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1 Formulation of the Problem

Need for discrete estimates. Discrete estimates are important in many real-life
problems. These estimates are important in evaluating situations and in making
decisions.

When we evaluate a given situation, in addition to numerical characteristics,
we often use discrete estimates; for example:

• to estimate the quality of a hotel stay, in addition to price and wait times
at reception, we also ask customers to estimate, on a certain discrete scale,
how much they liked the hotel in general and/or different aspects of the
hotel service;

• students evaluate the quality of their instructors by using a discrete scale –
e.g., from 0 to 5, etc.

In decision making, discrete estimates are also important. Indeed, a large
number of decisions are made by experts; for example:

• a medical doctor prescribes a certain treatment,

• a skilled driver decides how much to break if a road situation changes,

• an investor decides whether to re-balance her investment.

In all these situations, the expert bases his/her decisions not only on numerical
values of the corresponding quantities, but also on a discrete estimate.

• When encountering a skin inflammation, the doctor takes into account
whether the area of this inflammation is small, medium, or large.

• A driver makes different decisions depending on whether the car in front
slowed down a little bit, some, or drastically.

• An investor bases his/her decision on whether the prices of different stocks
increased a lot, increases somewhat, increased slightly, or decreased (and
decreased to what extent).

In all these cases, we use a discrete (Likert-type) scale. In some cases, each
element of the corresponding scale has a natural-language description – such as
“small”, “medium”, “large”, etc. In other cases, we simply ask the users to es-
timate their opinion on a scale, e.g., from 0 to 10, but we only assign natural-
language explanations to the boundary values (0 and 10), and not to intermediate
degrees. In all these cases, we have a scale whose elements can be numbered in
increasing order: 0, 1, . . . , up to a certain natural number n.

Comment. For situations when each element of a scale has a natural-language de-
scription, there is a special methodology for dealing with such cases – the technique
of fuzzy logic; see, e.g., [1, 2, 3, 4, 5, 6].

Need to translate discrete estimates into a different scale. The opinion
of each individual expert may be subjective and biased. To get a more accurate
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understanding of the current situation and/or a more reliable decision, we must
combine the opinion of several different experts.

One of the difficulties in such combination is that different experts use, in
general, different scales. This is a known phenomenon in psychology: there is a
so-called 7 ± 2 phenomenon (see, e.g., [7, 8]), according to which each person is
most comfortable with a certain size of scale – from scale with 7− 2 = 5 elements
to a scale with 7 + 2 = 9 elements.

Thus, to combine different expert estimates, it is necessary to transform them
into a single scale.

We need to translate to a less detailed scale. The fewer the number of
elements in a scale, the less information is contained in the corresponding esti-
mate. For example, if we have a binary “yes”-“no” scale, with two elements, the
corresponding estimate clearly contains less information that the more detailed
scale, e.g., a scale “absolutely yes” – “somewhat confident that yes” – “neutral”
– “somewhat confident that no” – “no”. From this viewpoint, to translate into a
more detailed scale is simpler: we will simply leave out some intermediate values.
A more challenging problem is how to translate an estimate into a less detailed
scale.

It is important to transform discrete estimates to a scale that has one
fewer element. In general, we have many experts, with different numbers of ele-
ments in their corresponding scales. Intuitively, the larger the difference between
numbers of elements in two scales, the more difficult it is to translate between
these two scales. It is therefore reasonable to concentrate on how to translate
from a scale to a closest scale – namely, the scale that has one fewer element.

Once we learn how to do it, we can handle larger differences as well: namely,
we can first translate all 9-element-scale estimates into an 8-element scale. Then,
we can translate these newly formed 8-element-scale estimates and the original
8-element-scale estimates into a 7-element scale, etc.

What we do in this paper. In this paper, after overviewing different technique
for such a translation, we formulate the problem of selecting a translation as
an optimization problem. Then, we solve this optimization problem – and thus,
describe which translations are optimal.

2 How to Translate: A Currently Used
Straightforward Approach

Numerical methods: main idea. Computers have been designed to deal with
numbers, not with elements of a scale. Thus, to process scale-based expert infor-
mation, a natural idea is to translate such information into numbers. For example,
we can use numbers from the interval [0, 1].

Once such a translation is selected, there is a simply way to solve our trans-
lation problem: to see what i on a scale from 0 to n + 1 means in a 0-to-n scale,
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we simply take the number corresponding to i on a 0-to-(n+ 1) scale and find the
closest of the numbers describing the 0-to-n scale.

To utilize the numerical approach, all we need to do is to decide, for each
element i on each 0-to-n scale, which number vi,n ∈ [0, 1] to assign to this element.
The only requirement is that smaller elements should be described by smaller
numbers.

Definition 1. By a numerical equivalent, we mean a sequence of numbers vi,n
define for all n ≥ 1 and for all i from 0 to n such that for every n and for every
i < n, we have vi,n < vi+1,n.

Definition 2. Let a numerical equivalent vi,n be given. Then, for each n and for
each i ≤ n+ 1, by the corresponding n-translation tn(i), we mean an integer j for
which the value vj,n is the closest to vi,n+1:

|vtn(i),n − vi,n+1| = min
0≤j≤n

|vj,n − vi,n+1|.

Straightforward approach. In the straightforward approach, we associate the
smallest element of the scale with 0, the largest with 1, and we made all the other

values equally spaced, i.e., we take vi,n =
i

n
.

Definition 3. By a straightforward approach, we mean a numerical equivalent

vi,n =
i

n
.

Comment. This is the most widely used numerical translation of a scale. This is,
e.g., how scales are translated into numbers in fuzzy logic [1, 2, 3, 4, 5, 6].

Resulting translation into a less detailed scale. Now that we know the
values vi,n corresponding to the straightforward approach, we can determine the
corresponding translation into a less detailed scale. The results are somewhat
different for even and odd n.

Proposition 1. For even n, for the straightforward approach, the corresponding
n-translation has the following form:

• for i < (n+ 1)/2, we have tn(i) = i, and

• for i > (n+ 1)/2, we have tn(i) = i− 1.

(For reader’s convenience, all the proofs are placed in a special (last) Proofs sec-
tion.)

Comment. In other words, for n = 2k:

• values 0, ..., k − 1 on the 0-to-(2k + 1) scale translate into themselves,

• values k and k + 1 are both translated into k, and



Translating Discrete Estimates into a Less Detailed Scale ... 45

• values k + 2, k + 3, . . . , n+ 1 are translated, accordingly, into k + 1, k + 2,
. . . , n.

Proposition 2. For odd n, for the straightforward approach, the corresponding
n-translation has the following form:

• for i < (n+ 1)/2, we have tn(i) = i,

• for i = (n+ 1)/2, we have either tn(i) = i or tn(i) = i− 1, and

• for i > (n+ 1)/2, we have tn(i) = i− 1.

Comment. In other words, for n = 2k − 1:

• values 0, ..., k − 1 on the 0-to-2k scale translate into themselves,

• value k can be translated either into k or into k − 1, and

• values k+ 1, k+ 2, . . . , n+ 1 are translated, accordingly, into k, k+ 1, . . . ,
n.

Comment. When applying several consequent transitions from a scale to a less
detailed one is that the result of the consequent n-translations may differ from
what we would get if we translate directly. Let us give an example. Suppose
that we start with the 0-to-5 scale in which, in the straightforward approach, the
numerical equivalents are 0, 1/5, 2/5, 3/5, 4/5, and 1. We want to translate it
into the 0-to-2 scale, in which the numerical equivalents are 0, 1/2, and 1.

There are two ways to perform this n-translation:

• first, we can first go from the 0-to-5 scale to the 0-to-4 scale, then to the
0-to-3-scale, and finally, to the 0-to-2 scale;

• alternatively, we can directly go from the 0-to-5 scale to the 0-to-2 scale – by
assigning to each numerical value from the 0-to-5 scale the closest numerical
value on the 0-to-2 scale.

Let us trace how the grade 1 on the 0-to-5 scale – whose numerical equivalent is
1/5 – gets translated in both approaches.

• In the first approach, according to our results (as expressed by Propositions
1 and 2), 1/5 gets translated into 1/4, then into 1/3, and finally, into 1/2.

• However, in the second approach, since 1/5 is closer to 0 than to 1/2 or to
1, the value 1/5 will be translated into 0 – and not to 1/2 as in the first
approach.
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3 Maximum Entropy Approach

Main idea. For each n, the only restriction that we have on the corresponding
values v0,n, v1,n, . . . , vn,n is that v0,n < v1,n < . . . < vn,n. Let Vn denote the set of
all the tuples vn = (v0,n, v1,n, . . . , vn,n) that satisfy this property.

If we knew the probability distribution ρ(vn) on this set Vn, then it makes
sense to select a tuple vn ∈ Vn for which the mean square deviation is the smallest
possible, i.e., the tuple vn that minimizes the integral∫

ρ(vn) · (vn − vn)2 dvn.

In general, in statistics, it is well known that this minimum is attained at the mean
value vn =

∫
ρ(vn) · vn dvn; see, e.g., [9].

To follow this approach, we need to select a distribution on the corresponding
set of tuples. Since we have no reason to believe that some tuples are more
probable than others, it makes sense to assume that all the tuples from Vn are
equally probable, i.e., that we have a uniform distribution on the set of all such
tuples. This natural idea is known as Laplace Indeterminacy Principle, and it is a
particular case of a general Maximum Entropy approach; see, e.g., [10].

Known auxiliary result. The mean values of vi,n with respect to the uniform
distribution on the set Vn of all the tuples are known (see, e.g., [11, 12, 13, 14, 15,

16, 17, 18, 19]): they are vi,n =
i+ 1

n+ 2
. So, we arrive at the following definition.

Definition 4. By a maximum entropy approach, we mean a numerical equivalent

vi,n =
i+ 1

n+ 2
.

Comment. It is worth mentioning that exactly the same tuples appear if we select
the tuple vn which is the most robust (in some reasonable sense); see, e.g., [15].

Resulting n-translation. It turns out that for the maximum entropy approach,
we get the exact same n-translation as for the straightforward approach:

Proposition 3. For even n, for the maximum entropy approach, the corresponding
n-translation has the following form:

• for i < (n+ 1)/2, we have tn(i) = i, and

• for i > (n+ 1)/2, we have tn(i) = i− 1.

Proposition 4. For odd n, for the maximum, entropy approach, the corresponding
n-translation has the following form:

• for i < (n+ 1)/2, we have tn(i) = i,

• for i = (n+ 1)/2, we have either tn(i) = i or tn(i) = i− 1, and

• for i > (n+ 1)/2, we have tn(i) = i− 1.
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4 General Approach

Why we need a general approach. All we have is values on a scale. So it
is more natural to deal directly with numbers on a scale and not artificially add
numbers to the clearly non-numeric data. This is what we will do in this section.

Motivations and the resulting definitions. For every n, we need to describe
a mapping tn : {0, 1, . . . , n+ 1} → {0, 1, . . . , n}. It is reasonable to require:

• that the worst case gets translated into the worst case, i.e., that tn(0) = 0,
and

• that the best case gets translated into the best case, i.e., that tn(n+1) = n.

Definition 5. For every n ≥ 1, by an n-translation, we mean a mapping

tn : {0, 1, . . . , n+ 1} → {0, 1, . . . , n}

for which tn(0) = 0 and tn(n+ 1) = n.

It is also reasonable to require that small changes in the input to the n-
translation function cause small changes in the output. Since each change can
be described as a superposition of changes by 1, it is sufficient to formulate this
“continuity” property for the case when the change means adding or subtracting 1.

Definition 6. We say that the values i and i′ are close if |i− i′| ≤ 1.

Definition 7. We say that a n-translation tn is continuous if whenever i and i′

are close, the values tn(i) and tn(i′) are also close.

We want to select one of the possible continuous n-translations. There
are several different continuous n-translations. For example, for n = 2, in addition
to t2(0) = 0 and t2(3) = 2, we can have at least two different options:

• we can have t2(1) = 0 and t2(2) = 1, or

• we can have t2(1) = 1 and t2(2) = 1, or

• we can have t2(1) = 1 and t2(2) = 2.

In all these cases, we have a continuous n-translation function.
We therefore need to select one of the possible continuous n-translations.

We want an optimal n-translation – but how do we describe this in
precise terms? Of course, we want to select the “best” (optimal) one – the
best in terms of the resulting applications. To perform such selection, we need to
describe what “the best” means.

In different practical situations, however, optimal may mean different things.
So, ideally, instead of selecting a single optimality criterion, we should consider all
possible reasonable optimality criteria.
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What is an optimality criterion? Usually, we select some objective function
J(a), and consider an alternative a to be better than alternative a′ if J(a) > J(a′)
(or, alternatively, J(a) < J(a′)). However, this is not the most general description
of optimality. For example, if we select an algorithm a with the best possible worst-
case complexity J(a), and there are several such algorithms, then we can use this
non-uniqueness to optimize something else, e.g., the average-case complexity A(a).
In this case, the actual optimality criterion that we use to select an algorithm is
no longer a numerical one, it is more complicated. Namely, a is better than a′ if:

• either J(a) < J(a′),

• or J(a) = J(a′) and A(a) < A(a′).

If we still have several algorithms which are equally good with respect to this
complex criterion, we can use this non-uniqueness to optimize something else, etc.,
until we get to the point when we are left with exactly one optimal alternative.

In general, what we want from an optimality criterion is that it allows us, for
every two alternatives a and a′,

• either to select one of them,

• or to conclude that a and a′ are equivalent,

• or maybe to conclude that a and a′ are incompatible.

Let us denote the case when a is better than a′ or of the sane quality by a � a′.
Clearly, each alternative a is of the same quality as itself, so we must have

a � a. In mathematical terms, this means that the relation � is reflexive.
If a is better than a′ and a′ is better than a′′, this means that a is better

than a′′. In other words, if a � a′ and a′ � a′′, then we should have a � a′′. In
mathematical terms, this means that the relation � is transitive.

Reflexive transitive relations are known as pre-orders. They are not necessarily
order: an order has an additional property that if a � a′ and a′ � a, then a = a′.
For optimality criterion, this is not necessarily true: nothing wrong with having
two different alternatives which are equally bad. Thus, we arrive at the following
definition; see, e.g., [20].

Definition 8. By an optimality criterion on a set A, we mean a pre-order relation
� on this set, i.e., a relation which satisfies the following two properties:

• reflexivity a � a, and

• transitivity: if a � a′ and a′ � a′′, then a � a′′.

Definition 9. Let � be an optimality criterion on a set A. We say that the
alternative aopt is optimal if aopt � a for all a ∈ A.

When is an optimality criterion final? As we argued earlier, if an optimality
criterion selects several different alternatives as optimal, this means that this cri-
terion is not final: we can use this non-uniqueness to optimize something else and
thus, we modify the original criterion. Such a modification continues until we get
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an optimality criterion that has exactly one optimal alternative. Thus, we arrive
at the following definition.

Definition 10. We say that an optimality criterion � is final if there exists
exactly one alternative which is optimal with respect to this criterion.

Symmetries: main idea. In many practical situations, there exist some natural
symmetries. In such situations, it is reasonable to require that the optimality cri-
terion be invariant under this transformation: if a � a′ and T is the corresponding
symmetry, then we should have T (a) � T (a′).

Symmetries: our case. For each scale, we can select two different directions;
for example:

• we can mark the awful professor by 0 and the best professor by 5; in this
case, the number describes the quality of a professor;

• alternatively, we can mark the awful professor by 5 and the best professor by
0; in this case, the number describes the size of this professor’s limitations.

In general, such a scale reversal, from the original values 0, 1, . . . , n− 1, n to the

new values n, n− 1, . . . , 1, 0 can be described by a formula i→ Rn(i)
def
= n− i.

If in the original scale, we have a n-translation tn : {0, 1, . . . , n + 1} →
{0, 1, . . . , n}, then in the reverse scales, this n-translation takes the following form:

• first, we reverse the given value i on the new scale into a reversed value

Rn+1(i) = (n+ 1)− i;

• then, we apply the original n-translation, and get the value tn(Rn+1(i)) in
the old scale,

• finally, we reverse this value, to get to the new scale; this results in the value

Rn(tn(Rn+1(i))).

Thus, we arrive at the following definition.

Definition 10. For each n, by Rn(i), we mean the value n − i. For each n-
translation tn, by its reversal, we mean a n-translation R(tn) which is defined as
follows: (R(tn))(i) = Rn(tn(Rn+1(i))).

Definition 11. Let n be given. We say that the optimality criterion on the set of
all possible continuous n-translations is invariant if a � a′ always implies

R(a) � R(a′).

First result: case of even n. Invariance property enables us to find the optimal
n-translation for the case when the value n is even:



50 Thai J. Math. (Special Issue, 2019)/ T. Dumrongpokaphan et al.

Proposition 5. For even n, for every invariant final optimality criterion on the
set of all continuous n-translations, the optimal n-translation is the one corre-
sponding to the straightforward approach.

Case of off n: discussion and the main result. For the case when n is odd,
the above approach does not work:

Proposition 6. Let n be an odd number. Then, no final optimality criterion on
the set of all continuous n-translations is invariant.

Discussion. This result shows that for odd n, it is not possible to have a unique
optimal n-translation. Thus, there must be several optimal n-translations. Ideally,
the smaller the number of optimal n-translations, the better. Since we cannot
have a single optimal n-translation, let us thus consider the possibility to have two
different optimal n-translations.

We cannot have these two optimal n-translations to be equal to each other,
but at least we should require that they be as close to each other as possible. From
the mathematical viewpoint, n-translations are functions. The two functions are
equal if for each input x, their values are equal. We cannot have all the values
equal, so the next best thing is to have these values equal for all but one inputs
x. Thus, we arrive at the following definitions.

Definition 12. We say that two n-translations tn and sn are almost equal if their
values coincide for all but one value i.

Definition 13. We say that the optimality criterion on the class of all continuous
n-translations is almost final if for this criterion, there exist exactly two optimal
n-translations, and these two n-translations are almost equal.

Now, we can determine the optimal n-translation.

Proposition 7. For odd n, for every invariant almost final optimality criterion
on the set of all continuous n-translations, the optimal n-translations are the ones
corresponding to the straightforward approach.

5 Proofs

Proof of Propositions 1 and 2. For each i, let us find the fraction vj,n =
j

n

which is the closest to the original value vi,n+1 =
i

n+ 1
.

For i = 0 and i = n + 1, this selection is clear, since in these cases, we can
get not just the closest values, we can get exact equality: v0,n+1 = v0,n = 0 and
vn+1,n+1 = vn,n = 1. So, it is sufficient to consider the case when 0 < i ≤ n.
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In this case, we always have
i

n+ 1
<

i

n
. Let us show that always have

i− 1

n
<

i

n+ 1
. Indeed, if we multiply both sides by n · (n + 1), we get an equivalent

inequality (i− 1) · (n+ 1) < i · n, i.e., i · n+ i− n− 1 < i · n, which is equivalent
to the true inequality i < n+ 1.

Since
i− 1

n
<

i

n+ 1
<

i

n
, the closest fraction to

i

n+ 1
is either

i− 1

n
, or

i

n
.

To find out which is closer, we need to compare the corresponding distances: the
value j = i is closer if and only if

i

n
− i

n+ 1
≤ i

n+ 1
− i− 1

n
.

Multiplying both sides by n · (n+ 1), we get an equivalent inequality

i · (n+ 1)− i · n ≤ i · n− (i− 1) · (n+ 1).

If we open parentheses and cancel the terms i · n and −i · n in both sides, we get
an equivalent inequality i ≤ −i + n + 1. Moving i to the right-hand side, we get

an equivalent inequality 2i ≤ n+ 1, i.e., i ≤ n+ 1

2
. Thus:

• when i <
n+ 1

2
, the value vi,n is closer,

• when i =
n+ 1

2
, both values vi,n and vi−1,n are equally close, and

• when i >
n+ 1

2
, the value vi−1,n is closer.

Thus, the propositions are proven.

Proof of Proposition 3 and 4 is similar to the proof of Propositions 1 and 2.

Proof of Propositions 5 and 6.

1◦. By definition of an n-translation, we have tn(0) = 0 and tn(n + 1) = n. The
difference tn(n+1)−tn(0) can be represented as the sum n+1 differences between
neighboring values tn(i+ 1) and tn(i):

n = tn(n+ 1)− tn(0) =

(tn(1)− tn(0)) + (tn(2)− tn(1)) + . . .+ (tn(n+ 1)− tn(n)).

Since we consider continuous n-translations, for each i, the neighboring difference
tn(i + 1) − tn(i) is equal either to −1, or to 0, or to 1. In all three cases, this
difference does not exceed 1. Thus, the value n = tn(n+1)−tn(0) is smaller than or
equal to the number of transitions from tn(i) to tn(i+1) for which tn(i+1)−tn(i) =
1. Hence, we must have at least n transitions for which tn(i) increases by 1 as we
go from the previous value i to the next value i+ 1.
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These n transitions already provide the sum n, so the only way to keep the
overall sum equal to n is when the single remaining neighboring difference is equal
to 0.

Let j denote the index of this remaining 0-valued difference, i.e., the value j
for which tn(j + 1) − tn(j) = 0. In this case, the n-translation has the following
form.

• For i ≤ j, we have

tn(i) = tn(i)− tn(0) =

(tn(1)− tn(0)) + (tn(2)− tn(1)) + . . .+ (tn(i)− tn(i− 1)).

All the terms in the right-hand side are 1s, and there are i such terms, so
we conclude that

tn(i) = i.

• For i > j, we have

tn(i)− tn(j) =

(tn(j + 1)− tn(j)) + (tn(j + 2)− tn(j + 1)) + . . .+ (tn(i)− tn(i− 1)).

In this case, the first term in the right-hand side is 0, and all others – and
there are i− j − 1 of them – are equal to 1. Thus, we have tn(i)− tn(j) =
i− j − 1 and hence,

tn(i) = tn(j) + (i− j − 1) = j + (i− j − 1) = i− 1.

2◦. Let us now prove that the optimal n-translation a should itself be reverse-
invariant, i.e., we should have R(a) = a.

Indeed, by definition, optimality means that a � t for any continuous n-
translation t. In particular, this n-translation t can have the form t = R(s) for
some other n-translation s, so we can conclude that a � R(s) for all continuous
n-translations s. Since the optimality criterion is invariant, we conclude that
R(a) � R(R(s)).

One can easily check that the reversal, when applied twice, returns back to the
original n-translation, i.e., that we have R(R(s)) = s for all s. Thus, the above
property R(a) � R(R(s)) implies that R(a) � s for all continuous n-translations
s. This means that the reversed n-translation R(a) is also optimal.

However, our optimality criterion is final – which means that there is only one
optimal n-translation. Thus, we must have R(a) = a.

3◦. We know that in each continuous n-translation, there is a single pair of neigh-
boring values (j, j + 1) for which tn(j) = tn(j + 1). In particular, this is true for
the optimal n-translation a: there is a single pair of neighboring values (j, j + 1)
for which a(j) = a(j + 1).

In the reversed n-translation R(a), the reversed values Rn+1(j) = n + 1 − j
and Rn+1(j+1) = n+1− (j+1) = n−j have the same property: (R(a))(n−j) =
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(R(a))(n− j + 1). Since R(a) = a, the corresponding pair (n− j, n− j + 1) must
coincide with the original pair (j, j+1). Thus, we must have n−j = j, i.e., n = 2j.

When n is even, this means that we must have j = n/2 – in which case the
n-translation described in Part 1 of this proof coincides with the n-translation
corresponding to the straightforward approach. This proves Proposition 5.

When n is odd, the equality n = 2j, where j is an integer index, is not possible.
This proves Proposition 6.

Proof of Proposition 7. In the proof of Propositions 5 and 6, we have described
the general form of a continuous n-translation. Each such n-translation is uniquely
described by a pair of neighboring indices (j, j + 1) for which tn(j) = tn(j + 1).

One can easily see that the two n-translations corresponding to pairs (j, j+ 1)
and (j′, j′ + 1) are almost equal if the corresponding value j and j′ differ by 1.

Similarly to the proof of Propositions 5 and 6, we can conclude that if an
n-translation is optimal, then the reversed n-translation is also optimal. If for the
original optimal n-translation, the pair of indices for which the n-translation leads
to the same result is (j, j+1), then for the reverse n-translation this pairs consists
of the reversals Rn+1(j) = n + 1 − j and Rn+1(j + 1) = n + 1 − (j + 1) = n − j.
Thus, for the reverse n-translation, the corresponding pair is (n− j, n− j + 1).

Since the two optimal n-translations should be almost equal, the corresponding
indices should differ by 1: |(n−j)−j| = |n−2j| ≤ 1, or, equivalently, −1 ≤ 2j−n ≤
1, i.e., n − 1 ≤ 2j ≤ n + 1. For odd n, i.e., for n of the type n = 2k − 1, this
implies 2k − 2 ≤ 2 ≤ 2k, i.e., k − 1 ≤ j ≤ k. In both cases, we indeed have the
n-translation corresponding to the straightforward approach. The proposition is
proven.
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