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Abstract : Economies of countries located in seismic zones are strongly effected
by this seismicity. If we underestimate the seismic activity, then a reasonably rou-
tine earthquake can severely damage the existing structures and thus, lead to huge
economic losses. On the other hand, if we overestimate the seismic activity, we
waste a lot of resources on unnecessarily fortifying all the buildings – and this too
harms the economies. From this viewpoint, it is desirable to have estimations of
regional seismic activities which are as accurate as possible. Current predictions
are mostly based on the standard geophysical understanding of earthquakes as
being largely caused by the movement of tectonic plates and terranes. This under-
standing works in most areas, but in Bhutan area of the Himalayas region, there
seems to be a landscape anomaly. As a result, for this region, we have less confi-
dence in the accuracy of seismic predictions based on the standard understanding
and thus, have to use higher seismic thresholds in construction. In this paper, we
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find the optimal description of landscape-describing elevation profiles, and we use
this description to show that the seeming anomaly is actually in perfect agreement
with the standard understanding of the seismic activity. Our conclusion is that
it is safe to apply, in this region, estimates based on the standard understanding
and thus, avoid unnecessary expenses caused by an increased threshold.

Keywords : seismicity and economics; elevation profile; landscape; Bhutan; op-
timality; symmetries.
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1 Formulation of the Problem

Seismicity affects economy. In highly seismic areas like the Himalayas, econ-
omy is affected by our knowledge of possible seismicity.

Protection against possible earthquakes is very costly. If we have only a vague
idea about possible seismic events – i.e., if we can potentially expect high-energy
earthquakes at all possible locations – then, every time we build a house or a
factory, we need to spend a lot of money on making it protected against such
events – with little money left for any other development project.

On the other hand, if we can reasonably accurately localize potential hazards,
then we can concentrate our building efforts mostly in safer zones. This will
require less investment in earthquake protection and thus, leave more money for
other development projects.

Thus, the economy of a highly seismic zone is directly affected by our under-
standing of the corresponding seismic processes.

Bhutan landscape anomaly. In general, modern geophysics has a reasonably
good understanding of seismic processes and seismic zones. Specifically, the current
understanding is that seismicity is usually caused by mutual movement of tectonic
plates and their parts (terranes), and it is mostly concentrated on the borderline
between two or more such plates or terranes. In general, while we still cannot
predict the exact timing of earthquakes, geoscientists can reasonably well predict
the size of a future earthquake based on the corresponding geophysical models.

Researchers and practitioners are reasonably confident in these predictions
– at least for locations whose geophysics is well understood by the traditional
geophysical models.

However, there are locations where observed phenomena are different from
what we usually expect. In such cases, there are reasonable doubts in seismic-
ity estimates produced by the traditional techniques – and thus, it is reasonable
to be cautious and use higher strengths of potential earthquakes when building
in these locations, which invokes significant additional expenses. For such do-
mains, it is therefore desirable to come up with a better understanding of the
observed geophysical phenomena – thus hopefully allowing us to make more accu-
rate predictions and hence, save money (which is now wasted on possibly too-heavy
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earthquake protection) for other important activities.

One such areas in the vicinity of the Himalayan country of Bhutan, where the
landscape profile is drastically different from the profiles of other Himalayan areas
such as areas of Nepal. In general, a landscape can be described in numerical terms
if we take a line orthogonal to the prevailing rivers (which are usually the lowest
points on the landscape) and plot the elevation as a function of the distance from
the corresponding river. The shape of the landscape (elevation) profile in Bhutan
is visually drastically different from the landscape profile in Nepal; see, e.g., [1].
Namely, in most of the Himalayas – and, in general, in the most of the world –
the corresponding curve is first convex (corresponding to the river valley), and
then becomes concave – which corresponds to the mountain peaks. In contrast,
in Bhutan, the profile turns concave very fast, way before we reach the mountain
peaks area.

As of now, there are no good well-accepted explanations for this phenomenon
– which makes it an anomaly. To be more precise, we know that the geophysics
of the Bhutan area is somewhat different: in Nepal (like in most areas in the
world), the advancing tectonic plate in orthogonal to the border of the mountain
range, while in Bhutan, the plate pushes the range at an angle. However, it is not
clear how this can explain the above phenomenon. This leads us to the following
questions.

Questions. The first question is: can we explain the Bhutan anomaly within the
existing geophysical paradigm? If we can do, this would mean that this anomaly is
not an obstacle to applying this paradigm, and thus, that the estimates of future
seismic activity obtained within this paradigm can be safely applied – without the
need to make expensive extra precautions.

A related question is related to the fact that while we use convexity and con-
cavity to describe elevation profiles, the only reason for using these two properties
is because these are the basic properties that we learn in math. Is there any
geophysical meaning in convexity vs. concavity?

What we do in this paper. In this paper, we provide answers to both questions:
we explain why convexity and concavity are adequate ways to describe elevation
profiles, and we explain how the at-an-angle pressure in the Bhutan area leads to
the observed convex-followed-by-concave phenomenon.

To answer these questions, we first formulate the problem of adequately de-
scribing elevation profiles as an optimization problem. Then, we solve this prob-
lem, and use the solution to answer the above two questions.
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2 What Is the Optimal Description of Elevation
Profiles: Precise Formulation of the Optimiza-
tion Problem and the Main Result

How can we describe elevation profiles? An elevation profile results from the
joint effect of many different physical processes, from movement of tectonic plates
to erosion. These process are largely independent from each other: e.g., erosion
works the same way whether we have the landscape on the sea level or the same
landscape which the geological processes raised to some elevation. Because of this
independence, the observed profile f(x) can be reasonably well represented as the
sum of profiles corresponding to different processes:

f(x) = f1(x) + . . .+ fn(x).

Different profile-changing processes may have different intensity. So, to de-
scribe the effect of the i-th process, instead of a fixed function fi(x), it is more
appropriate to use the correspondingly re-scaled term Ci · fi(x), where the coeffi-
cients Ci describe the intensity of the i-th process, so that

f(x) = C1 · f1(x) + . . .+ Cn · fn(x).

Due to erosion, discontinuities in the elevation profiles are usually smoothed
out, so we can safely assume that the corresponding functions fi(x) are smooth
(differentiable).

Thus, we arrive at the following definition.

Definition 1. Let n be a positive integer. By a description of elevation profiles,
we mean a family of functions

{C1 · f1(x) + . . .+ Cn · fn(x)}C1,...,Cn
, (1)

where the functions f1(x), . . . , fn(x) are fixed differentiable functions, and C1, . . . ,
Cn are arbitrary real numbers.

From this viewpoint, selecting a description means selecting n functions

f1(x), . . . , fn(x).

Towards the optimal description. Which description is the best? To answer
this question, we need to be able to decide, for each two families of functions F
and F ′, whether the first family is better (we will denote it by F ′ < F ) or the
second family is better (F < F ′), or both families have the same quality (we will
denote it by F ∼ F ′). Clearly, if F is worse than F ′ and F ′ is worse than F ′′,
then F should be worse than F ′′. So, we arrive at the following definition.

Definition 2. Let n be a positive number. By an optimality criterion, we mean
the pair of relations (<,∼) on the set S of all possible n-dimensional descriptions
of elevation profiles that satisfies the following conditions:
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• for every pair F, F ′ ∈ S, we have one and only one of the following options:
either F ′ < F or F < F ′ or F ∼ F ′;

• for every F , F ′, and F ′′, if F < F ′ and F ′ < F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F < F ′ and F ′ ∼ F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F ∼ F ′ and F ′ < F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F ∼ F ′ and F ′ ∼ F ′′, then F ∼ F ′′;
• for every F and F ′, if F ∼ F ′, then F ′ ∼ F .

Definition 3. Let (<,∼) be an optimality criterion. We say that a family F is
optimal with respect to this optimality criterion if for every other family F ′, we
have either F ′ < F or F ′ ∼ F .

We want to use an appropriate optimality criterion to select a family. If a
criterion selected several different families as equally good, then we can use this
non-uniqueness to optimize something else. For example, if we have several dif-
ferent families that provide an equally good approximation of the actual elevation
profiles, then, from all these optimal families, we can select, e.g., the family which
is the easiest to compute. This additional selection is, in effect, equivalent to
replacing the original optimality criterion with the new one <new, according to
which F <new F ′ if:

• either F < F ′ according to the original criterion,

• or F ∼ F ′ and F ′ is easier to compute (in some formal sense, e.g., in terms
of the computation time).

If the new criterion still selects several families as equally optimal, we can
again modify it, etc. – until we end up with a final criterion for which there is
exactly one optimal family.

Definition 4. We say that an optimality criterion is final if it has exactly one
optimal family.

As a starting point for measuring x, we can take different locations. If we select
a different location which is x0 units before the current one, then each new location
x is identical to the old location x′ = x+ x0. So, the same profile approximation
that in the new units has the form f(x) in the old units has the form f(x + x0).
The relative quality of different profiles approximations should not change if we
simply change the starting location. Thus, we arrive at the following definitions.

Definition 5. For each family F as described by the formula (1) and for each x0,
by a shift Sx0

(F ), we mean a family

{C1 · (Sx0
f1)(x) + . . .+ Cn · (Sx0

fn)(x)},

where (Sx0
fi)(x)

def
= fi(x+ x0).

Definition 6. We say that an optimality criterion is shift-invariant if for every
F , F ′, and x0, the following two properties hold:
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• if F < F ′, then Sx0(F ) < Sx0(F ′);

• if F ∼ F ′, then Sx0(F ) ∼ Sx0(F ′).

Similarly, nothing should change if we simply change the measuring unit for
x – e.g., use miles instead of kilometers. If we replace the original measuring unit
by a one which is λ times larger, then the new value x is identical to the old value
x′ = λ · x. So, the same profile approximation that in the new units has the form
f(x) in the old units has the form f(λ ·x). The relative quality of different profiles
approximations should not change if we simply change the measuring unit. Thus,
we arrive at the following definitions.

Definition 7. For each family F as described by the formula (1) and for each
λ > 0, by a rescaling Rλ(F ), we mean a family

{C1 · (Rλf1)(x) + . . .+ Cn · (Rλfn)(x)},

where (Rλfi)(x)
def
= fi(λ · x).

Definition 8. We say that an optimality criterion is scale-invariant if for every
F , F ′, and λ > 0, the following two properties hold:

• if F < F ′, then Rλ(F ) < Rλ(F ′);

• if F ∼ F ′, then Rλ(F ) ∼ Rλ(F ′).

Proposition 1. For every n and for every final shift- and scale-invariant opti-
mality criterion, the optimal family Fopt consists of polynomials of order ≤ n− 1.

Comment. This result is similar to results from [2].

Proof. 1◦. Let us first prove that the optimal family is shift- and scale-invariant,
i.e., that Sx0(Fopt) = Rλ(Fopt) = Fopt for all x0 and λ.

Let us first prove shift-invariance of Fopt. Since Fopt is optimal, for every
family F , we have F < Fopt or F ∼ Fopt. In particular, this is true for the
family S−x0(F ), i.e., either S−x0(F ) < Fopt or S−x0(F ) ∼ Fopt. Since the
optimality criterion is shift-invariant, this implies that either Sx0

(S−x0
(F )) <

Sx0
(Fopt) or Sx0

(S−x0
(F )) ∼ Sx0

(Fopt). However, as one can easily check, we
have Sx0

(S−x0
(F )) = F . Thus, for every family F , we have either F < Sx0

(Fopt)
or F ∼ Sx0(Fopt). By definition of optimality, this means that the family Sx0(Fopt)
is also optimal.

Since the optimality criterion is final, there is only one optimal family, hence
Sx0(Fopt) = Fopt. Shift-invariance is proven.

Scale-invariance is proven similarly, by taking into account that for every F
and every λ, either R1/λ(F ) < Fopt or R1/λ(F ) ∼ Fopt. So, by applying the scaling
Rλ to both sides of these relations, we conclude that Rλ(Fopt) is also optimal and
thus, Rλ(Fopt) = Fopt.
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2◦. Shift-invariance means that every element of the family Sx0(Fopt) also belongs
to the same family Fopt. Let fi(x) denote the functions whose linear combinations
(1) form the family Fopt. Then, in particular, invariance means that for every i,
the shifted function fi(x+ x0) is a linear combination of functions fj(x):

f1(x+ x0) = C11(x0) · f1(x) + . . .+ C1n(x0) · fn(x);

. . . (2)

fn(x+ x0) = Cn1(x0) · f1(x) + . . .+ Cnn(x0) · fn(x),

for some coefficients Cij depending on x0.
For each i, we can take n different values x1, . . . , xn of x and get a system of

n linear equations with n unknowns Ci1(x0), . . . , Cin(x0):

fi(x1 + x0) = Ci1(x0) · f1(x1) + . . .+ Cin(x0) · fn(x1);

. . .

fi(xn + x0) = Ci1(x0) · f1(xn) + . . .+ Cin(x0) · fn(xn).

By Cramer’s rule, the solutions Cij(x0) to this system can be represented as a
ratio of two polynomials in terms of fi(·). Since the functions fi(x) are smooth,
this implies that the functions Cij(x0) are also differentiable functions of x0.

Thus, we can differentiate both sides of (2) by x0 and take x0 = 0. As a result,
we get a system of linear differential equations with constant coefficients:

f ′1(x) = c11 · f1(x) + . . .+ c1n · fn(x);

. . . (3)

f ′n(x) = cn1 · f1(x) + . . .+ cnn · fn(x),

where we denoted cij
def
= C ′ij(0).

The general solution to such a system is well-known (see, e.g., [2, 3]): it is a
linear combination of terms of the type exp(λi ·x) and xk ·exp(λi ·x), where λi are
eigenvalues of the matrix (cij), and k ≤ n − 1 is a positive integer corresponding
to the case when we have a multiple eigenvalue.

3◦. Similarly, scale-invariance means that every element of the family Rλ(Fopt)
also belongs to Fopt. In particular, this means that for every i, the re-scaled
function fi(λ · x) is a linear combination of functions fj(x):

f1(λ · x) = C11(λ) · f1(x) + . . .+ C1n(λ) · fn(x);

. . . (4)

fn(λ · x) = Cn1(λ) · f1(x) + . . .+ Cnn(λ) · fn(x),

for some coefficients Cij depending on λ.
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For each i, we can take n different values x1, . . . , xn of x and get a system of
n linear equations with n unknowns Ci1(λ), . . . , Cin(λ):

fi(λ · x1) = Ci1(λ) · f1(x1) + . . .+ Cin(λ) · fn(x1);

. . .

fi(λ · xn) = Ci1(λ) · f1(xn) + . . .+ Cin(λ) · fn(xn).

By Cramer’s rule, the solutions Cij(λ) to this system can be represented as a ratio
of two polynomials in terms of fi(·). Since the functions fi(x) are smooth, this
implies that the functions Cij(λ) are also differentiable functions of λ.

Thus, we can differentiate both sides of (4) by λ and take λ = 1. As a result,
we get the following system of linear differential equations:

x · f ′1(x) = c11 · f1(x) + . . .+ c1n · fn(x);

. . . (5)

x · f ′n(x) = cn1 · f1(x) + . . .+ cnn · fn(x),

where we denoted cij
def
= C ′ij(1).

Here, for each i, we have

x · f ′i(x) = x · dfi
dx

=
dfi
dx/x

.

Since dx/x = d(ln(x)), we thus conclude that for the new variable X = ln(x) (for
which x = exp(X)) and for the corresponding functions Fi(X) = fi(exp(X)), we
get the system of linear differential equations with constant coefficients:

F ′1(X) = c11 · F1(X) + . . .+ c1n · Fn(X);

. . . (6)

F ′n(x) = cn1 · F1(X) + . . .+ cnn · Fn(X).

Hence, similarly to the previous subsection, we conclude that each solution of this
system is a linear combination of terms of the type exp(λi ·X) and

Xk · exp(λi ·X).

Substituting X = ln(x) into this formula, we conclude that each function fi(x) =
Fi(ln(x)) is a linear combination of functions exp(λi · ln(x)) and

lnk(x) · exp(λi · ln(x)).

Here, exp(λi · ln(x)) = (exp(ln(x))λi = xλi .
Thus, each function fi(x) is a linear combination of functions xλi and

lnk(x) · xλi .
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4◦. Our functions fi(x) are both shift-invariant and scale-invariant. Thus, each of
them has to be both of form described at the end of Part 2 of this proof and of
the form described at the end of Part 3. So, out of terms from Part 2, we cannot
have exponential terms with non-zero λi – since these terms cannot be expressed
in Part-3 form. Thus, the only possible terms are terms xk with k ≤ n− 1.

So, each function fi(x) is a linear combination of such terms – and is, thus, a
polynomial of order ≤ n− 1. The proposition is proven.

3 Why Convexity and Concavity Are Important
in Elevation Profiles: An Explanation Based on
the Optimality Result

Discussion. The above result provides us, for different n, with families of ap-
proximations to the elevation profiles. Let us start with the simplest possible
approximation.

For n = 1, we get the class of constant functions – no landscape at all. For
n = 2, we get a class of linear functions – no mountains, no ravines, just a flat
inclined surface. So, the only non-trivial description of a landscape starts with
n = 3, i.e., with quadratic functions.

We want to provide a qualitative classification of all such possible elevation
functions. It is reasonable to say that the two elevation functions are equivalent
if they differ only by re-scaling and shift of x and y:

Definition 9. We say that two quadratic functions f(x) and g(x) are equivalent
if for some values λx > 0, λy > 0, x0, and y0, we have

g(x) = λy · f(λx · x+ x0) + y0

for all x.

Proposition 2. Every non-linear quadratic function is equivalent either to x2 or
to −x2.

Discussion. Thus, in this approximation, we have, in effect, two shapes: the
shape corresponding to x2 (convex) and the shape corresponding to −x2 (concave).
This result explains why our visual classification into convex and concave shapes
makes perfect sense.

Proof. Every non-linear quadratic function g(x) has the form

g(x) = a0 + a1 · x+ a2 · x2,

for some a2 6= 0.
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If a2 > 0, then this function can be represented as

a2 ·
(
x+

a1

2a2

)2

+

(
a0 −

a2
1

4a2

)
,

i.e., can be represented in the desired form, with f(x) = x2, λx = 1, λy = a2,

x0 =
a1

2a2
, and y0 = a0 −

a2
1

4a2
.

If a2 < 0, then this function can be represented as

|a2| ·

(
−
(
x+

a1

2a2

)2
)

+

(
a0 −

a2
1

4a2

)
,

i.e., can be represented in the desired form, with f(x) = −x2, λx = 1, λy = |a2|,

x0 =
a1

2a2
, and y0 = a0 −

a2
1

4a2
.

The proposition is proven.

4 Bhutan Anomaly Explained

Discussion. In the previous text, we have shown that the optimal description of
an elevation profiles is by polynomials of a fixed degree.

In the first approximation, a landscape profile can be described by a quadratic
function. To get a more accurate description, let us also consider cubic terms, i.e.,
let us consider profiles of the type

f(x) = a0 + a1 · x+ a2 · x2 + a3 · x3. (7)

As a starting point x = 0 for the elevation profile, it makes sense to select the lowest
(or the highest) point. In both cases, according to calculus, the first derivative of
the elevation profile is equal to 0 at this point: f ′(0) = 0. Substituting the above
expression for f(x) into this formula, we conclude that a1 = 0 and thus,

f(x) = a0 + a2 · x2 + a3 · x3. (8)

Let us analyze how this approximation works for the above two cases: the case
of Nepal and the case of Bhutan.

Case of Nepal. In the case of Nepal, the forces compressing the upper plate are
orthogonal to the line of contact. This means that in this case, the forces do not
change if we change left to right and right to left.

Since the whole mountain range was created by this force, it is reasonable to
conclude that the corresponding elevation profile is also invariant with respect to
swapping left and right, i.e., with respect to the transformation x→ −x:

f(x) = f(−x). (9)
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Substituting the cubic expression (8) for the profile f(x) into this formula, we
conclude that a3 = 0. Thus, in this case, the elevation profile is quadratic even in
this next approximation – and is, therefore, either convex or concave.

Case of Bhutan. In the case of Bhutan, the force is applied at an angle. Here,
there is no symmetry with respect to x → −x, so, in general, we have a3 6= 0.
Thus, the second derivative – that describes whether a function is locally convex
(when this second derivative is positive) or locally concave (when the derivative is
negative) – becomes a linear function 6a3 · x+ 2a2, with a3 6= 0.

A non-constant linear function always changes signs – this explains why in the
case of Bhutan, convexity follows by concavity.

5 Auxiliary Question: How to Best Locate an
Inflection Point

Practical problem. Many geophysical ideas are applicable only to valley-type
convex domains or only to mountain-type concave domains. So, to apply these
ideas to a real-life landscape, it is necessary to divide the whole landscape into
convex and concave zones. What is the best way to do it? In other words, what is
the best way to locate an inflection point, i.e., the point at which local convexity
changes to local concavity?

First idea: a straightforward least squares approach. The first natural idea
– motivated by the above analysis – is to approximate the actual elevation profile
by a cubic function (7). The corresponding coefficients c0, c1, c2, and c3 can be
obtained, e.g., by applying the least squares method to the corresponding system
of linear equations

yi ≈ c0 + c1 · xi + c2 · x2
i + c3 · x3

i ,

where xi is the i-th location and yi is the i-th elevation.
The least squares method minimizes the sum∑

i

(yi − (c0 + c1 · xi + c2 · x2
i + c3 · x3

i ))
2.

Differentiating this expression with respect to each of the unknowns cj and equat-
ing all four derivatives to 0, we get an easy-to-solve system of four linear equations
with four unknowns.

Once we find the characteristics, we then estimate the location of the inflection
point as the value at which the second derivative is equal to 0, i.e., the value

xinfl = − c2
3c3

.

Second idea: a model-free least squares approach. Instead of restricting
ourselves to a cubic approximation, we can consider general convex functions. For
a function f(x) defined by its values y1 = f(x1), y2 = f(x2), . . . , on a equally
spaced grid

x1, x2 = x1 + ∆x, x3 = x1 + 2∆x, . . . , xN ,
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convexity is equivalent to the sequence of inequalities

yi ≤
yi−1 + yi+1

2
. (10)

For each set of actual profile points ỹi, we can therefore find the closest convex
profile by looking for the values yi that minimize the mean square error (MSE)

1

N
·
∑
i

(ỹi − yi)2

under the constraints (10). The minimized expression is a convex function of the
unknowns yi, and each constraint – and thus, their intersection – defines a convex
set. Thus, we can find the corresponding minimum by using a known algorithm
for convex optimization (= minimizing a convex function on a convex domain);
see, e.g., [4, 5, 6].

By applying this algorithm to actually convex profiles, we can find the largest
and thus, the corresponding MSE. Let us denote the largest of such values by M .
Then, to find an inflection point, we can consider larger and larger fragments of the
original series f(x1), f(x2), . . . , until we reach a point at which the corresponding
MSE exceeds M . This is the desired inflection point.

We can speed up this algorithm if instead of slowly increasing the size of the
still-convex fragment, we use bisection. Specifically, we always keep two values p
and p such that the fragment until p is convex (within accuracy M), while the
fragment up to the point p is not convex within the given accuracy.

In the beginning, we first apply our criterion to the whole list of N values. If
the result is M -close to convex, we consider the profile convex – no inflection point
here. If the result is not M -convex, then we take p = 1 and p = N .

Once we have two values p < p, we then take a midpoint m
def
=

p+ p

2
. If

the segment up to this midpoint is M -convex, then we replace p with m. If this
segment is not M -convex, we replace p with m.

In both case, we get a new interval [p, p] whose width decreased by a factor
of two. We started with width N . Thus, in log2(N) steps, this size decreases to
N/2log2(N) = N/N = 1, i.e., we get the exact location of the inflection point.

Comment. Other algorithms for detecting inflection points are described, e.g., in
[7, 8].
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