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1 Introduction

Although quantile regression has been found successful in finding the relationship
between a set of regressors and the outcome variable as it was introduced as a robust re-
gression technique when the typical assumption of normality of the error term might not
be strictly satisfied (Koenker and Bassett [1]). Nevertheless, there are still many unsolved
problems. First, it is often hard simply to find the significant relationship between depen-
dent and its covariates when there exists structural change in the relationship. Second, the
quantile level is somewhat difficult to specify.

Fortunately, the Markov regime-switching quantile regression model as employed by
Liu [2] and Tungtrakul, Maneejuk, and Sriboonchitta [3] was introduced to deal with the
issue of the structural change in the casual relationship. Later, this model was further
extended by Rakpho, Yamaka and Sriboonchitta [4] by considering the quantile level of
dependent variable as a parameter estimate. Thus, the model becomes more flexible to
accommodate various relationship structures. That is, the model is governed by an unob-
served state variable that follows a Markov process with unknown transition probabilities
and unknown quantile level. Hence, in each economic state or regime, this model has an
ability to examine the effect of explanatory variables on the dependent variable at appro-
priate quantiles of the dependent variables conditional distribution.

In the work of Rakpho, Yamaka and Sriboonchitta [4], the Markov Switching quan-
tile regression with unknown quantile (MSQU) is estimated by the maximum likelihood
method. As suggested by Hamilton [5], who is the pioneer of the Markov Switching
model, this model may face the ill-behaved likelihood surface (multiple local Maxima) as
the usual numerical maximization of regime switching likelihood functions is subject to
computational difficulties. Thus, we also have a concern that it may be difficult to esti-
mate the parameters in the likelihood of the Markov Switching regression with unknown
quantile. Previous researchers resort to a Bayesian method using Markov-chain Monte
Carlo (MCMC) technique to estimate the parameter of the Markov Switching model (see,
[3], [6] and [7]) and hence the application of this method to the MSQU model is straight-
forward.

The Bayesian approach has many advantages over classical methods including pro-
viding the entire posterior distribution of the parameters of interest, allowing for param-
eters uncertainty when making predictions, and flexible handling of complex model sit-
uation. Thus, this study develops Bayesian Markov Chain Monte Carlo estimation pro-
cedure that is more informative, efficient, and flexible than a maximum likelihood-based
approach to estimate MSQU model. Our Bayesian estimation of MSQU starts with spec-
ifying a likelihood, which can often be specified as the Asymmetric Laplace Distribution
(ALD). The ALD has a nice hierarchical representation which facilitates the implemen-
tation of the maximum likelihood estimation. Snchez, Lachos, and Labra [8]. Tu, Wang,
Sun [9] mentioned that the ALD is closely related to the quantile regression approach
as the maximum ALD is statistically equivalent to the least absolute square estimation
which is commonly used as the estimator of quantile regression model. As the entire pos-
terior distribution needs a likelihood function, this interesting ALD motivates us to adopt
the ALD as the likelihood function in the MSQU model. Then, the estimation procedure
estimates regimes at each time point, regime transition probabilities, and vector process
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parameters comprising coefficients, variance, and quantile within each regime.
This study, thus, will contribute to the recent literature on Markov switching quantile

regression by extending their works into the Bayesian approach. An efficient Metropol-
isHastings method is developed for sampling the parameters conditional on the posterior
distribution of the MSQU model. To show the performance of the model, we fitted the
model to the Capital Asset Pricing Model (CAPM) and applied to the Stock Exchange
of Thailand (SET). We also conducted a simulation study to assess the performance and
accuracy of the Bayesian estimation.

The rest of this article is organized as follows, Section 2 briefly describes the method-
ology used in this study: the Asymmetric Laplace Distribution, Markov switching quan-
tile regression with unknown quantile, and its Bayesian estimation. Section 3 presents the
model simulations under various scenarios. Section 4 describes CAPM model and data
used in this study. Section 5 provides an application results. Conclusion is provided in
Section 6.

2 Methodology
As we mentioned before, we consider using the ALD as the likelihood function, thus

we first briefly explain the function

2.1 Asymmetric Laplace Distribution
The Asymmetric Laplace Distribution (ALD) is a continuous probability distribution

which is a generalization of the Laplace Distribution. The likelihood function based on
ALD of Koenker and Machado [10] can be shown

L(y |m,σ ,τ) =
τ(1− τ)

σ
{−ρτ

(
y−m

σ

)
}, (2.1)

where 0< τ < 1. ρτ(A)=A(τ−I(A< 0)), A= y−m
σ

is called the check function, with I(·)
being the usual indicator function. where m is the mean parameter, σ > 0 is considered
as a scale parameter and skewness parameter or quantile level τ .

2.2 MS-Quantile Regression with Asymmetric Laplace Distribution
Following Tungtrakul, Maneejuk, and Sriboonchitta [3] and Rakpho, Yamaka and

Sriboonchitta [4], let st be an unobserved discrete-valued indicator variable, such that
at any time t the process will be in regime st ∈ {1, ...,H}. The Markov switching and
quantile regression model is given by

yt = β
0
st (τ) +

K

∑
k=1

β
k
st (τ)x

k
t + εst ,t ; t = 1, ...,T, (2.2)

where yt is a dependent variable and xt is a matrix of independent variables, β 0
st (τ) and

β k
st (τ) are the regime dependent coefficients at the estimated quantile τ . β k

st (τ) coefficients
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indicate a vector of unknown parameters which define a relationship between vector xt and
the conditional quantile function of yt . εst ,t is regime dependent and identically distributed
(i.i.d) random errors and is assumed to have ALD with variance σ2

st (τ) and mean zero. As
we mentioned before, the quantile level is unknown and treated as another parameter to
be estimated and it is assumed to be a regime independent and restricted to have the value
in [0.1]. In this study, the state variable st is an ergodic homogeneous Markov chain on a
finite set, with a transition matrix

P =


p11 p21 · · · pH1
p12 p22 · · · pH2
...

...
. . .

...
p1H p2H · · · pHH

 , (2.3)

where pi j denotes the probability of transition from regime i is followed by regime j,
i = 1, ...,H; j = 1, ...,H and ∑ pi j = 1.

The total parameter set to be estimated is Ψ = (βst (τ),εst ,t(τ),τ) can be estimated by
the maximum likelihood, which is homologous to the case of the conventional Markov
quantile regression. To simplify the estimation procedure, we assume two regime model
(st = 1,2), thus, the sample conditional likelihood function of the MSQR with unknown
quantile model with 2 regimes can be defined as

L(Ψ |yt ,xt ) =
2

∑
st=1

{
τ(1− τ)

σst

ρτ ·A ·Pr (st |Θt−1;Ψ )

}
, (2.4)

where A =

(
yt−βst ,0(τ) −∑

K
k=1 β k

st (τ)x
k
t

σst

)
. Θt−1 is all available information set at time t −

1 in model, and (Pr(st |Θt−1;Ψ) is weighted probabilities computed recursively from
the Hamiltons filter algorithm Hamilton [5]. Thereby, filtered probabilities of each state
computed recursively can be shown as follows:

Pr(st |Θt−1;Ψ) = {p11Pr(st = i|Θt−1;Ψ )+ p22Pr(st = j|Θt−1;Ψ )} (2.5)

Pr(st = i|Θt−1;Ψ ) =
f (yt |(st = i |Θt−1;Ψ )(st = i |Θt−1;Ψ )

∑
2
h=1 ( f (yt |(st = h |Θt−2;Ψ )(st = h |Θt−2;Ψ ) )

, i = 1,2.

(2.6)

2.3 Bayesian Markov Switching Quantile Regression with Unknown
Tau

The Bayesian inference for Markov Switching quantile regression has many advan-
tages over classical methods including providing the entire posterior distribution of the
parameter of interest, allowing for parameters uncertainty when making predictions, and
flexible handling of complex model situations.
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According to the Bayes theorem, the sample of the posterior distribution of this model
can be shown as follows

Pr(Ψ,P,st |yt ,xt) ∝ Pr (Ψ,P,st)L(yt ,xt |Ψ,P,st ) (2.7)

where L(yt ,xt |Ψ,P,st ) is the likelihood function is the Markov switching quantile regres-
sion model in Eq. (2.4). The rest of the function is the prior distribution Pr(Ψ,P,st),
which can be formed as

Pr(Ψ,P,st) = Pr(Ψ)Pr(P)Pr(st |Ψ,P ) , (2.8)

To draw the joint posterior distribution of the model and the parameters, given the
sample data in Eq. (2.7), the Metropolis-Hasting (MH) sampler is employed The resulting
simulated samples from the parameter space can be used to make inferences about the
distribution of the process parameters and regimes. For more detail of MH, our study
refers to Chib and Greenberg [11].

There are four parts in the prior distribution. The first part is the unknown parameters
βst (τ). The second part is variance of the model σst (τ), the third part is transition matrix
(P). The final part is the quantile parameter τ . We assume the prior distribution for the
unknown parameters to be uninformative priors are adopted, thus, the prior distributions
for βst (τ), σst (τ), P and τ are assumed to have normal distribution, Inverse gamma,
Dirichlet distribution, and uniform distribution, respectively, Therefore we have

βst (τ) ∼ N (0,Σ) ,
σst (τ) ∼ IG(0.01,0.01) ,

P ∼ Dirichlet (q) ,
τ ∼ uni f orm(0,1),

(2.9)

where Σ is the diagonal variance matrix parameter βst (τ). We select these three priors
since the sign of the βst (τ) can be either positive or negative, the sign of σst (τ) must be
positive and P should be persistently staying in their own regime. The MH iterations for
all parameters can be described as follows:
1. Starting at an initial parameter value, Ω0 = Ψ0,P0

2. Choosing a new parameter value close to the old value based on proposal function. The
proposal function employed in the MH algorithm is a normal distribution with mean at Ω0

and covariance (Ct), that is Proposal =
(
�
∣∣Ω0, . . . ,Ω j−1,Ct

)
= N

(
Ω( j−1),Ct

)
. In MH al-

gorithm, covariance of the proposal distribution, Ct is set as Ct = σd cov
(
Ω0, . . . ,Ω j−1

)
+

σdεId after initial period, where σd is a parameter that depends on dimension d and ε is a
constant term which is very tiny when compared with the size of the likelihood function.
3. Computing the acceptance probability which is calculated by

θ j =
L(Ω∗ |yt ,xt )

(
Ω j−1,Ct

)
L(Ω j−1 |yt ,xt )(Ω∗ |Ω j−1 ,Ct)

(2.10)

If θ j ≥ 1 then draw Ω j = Ω j−1. If θ j < 1 then draw trace Ω j from a proposal distribution.
4. Repeat steps 2-3 for j = 1, . . . ,N in order to obtain samples Ω1, . . . ,ΩN .
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2.4 Outline of the Estimation Procedure
According to the MH algorithm, it is difficult to sample all the parameters together as

the candidate parameters obtained from the proposal function may not ensure convergence
to the desired target density. To deal with this problem, we separate the parameters into
four parts and the algorithm will revolve the repeated generation of variates from their
full conditional densities as follows:

βst (τ)
( j+1) ← βst (τ)

( j),σst (τ)
( j),P( j),τ( j)

σst (τ)
( j+1) ← βst (τ)

( j),σst (τ)
( j+1),P( j),τ( j)

P(τ)( j+1) ← βst (τ)
( j),σst (τ)

( j),P( j+1),τ( j)

τ(τ)( j+1) ← βst (τ)
( j),σst (τ)

( j),P( j),τ( j+1)

, (2.11)

3 Simulation Study
To test the performance of the proposed framework, we simulate MSQU model to

assess the accuracy of Bayesian estimation. In this section we will describe a simulation
study of the model. This study considers 2 regime st = 1,2, we then simulate data from
the model

yt = β
0
st (τ) +β

1
st (τ)xt + εst ,t(τ) , st = {1,2} , (3.1)

where β 0
st=1(τ) = 1, β 1

st=1(τ) = 2, β 0
st=2(τ) = 2 and β 1

st=2(τ) = 3. We simulated the
independent variables xt from N(0,1). The simulated filter probabilities for two regime
model are generated from U [0,1], where the transition probabilities p11 = p22 = 0.95. For
the error term, we remark that the asymmetric Laplace distribution quantile parameters τ

are set to be invariant as Markov regime switches. We discuss two cases hereinafter: Case
1: N= 100, 500, 1000. Case 2 τ = 0.3,0.5,0.7.

We evaluate the performance of our proposed model and compare the parameter es-
timates with the true values in each case. The MCMC estimation procedure described m
the Appendix was used to generate 10,000 samples from the joint parameter density of
the model. We choose the posterior mean of parameters and reported in Table 1. It can
be seen that the estimated parameters are quite close to their true values with satisfactory
standard derivations, meaning that we have an accurate and reliable estimation for the
model. Moreover, the estimated parameters tend to be close to their true values when
the sample size increases. According to this simulation study, we can summarize that the
Bayesian estimation for the model is accurate.
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Table 1: Simulation results

Parameter True Value N=100 N=500 N=1000
α1,st=1(τ) 1 1.15 (0.01) 0.96 (0.000) 1.01 (0.002)
β1,st=1(τ) 2 2.25 (0.008) 2.09 (0.000) 1.93 (0.001)
α1,st=2(τ) 2 1.44 (0.369) 2.30 (0.001) 2.08 (0.005)
β1,st=2(τ) 3 3.10 (0.276) 3.32 (0.000) 3.19 (0.002)

p11 0.95 0.94 (0.013) 0.93 (0.000) 0.94 (0.000)
p22 0.95 0.98 (0.009) 0.95 (0.000) 0.95 (0.000)
τ 0.3 0.24 (0.026) 0.26 (0.000) 0.28 (0.000)

α1,st=1(τ) 1 1.36 (0.026) 0.99 (0.022) 0.89 (0.007)
β1,st=1(τ) 2 1.98 (0.032) 2.03 (0.023) 1.95 (0.007)
α1,st=2(τ) 2 1.77 (0.029) 2.10 (0.189) 1.88 (0.018)
β1,st=2(τ) 3 3.14 (0.025) 2.77 (0.161) 3.15 (0.009)

p11 0.95 0.97 (0.007) 0.90 (0.017) 0.94 (0.004)
p22 0.95 0.98 (0.008) 0.95 (0.009) 0.96 (0.004)
τ 0.5 0.48 (0.012) 0.49 (0.010) 0.47 (0.004)

α1,st=1(τ) 1 0.82 (0.000) 1.01 (0.026) 0.56 (0.000)
β1,st=1(τ) 2 1.97 (0.000) 2.00 (0.008) 1.09 (0.833)
α1,st=2(τ) 2 1.30 (0.000) 2.01 (0.001) 1.16 (0.000)
β1,st=2(τ) 3 3.39 (0.000) 3.05 (0.000) 2.53 (0.000)

p11 0.95 0.97 (0.000) 0.98 (0.000) 0.93 (0.007)
p22 0.95 0.98 (0.000) 0.97 (0.000) 0.96 (0.007)
τ 0.7 0.67 (0.000) 0.72 (0.000) 0.69 (0.004)

Note: () denotes standard error

4 Data Description
Prior to explaining the data, let us briefly describe the basic concept of the CAPM.

According to Sharpe [12], the CAMP is designed for examining the relationship between
expected asset return and its risk. The idea is the trade-off compensation of risk and
return while comparing to the market return, or how the asset return can be different from
group. By setting expected asset return equal to risk-free asset return equal to risk-free
asset return plus a multiplication of market risk premium and systematic risk [13] the
model can be expressed as follows

rt = β0 +β1rm,t + εi,t (4.1)

where β0 and β are parameters. rit = Rit −R f t and rmt = Rmt −R f t denote excess return
on asset and on the market portfolio at time t, respectively. Rit is the return on asset i. Rmt
is the market return. R f t is the risk free asset return at time t.
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We thus apply the MSQU model to investigate the CAPM. In this study, we use the
daily return of Stock Exchange of Thailand (SET index) as a market return and con-
sider seven companies stock returns consisting of PTT (PTT Public Company Limited),
KBANK (Kasikornbank Public Company Limited), BBL (Bangkok Bank Public Com-
pany Limited), AOT (Airports of Thailand Public Company Limited), ADVANC (Ad-
vanced Wireless Network Company Limited), CK (CH. Karnchang Public Company Lim-
ited) and CPALL (C.P. All Public Company Limited) as individual asset return. In this
paper, we assume risk free to be zero. All data were collected from Bloomberg database.
The daily time series data cover the period from June 2005 to September 2018.

We then transform these time series variables into log-return rate and the movement
of these returns are plotted in Figure 1. According to the Figure, the extremely high pos-
itive and negative returns are evident from September 2008 onward, and have continued
well into 2009. These return series also show volatility under uncertainty situation par-
ticularly as occurred during the financial crisis of 2007-2009. The descriptive statistics
are provided in Table 2. We observe that the returns of Stock Exchange of Thailand (SET
index) and seven companies stocks are not normally distributed. Minimum Bayes factor
(MBF) values indicate that the returns are decisive not normally distributed. Unit root test
was also conducted to investigate the stationarity of the data and the result shows that all
returns are stationary with decisively evidence. Consequently, these variables can be used
to estimate in the Markov switching quantile with unknown quantile model in Bayesian
approach in the next step. Note that the interpretation of MBF is referred to Vovk [14].

Table 2: Descriptive statistics

SET50 PTT KBANK BBL AOT ADVANC CK CPALL
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.105 0.149 0.114 0.085 0.149 0.146 0.254 0.199
Min -0.160 -0.185 -0.203 -0.177 -0.163 -0.233 -0.215 -0.1588
Std 0.011 0.019 0.018 0.017 0.020 0.019 0.025 0.019
Skewness -1.065 -0.193 -0.312 -0.693 -0.209 -0.806 0.296 0.573
Kurtosis 21 9 9 13 11 17 11 13
JB-Test 5116 734 658 1561 1114 3078 999 1561
MBF- JB 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000
MBF-UR 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000
Obs. 3597 3597 3597 3597 3597 3597 3597 3597
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Figure 1: Daily returns of Stock Exchange of Thailand (SET index) and seven
stocks from 2005 to 2018

5 Empirical Findings

5.1 Outline of the Estimation Procedure

The most important point in working with the MSQU model is to analyze whether
a switch occurs or not, which is equivalent to comparing the MSQU model with the 1-
regime quantile regression with unknown quantile (QU) model. In a Bayesian framework,
the model comparison can be based on the deviance information criterion (DIC). DIC
is a hierarchical modeling generalization of the Akaike information criterion (AIC) and
Bayesian information criterion. DIC is particularly useful in Bayesian model selection
problems where the posterior distributions of the models have been obtained by Markov
chain Monte Carlo (MCMC) simulation. According to the results in Table 3, it is found
that the DIC of MSQU model of PTT, KBANK, CK and CPALL are lower than those
of the QU model. While, the DIC of MSQU model of BBL, AOT, and ADVANC are
higher than 1-regime model. Therefore, we may conclude that MSQU is favorable over
the QU model in 4 out of 7 cases and that a switch occurs in the mean of returns of these
four stock returns. Also, these evidences confirm the variability of the beta risk across
market conditions. In addition, we also compare our unknown quantile model with the
conventional quantile model with /tau = 0.5, the results confirm the higher performance
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of the unknown quantile model compared to the conventional one. This indicates that our
approach is indeed better.

Table 3: Model Selection based on DIC

Variable unknown quantile qunatile at 0.5
1 Regime 2 Regime 1 Regime 2 Regime

PTT -25995.5 -26008.27 -25981.15 -25871.35
KBANK -25389.1 -25477.44 -25378.69 -23214.64

BBL -25251.5 -25231.6 -25243.32 -25176.02
AOT -23857 -23529.39 -23853.1 -23632.1

ADVANC -23986.04 -23529.39 -23983.25 -23305.97
CK -24290.38 -24379.67 -24269.33 -23706.8

CPALL -23392.52 -23437.75 -23390.04 -23305.97

5.2 Markov Switching Quantile with Unknown Quantile Using
Bayesian Approach

Table 4: Estimation result of Markov switching quantile regression with unknown
quantile

Parameter PTT KBANK CK CPALL
α1,st=1(τ) 0.010 (0.000) -0.001 (0.193) 0.050 (0.000) 0.001 (0.001)
β1,st=1(τ) -0.507 (0.000) 0.410 (0.000) 0.130 (0.000) 0.146 (0.000)
α1,st=2(τ) 0.0002 (0.000) 0.0001 (0.000) 0.001 (0.000) -0.022 (0.000)
β1,st=2(τ) 0.456 (0.000) 0.813 (0.000) 0.257 (0.000) 0.293 (0.000)

σ1 0.063 (0.000) 0.003 (0.001) 0.170 (0.000) 0.003 (0.000)
σ2 0.002 (0.000) 0.005 (0.000) 0.003 (0.000) 0.097 (0.000)
P11 0.999 (0.000) 0.930 (0.000) 0.999 (0.000) 0.924 (0.000)
P22 0.999 (0.000) 0.950 (0.000) 0.942 (0.000) 0.999 (0.000)
τ 0.503 (0.000) 0.400 (0.000) 0.630 (0.000) 0.600 (0.000)

Note: () denotes Minimum Bayes factor computed by eplogp, where p is p-value
(see [14] and [15])
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Table 5: Estimation result of Markov switching quantile regression with unknown
quantile

Parameter BBL AOT ADVANC
α1(τ) 0.0003 (0.005) 0.0001 (0.227) 0.0002 (0.052)
β1(τ) 0.454 (0.000) 0.277 (0.000) 0.285 (0.000)

σ1 0.002 (0.000) 0.003 (0.000) 0.003 (0.000)
τ 0.503 (0.000) 0.503 (0.000) 0.490 (0.000)

Note: () denotes Minimum Bayes factor computed by eplogp, where p is p-value
(see [14] and [15])

The best fit models from the model selection section are reported in Tables 4-5. Two-
regime model for PTT, KBANK, CK, and CPALL equations are provided in Table 4 while
one-regime model of BBL, AOT, and ADVANC are provided in Table 5. Considering
Table 4, the beta risks β1,st=1(τ) and β1,st=2(τ) are calculated for two regimes, namely
bull and bear economies. We observe that the beta risk in regime 1 is lower than regime
2. Hence, we can interpret first regime as a bull market or high-risk market, the second
regime as bear market or low-risk market.

We note that the beta risk is less than one indicates that the stock return moves less
than the stock market return (SET Index) while the beta risk greater than one, demon-
strates that the stock return moves larger than the stock market return. The results show
that beta risk of PTT is negative beta risk for bull economy but positive for bear economy.
This means that the PTT stock has a negative correlation to the SET market. PTT move
in the opposite direction to the SET market. Thus, PTT will decrease-increase in value by
0.507 % for each increase/decrease of 1% in the SET market, and vice versa. In the case
of KBANK, CK and CPALL, we found that the beta risks are all positive and lower than
unity for both regimes. Therefore, these three stock returns move less than SET market
return in both bull and bear markets.

Table 4 also provides the transition probabilities of staying in regime 1 (P11) and
regime 2 (P22). The results show that P11 and P22 are extremely high, indicating that the
probability of staying in the same regime is substantially high whenever the current period
is in either regime 1 or 2.

Table 5 shows the results of BBL, AOT and ADVANC fitted with 1-regime quantile
regression model. The beta risks are all positive and less than one. Therefore, BBL, AOT
and ADVANC stock return moves less than the SET market. Finally, let us consider the
quantile parameter for all models, we can observe a heterogenous result of the optimal
quantile estimates. We can observe that some of stock CAPM equations (KBANK, CK
and CPALL)show the value of quantile parameter that deviates form 0.5. This confirms
the usefulness of this model when the quantile level is generally unknown and difficult to
specify in the model. In a nutshell, if we do not allow the model to split into 2 regimes,
we may miss the true risk of the stock when there exists a structural change in the data
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series. Moreover, another challenge is that what is the best quantile or which quantile is
the most informative to explain the behavior of the data. When the model contains many
quantile levels, the best fit quantile could play an important role in the model building
process to obtain a better interpretation and to improve the precision of model.

6 Conclusion

In this study, Bayesian Markov Chain Monte Carlo (MCMC) procedure was devel-
oped for estimating the joint parameter and regime density of Markov Switching quantile
regression with unknown quantile (MSQU) model. Suppose that the true quantile level
for the model is 0.70th, the researchers may obtain unreliable parameter estimates, when
they consider the model at 0.5th quantile. Thus, this model becomes more flexible as it
considers the quantile level as the parameter to be estimated. However, as the number of
parameters increases, we are concerned that the model may face the computational diffi-
culties. This motivates us to estimate the model with Bayesian approach. The simulation
study is used to assess the accuracy of the model. The result shows the accuracy and
reliability of Bayesian estimation for this model.

In the application study, we empirically study the CAPM and use the Stock Exchange
of Thailand (SET index) as the market return and use PTT, KBANK, BBL, AOT, AD-
VANC, CK and CPALL as the individual asset return in the CAPM application. We
conduct the DIC to examine the existence of the structural change in CAPM. The results
reveal that MSQU model is chosen for 4 out of 7 models, confirming that the regime
switching, in most cases, can describe the effect of SET market on individual stock re-
turn. In brief, PTT, KBANK, CK and CPALL CAPMs show a strong evidence of two
regime model, while one regime model is the best fit model for BBL, AOT and ADVANC
CAPMs.
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