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Abstract : In economic application, it is desirable to find an optimal solution –
i.e., a solution which is preferable to any other possible solution. Traditionally,
the state of an economic system has been described by real-valued quantities such
as profit, unemployment level, etc. For such quantities, preferences correspond to
natural order between real numbers: all things being equal, the more profit the
better, and the smaller unemployment, the better. Lately, it turned out that to
adequately describe economic phenomena, it is often convenient to use complex
numbers. From this viewpoint, a natural question is: what are possible orders on
complex numbers? In this paper, we show that the only possible orders are orders
on real numbers.
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1 Formulation of the Problem

What is econometrics: a brief reminder. Econometrics describes, in quan-
titative terms, human economics-related behavior: what people prefer, how they
actually behave, and – if their current behavior is not optimal in relation to their
own preferences – what behavior should be optimal.

Order in traditional econometrics. From the mathematical viewpoint, pref-
erence a ≤ b or, equivalently, b ≥ a (meaning that b is at least as good as a) is an
pre-order relation, i.e., a relation which is:

• reflexive, i.e., a ≤ a, and

• transitive, i.e., if a ≤ b and b ≤ c, then a ≤ c.

In some cases, preferences form an order, i.e., a ≤ b and b ≤ a imply a = b. How-
ever, this is not always the case: a person can consider two different alternatives
a and b to be equally good.

Traditional econometric models use real-valued quantities such as profit, in-
come, productivity, etc. Such real-life quantities are easy to compare: e.g., the
larger the profit, the better for the company; the smaller the unemployment rate,
then – everything else being equal – the better for the economy, etc.

For real numbers, the natural pre-order is linear in the sense that for every a
and b, we can have either a ≤ b or b ≤ a. However, in general, pre-orders describing
human preferences do not have to be linear: sometimes a person cannot decide
whether the first of the two alternatives a and b is better or the second is better –
and this person is not sure that these two alternatives are equivalent. In this case,
we have a 6≤ b and b 6≤ a.

Quantum econometrics. It turns out that in many practical situations, eco-
nomic phenomena can be described by quantum-type formalisms (see, e.g., [1]),
with quantities described by complex numbers; see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16] (see also [17, 18, 19]).

Natural question. As we have mentioned, one of the main topics of econometrics
is describing and using preferences – i.e., in mathematical terms, order relations.
From this viewpoint, since we now allow complex-values quantities, a natural
question is: what are possible extensions of the natural real-numbers order to
pre-orders on the set of complex numbers?

This is the question that we will analyze in this paper. Specifically, we show
that the only possible orders are orders coinciding with the original order on the
real numbers – i.e., no non-trivial extension to complex numbers is possible.
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2 Definitions and the Main Result

Motivations. In mathematical terms, complex numbers form a field. This means:

• that both addition and multiplication are commutative (a + b = b + a and
a · b = b ·a) and associative (a+(b+ c) = (a+ b)+ c and a · (b · c) = (a · b) · c),

• that these two operations are distributive: a · (b + c) = a · b + a · c),

• that there exists elements 0 and 1 for which a+0 = a and a ·1 = a for every
a,

• that every element a has an additive inverse −a for which a+(−a) = 0, and

• that every non-zero element a 6= 0 has a multiplicative inverse a−1 for which
a · a−1 = 1.

For a field, the sum a + (−b) is usually denoted by a− b.
It is usually required that orders ≤ on a field are consistent with the algebraic

operations, in the following sense (see, e.g., [20, 21, 22]):

• if a ≤ b then a + c ≤ b + c;

• if a ≥ 0 and b ≥ 0, then a · b ≥ 0.

Sometimes, fields have natural transformations T with respect to which nothing
changes: addition turns into addition, multiplication into multiplication, and phys-
ical meaning remains the same. In this case, it is reasonable to require that the
order is also not changed under this operation, i.e., that a ≤ b implies T (a) ≤ T (b).

For complex numbers z = a + b · i, where i
def
=
√
−1, such an operation is

complex conjugation that transforms z into z∗
def
= a = b · i. Thus, we arrive at the

following definition.

Definition 1. Let A be a set.

• By a pre-order ≤ on the set A, we mean a binary relation which is reflexive
(a ≤ a) and transitive (if a ≤ b and b ≤ c, then a ≤ c).

• By an order, we mean a pre-order for which if a ≤ b and b ≤ a, then a = b.

• We say that a pre-order is linear if for every a and b, we have either a ≤ b
or b ≤ a.

Definition 2. By a consistent pre-order on the set of all complex numbers, we
mean a pre-order that satisfies the following properties:

• for real numbers, this pre-order coincides with a natural order;

• if a ≤ b, then, for every c, we have a + c ≤ b + c;

• if a ≥ 0 and b ≥ 0, then a · b ≥ 0;

• if a ≤ b, then a∗ ≤ b∗.
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Known result. The following result is known.

Proposition 1. A consistent pre-order cannot be linear.

Proof. Indeed, suppose that a consistent pre-order is linear. Then either i ≥ 0 or
i ≤ 0.

In the first, case, from a = i ≥ 0 and b = i ≥ 0, we conclude that a·b = −1 ≥ 0,
while we know that −1 < 0.

In the second case, from a = i ≤ b = 0, we conclude, for c = −i, that
a+ c ≤ b+ c, i.e., that 0 ≤ −i or, equivalently, that −i ≥ 0. Now, from a = −i ≥ 0
and b = −i ≥ 0, we conclude that a · b = −1 ≥ 0, while we know that −1 < 0.

In both cases, we have a contradiction, which proves that a consistent pre-order
cannot be linear.

Main result. Let us now formulate our general result about consistent pre-orders
that may be partial.

Proposition 2. The only consistent pre-order is the original real-numbers pre-
order in which a ≤ b if and only if the difference b − a is a non-negative real
number.

3 Proof of the Main Result

1◦. Let us prove that if a ≥ 0 and b ≥ 0, then a + b ≥ 0.

Indeed, from 0 ≤ a, by using c = b, we conclude b ≤ a + b, so by transitivity,
we get 0 ≤ a + b. i.e., a + b ≥ 0.

2◦. Let ≤ be a consistent pre-order on the set of all complex numbers.

By definition, a ≤ b implies that a + c ≤ b + c. In particular, for c = −a, we
conclude that a ≤ b implies that 0 ≤ b− a.

Vice versa, if 0 ≤ b− a, then, by taking c = a, we conclude that a ≤ b.

Thus, a ≤ b if and only if b− a ≥ 0. So, to describe a consistent pre-order, it
is sufficient to describe the set of all the elements a for which a ≥ 0.

In our case, we will thus prove that a ≥ 0 if and only if a is a non-negative
real number.

3◦. First, let us prove that if z = a + b · i ≥ 0 and z 6= 0, then a > 0.

Indeed, from z ≥ 0, we can conclude that z∗ = a− b · i ≥ 0. Thus, due to Part
1 of this proof, we get z + z∗ = 2a ≥ 0, hence a ≥ 0.

Let us show that we cannot have a = 0. Indeed, if a = 0, then we would have
z = b · i. Since z 6= 0, this means that b 6= 0. Then, we would have z · z = −b2 ≥ 0,
but we know that −b2 < 0 – a contradiction.

4◦. We have shown that a > 0. Multiplying the complex number a + b · i ≥ 0 by
a positive number a−1, we conclude that the product v = 1 + t · i ≥ 0, where we

denoted t
def
= b · a−1.
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5◦. Let us now prove that if 1 + t · i ≥ 0, then |t| < 1 and 1 + s · i ≥ 0, where

s
def
=

2t

1− t2
.

Indeed, if 1 + t · i ≥ 0, then the product of two such numbers should also be
greater than or equal to 0, i.e., we should have (1 − t2) + 2t · i ≥ 0. From Part 3
of this proof, we can now conclude that 1− t2 > 0, hence |t| ≤ 1.

Since 1− t2 > 0, we can multiply the new complex number (1− t2) + 2t · i ≥ 0
by 1/(1− t2) > 0 and get the desired number 1 + s · i.

Here, 1− t2 ≤ 1 hence |s| ≥ 2|t|.

6◦. If we have a + b · i ≥ 0 for some b 6= 0, then, from Part 4 of this proof, we get
a new complex number 1 + t · i ≥ 0 for some t 6= 0.

By using Part 5 of this proof, we can get a new complex number 1 + s · i with
|s| ≥ 2|t|. Then, we can again apply the same procedure to the number 1+s · i and
a new non-negative complex number for which the absolute value of the imaginary
part is at least as large as |s| – and thus, at least 4 times as large as |t|. By
repeating the same procedure k times, we get a complex number 1 + d · i with
|d| ≥ 2k · |t|. If t > 0, then for sufficiently large k, we will have 2k · |t| > 1 hence
|d| > 1 – and we know, from Part 5 of this proof, that we must have |d| < 1, a
contradiction.

This contradiction shows that the case b 6= 0 is impossible, so the only complex
numbers z ≥ 0 are numbers with 0 imaginary part – i.e., real numbers.

The proposition is proven.
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