+ k_1\|x_{n-1} - x_n\|, \end{aligned}$$

by (3.4) and (3.5), we have

$$\lim_{n \to \infty} \|Ix_n - x_n\| = 0.$$
 (3.7)

This completes the proof.

Theorem 3.3. Let X be a uniformly convex Banach space and $C, T, I, \{x_n\}$ be same as in Lemma 3.2. If I is a semi-compact mapping and $F_1 \neq \emptyset$, then $\{x_n\}$ converges strongly to a common fixed point of T and I.

Proof. Since *I* is semi-compact mapping, $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||x_n - Ix_n|| = 0$, then there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges to x^* . It follows from Lemma 2.2, $x^* \in F(I)$. In addition, since *T* is an uniformly *L*-Lipschizian mapping and $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. So $||x^* - Tx^*|| = 0$. This implies that $x^* \in F(I) \cap F(T)$. Since the subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges strongly to x^* and $\lim_{n\to\infty} ||x_n - x^*||$ exists, then $\{x_n\}$ converges strongly to the common fixed point $x^* \in F_1$. The proof is completed.

Theorem 3.4. Let X be a uniformly convex Banach space and $C, T, I, \{x_n\}$ be same as in Lemma 3.2. If I is completely continuous mapping and $F_1 \neq \emptyset$, then $\{x_n\}$ converges strongly to a common fixed point of T and I.

Proof. By Lemma 3.1, $\{x_n\}$ is bounded. Since $\lim_{n\to\infty} ||x_n - Ix_n|| = \lim_{n\to\infty} ||x_n - Tx_n|| = 0$, then $\{Tx_n\}$ and $\{Ix_n\}$ are bounded. Since I is completely continuous, that exists subsequence $\{Ix_{n_j}\}$ of $\{Ix_n\}$ such that $\{Ix_{n_j}\} \to p$ as $j \to \infty$. Thus, we have $\lim_{j\to\infty} ||x_{n_j} - Tx_{n_j}|| = \lim_{j\to\infty} ||x_{n_j} - Ix_{n_j}|| = 0$. So, by the continuity of I and Lemma 2.2, we have $\lim_{j\to\infty} ||x_{n_j} - p|| = 0$ and $p \in F(I)$. Further,

$$||Tx_{n_{i}} - p|| \le ||Tx_{n_{i}} - x_{n_{i}}|| + ||x_{n_{i}} - Ix_{n_{i}}|| + ||Ix_{n_{i}} - p||$$
(3.8)

Thus, $\lim_{n_j\to\infty} ||Tx_{n_j} - p|| = 0$. This implies that $\{Tx_{n_j}\}$ converges strongly to p. Since T is uniformly L-Lipschzian, T is continuous. So, p = Tp. Hence $p \in F_1$. By Lemma 3.1, $\lim_{n\to\infty} ||x_n - p||$ exists. Thus $\lim_{n\to\infty} ||x_n - p|| = 0$. The proof is completed.

4 Strong convergence for *I*-asymptotically quasinonexpansive-type mappings in Banach spaces

Definition 4.1. Let X be a real Banach space, C be a nonempty closed convex subset of X. Then

(1) $T: C \to C$ is called asymptotically nonexpansive-type if

$$\limsup_{n \to \infty} \{ \sup_{u, v \in C} [\| T^k u - T^k v \| - \| u - v \|] \} \le 0$$

for all $k \geq 1$.

 $(2)T: C \to C$ is called asymptotically quasi-nonexpansive-type if

$$\limsup_{n \to \infty} \{ \sup_{u \in C} [\|T^k u - f\| - \|u - f\|] \} \le 0$$

for all $f \in F(T)$ and $k \ge 1$.

(3)Let $I: C \to C$. T is called I-asymptotically quasi-nonexpansive-type if $\limsup_{n\to\infty} \{\sup_{u\in C} [\|T^ku - f\| - \|I^ku - f\|]\} \le 0$ for all $f \in F(T) \cap F(I)$ and $k \ge 1$.

Remark 4.2. It follows from Definition 4.1 that

(a) If $T: C \to C$ is an asymptotically nonexpansive mapping, then T is an asymptotically nonexpansive-type mapping;

(b) if F(T) is nonempty and $T: C \to C$ is an asymptotically nonexpansive-type mapping, then T is an asymptotically quasi-nonexpansive-type mapping;

(c) if $T, I : C \to C, T$ is an *I*-asymptotically quasi-nonexpansive mapping, then T is an *I*-asymptotically quasi-nonexpansive-type mapping.

Theorem 4.3. Let X be a real Banach space and C be a nonempty closed convex subset of X. Let $T: C \to C$ be an *I*-asymptotically quasi-nonexpansive-type mapping, I be an asymptotically nonexpansive-type mapping on C. Suppose the sequence $\{x_n\}$ is generated by (1.2) with $\sum_{n=1}^{\infty} \alpha_n < \infty, \sum_{n=1}^{\infty} \alpha'_n < \infty, \sum_{n=1}^{\infty} \gamma'_n < \infty$. If the common fixed point set $F_1 = F(T) \cap F(I)$ is nonempty, then the sequence $\{x_n\}$ converges strongly to a common fixed point of T and I, if and only if $\lim \inf_{n\to\infty} d(x_n, F) = 0$.

Proof. The necessity is obvious.

Next we prove the sufficiency. For any given $p \in F_1$, since $\{u_n\}$, $\{v_n\}$ are bounded sequences in C, we may set $M_1 = sup\{||u_n - p||, ||v_n - p||\}$.

Since T is an I-asymptotically nonexpansive-type mapping, I is an asymptotically nonexpansive-type mapping and $\{x_n\}, \{y_n\} \subset C$, for any given $\varepsilon > 0$, there exists a positive integer n_0 such that for all $n \ge n_0$ and any $u \in F_1$

$$\|T^{n}x - u\| - \|I^{n}x - u\| < \varepsilon \|I^{n}x - u\| - \|x - u\| < \varepsilon,$$
(4.1)

Hence for any $n \ge n_0$, it follows from (1.2) and (4.1) that

$$\begin{aligned} \|x_{n+1} - p\| &= \|\alpha_n I^n y_n + \beta_n x_n + \gamma_n u_n - p\| \\ &\leq & \alpha_n \|I^n y_n - p\| + \beta_n \|x_n - p\| + \gamma_n \|u_n - p\| \\ &\leq & \alpha_n \{\|I^n y_n - p\| - \|y_n - p\|\} + \alpha_n \|y_n - p\| + \beta_n \|x_n - p\| + \gamma_n \|u_n - p\| \\ &\leq & \alpha_n \varepsilon + \alpha_n \|y_n - p\| + \beta_n \|x_n - p\| + \gamma_n M_1. \\ &\leq & \alpha_n \varepsilon + \alpha_n \|y_n - p\| + (1 - \alpha_n) \|x_n - p\| + \gamma_n M_1. \end{aligned}$$

$$(4.2)$$

Next,

$$\begin{aligned} \|y_{n} - p\| &= \|\alpha'_{n}T^{n}x_{n} + \beta'_{n}x_{n} + \gamma'_{n}u_{n} - p\| \\ &\leq \alpha'_{n}\|T^{n}x_{n} - p\| + \beta'_{n}\|x_{n} - p\| + \gamma'_{n}\|u_{n} - p\| \\ &\leq \alpha'_{n}\{\|T^{n}x_{n} - p\| - \|x_{n} - p\|\} + \alpha'_{n}\|x_{n} - p\| + \beta'_{n}\|x_{n} - p\| + \gamma'_{n}\|u_{n} - p\| \\ &\leq \alpha'_{n}\varepsilon + (\alpha'_{n} + \beta'_{n})\|x_{n} - p\| + \gamma'_{n}M_{1}. \\ &\leq \alpha'_{n}\varepsilon + \|x_{n} - p\| + \gamma'_{n}M_{1}. \end{aligned}$$

$$(4.3)$$

From (4.2) and (4.3), as $n \ge n_0$ we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq \alpha_n \varepsilon + \alpha_n (\alpha'_n \varepsilon + \|x_n - p\| + \gamma'_n M) + (1 - \alpha_n) \|x_n - p\| + \gamma_n M_1 \\ &\leq \|x_n - p\| + A_n, \end{aligned}$$

$$(4.4)$$

where $A_n = \alpha_n (1 + \alpha'_n)\varepsilon + \alpha_n \gamma'_n M_1 + \gamma_n M_1, n \ge 1$. Since $\sum_{n=1}^{\infty} \alpha_n < \infty$, $\sum_{n=1}^{\infty} \alpha'_n < \infty$, $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \gamma'_n < \infty$, we have that $\sum_{n=1}^{\infty} A_n < \infty$. By the arbitrariness of $p \in F$, from (4.4) we have

$$\inf_{p \in F_1} \|x_{n+1} - p\| \le \inf_{p \in F_1} \|x_n - p\| + A_n, \quad \forall n \ge n_0.$$

and so we have

$$d(x_{n+1}, F_1) \le d(x_n, F_1) + A_n, \quad \forall n \ge n_0.$$
(4.5)

By Lemma 2.1, the limit $\lim_{n\to\infty} d(x_n, F_1)$ exists. By the condition $\liminf_{n\to\infty} d(x_n, F_1) = 0$, we have

$$\lim_{n \to \infty} d(x_n, F_1) = 0. \tag{4.6}$$

For any $\varepsilon > 0$, since $\lim_{n\to\infty} d(x_n, F_1) = 0$, there exists natural number n_1 such that when $n \ge n_1$, $d(x_n, F_1) < \frac{\varepsilon}{3}$. Thus, there exists $x^* \in F_1$ such that for above ε there exists positive integer $n_2 \ge n_1$ such that as $n \ge n_2$

$$\|x_n - x^*\| < \frac{\varepsilon}{2}.$$

Now for arbitrary $n, m \ge n_2$, consider

$$||x_n - x_m|| \le ||x_n - x^*|| + ||x_m - x^*|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This implies $\{x_n\}$ is a cauchy sequence in C. Since C is a closed subset of X, there exists $p^* \in C$ such that $x_n \to p^*$.

By the routine method, it is easy to show that F_1 is a closed set. If $d(p^*, F_1) > d(p^*, F_1)$ 0. For any $p \in F_1$, we have $||p^* - p|| \le ||p^* - x_n|| + ||x_n - p||$. This implies that

$$d(p^*, F_1) \le \|p^* - x_n\| + d(x_n, F_1).$$
(4.7)

Letting $n \to \infty$ in (4.7) and noting (4.6), it gets $d(p^*, F_1) \leq 0$. This is a contradiction. So $d(p^*, F_1) = 0$, hence $p^* \in F_1$. The proof is completed.

By Remark 4.2 and Theorem 4.3, we can directly obtain the following corollary.

Corollary 4.4. Let X be a real Banach space and C be a nonempty closed convex subset of X. Let $T: C \to C$ be an I-asymptotically quasi-nonexpansive mapping with sequence $\{l_n\} \subseteq [1,\infty)$ such that $\sum_{n=1}^{\infty} (l_n-1) < \infty$, I be an asymptotically nonexpansive mapping on C with sequence $\{k_n\} \subseteq [1,\infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Suppose the sequence $\{x_n\}$ is generated by (1.2), where $\sum_{n=1}^{\infty} \alpha_n < \infty, \sum_{n=1}^{\infty} \alpha'_n < \infty, \sum_{n=1}^{\infty} \gamma_n < \infty, \sum_{n=1}^{\infty} \gamma'_n < \infty$. If the common fixed point set $F_1 = F(T) \cap F(I)$ is nonempty, then the sequence $\{x_n\}$ converges strongly to a common fixed point of T and I, if and only if $limin f_{n\to\infty} d(x_n, F) = 0$.

References

- S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problem for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38(2001)1245-1260.
- [2] M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl., 207(1997)96-103.
- [3] K. Goebal, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972)171-174.
- [4] J.U. Jeong, S.H. Kim, Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically nonexpansive mappings, Applied Mathematics and Computation, 181(2006)1394-1401.
- [5] S.H. Khan, Hafiz FUkhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Analysis, 61(2005)1295-1301.
- [6] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 259(2001)1-7.
- [7] W.V. Petryshyn, T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43(1973)459-497.
- [8] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43(1991)153-159.
- [9] S. Temir, O. Gul, Convergnece theorem for *I*-asymptotically quasinonexpansive mapping in Hilbert space, J. Math. Anal. Appl., 329(2007)759-765.
- [10] Y.X. Tian, S.S. Chang, J.L. Huang, On the approximation problem of common fixed points for a finite family of non-self asymptotically quasinonexpansive-type mappings in Banach spaces, Computers and Mathematics with Applications, 53(2007)1847-1853.

(Received 14 November 2007)

S. Sheng Yao Department of Mathematics Kunming Teachers College, Kunming, Yunnan, 650031, P. R. China E-mail: yaosisheng@yahoo.com.cn L. Wang College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, 650031, P. R. China E-mail: WL64mail@yahoo.com.cn