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T« (X, Y)={aeT(X): Xa CY and Vz,y € X, (x,y) € E < (za,ya) € E}.

In this article, we give a necessary and sufficient condition for Tg+(X,Y) to be a
subsemigroup of T'(X) under the composition of functions and study the regularity
of T+ (X,Y). Finally, we characterize Green’s relations on this semigroup.

Keywords : transformation semigroup; equivalence; regular element; Green’s
relations.
2010 Mathematics Subject Classification : 20M20.

1 Introduction

Let T(X) be the set of all functions from X into itself. We have T'(X) under
the composition of functions is a semigroup which is called the full transformation
semigroup on X. In 1975, J. S. V. Symons [d] studied the subsemigroup T(X,Y)
of T(X) defined by

TX,)Y)={aeT(X): XaCY}
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where Y is a nonempty subset of X. The author studied the automorphism of
T(X,Y) and the isomorphism between two semigroups T'(X1, Y1) and T'(Xs, Y3).

In 2008, J. Sanwong and W. Sommanee [6] gave a necessary and sufficient
condition for T(X,Y’) to be regular and found the largest regular subsemigroup
of T(X,Y). Then they characterized Green’s relations and obtained a class of
maximal inverse subsemigroups of T'(X,Y’). Furthermore, a natural partial order
on T'(X,Y) was studied in some detail in [4, §].

Let E be an equivalence on X. Write

Tg(X)={aecT(X):VY(z,y) € E, (za,ya) € E},

then Tr(X) is a subsemigroup of T(X). Moreover, we see that Tg(X) is S(X),
the semigroup of all continuous self-maps of the topological space X for which
all E classes form a basis. In 2005, H. Pei [3] studied the regularity and Green’s
relations for Tx(X). Moreover, in 2008, L. Sun, H. Pei and Z. Cheng [6] studied
Tr(X) with the natural partial order < and investigated the condition under which
a < S for two elements «, 8 € Tg(X). Then they considered the compatibility
of multiplication under <. Finally, the maximal, minimal and covering elements
were described.

In 2010, L.-Z. Deng, J.-W. Zeng and B. Xu [1] defined a subsemigroup Tg«(X)
of T(X) by

Tp«(X)={aeT(X):Vr,y € X, (z,y) € E & (za,ya) € E}.

Similar to the semigroup Tg(X), we obtain that T+ (X) is a semigroup of con-
tinuous self-maps of the topological space X for which all E classes form a basis.
In [@], the authors studied regularity and Green’s relations for T« (X). In 2013,
L. Sun and J. Sun [7] characterized the natural partial order on Tg«(X). Then
they studied the compatibility and described the maximal (minimal) elements. In
addition, they considered the greatest lower bound of two elements.

In this paper, we aim to generalize the results of [0] by defining a subset
Te«(X,Y) of Tg+(X) as follows. Let E be an equivalence on X and Y a nonempty
subset of X. Define

Tp«(X,)Y)={aeT(X): XaCY and Va,y € X, (z,y) € E & (za,ya) € E}.
Equivalently,
Tp-(X,)Y)={a €T (X): XaCY} =T (X)NT(X,Y).

In the next section, we give a necessary and sufficient condition for Tg«(X,Y) to
be a subsemigroup of T (X). Obviously, if X =Y, then Tg«(X,Y) = Tg-(X).
Hence Tg+(X) is a special case of Tg+(X,Y). Furthermore, if E is the universal
relation, £ = X x X, then Tg-(X,Y) becomes T'(X,Y), as shown in Theorem 3.
Moreover, it is not difficult to check that Tg-(X,Y") is a semigroup of all continuous
self-maps of the topological space X for which all E classes form a basis carrying
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X into a subspace Y, and is referred to as a semigroup of continuous functions
(see [2] for details).

In section B, we study regularity for T« (X,Y’) and then the characterization
of Green’s relations will be considered in the last section.

2 Preliminaries

Let X/FE be the quotient set where E is an equivalence on X. For each
a€Tp-(X,Y), let
m(a) ={ra"': 2z € Xa}
be the partition of X induced by a. Then w(a) = X/ker(«) where ker(a) =
{(z,y) € X x X : za = ya}. As in [0, for a subset A of X, we write

mala) ={M € w(a) : M N A # 0}.
We also define
Tale)={M en(a): MNANY # 0}

It is clear that 74(a) is an appropriate extension of m4(«) in the sense that if
Y = X, then 74(a) = ma(a). Obviously, 7a(a) C ma(«).

We denote by A(X) the diagonal relation on X, that is, A(X) = {(z,z) : 2 €
X}

Let @ € T« (X). The restriction of the equivalence E on X «, denoted by E,,
is defined by

Eo={(z,y): 2,y € Xa,(z,y) € E} = EN(Xax Xa).
Then
Xa/Ey={ANnXa:Ae X/E,ANXa#0}={Aa: A€ X/E}.

Let E be an equivalence relation on a set X and let U,V be subsets of X and ¢
a mapping from U into V. If for any u,v € U, (u,v) € E implies (up,vp) € E,
then we say that ¢ is E-preserving. If (u,v) € E if and only if (ug, ve) € E, then
@ is said to be E*-preserving.

For convenience, we state the following two lemmas appeared in [0] which will
prove useful.

Lemma 2.1 ([0]). Let E be an equivalence on X, M C X and
Eyv =A{(z,y) € E:a,y € M} = EN (M x M).

Then the following statements hold.
(1) Ey is an equivalence on M.

(2) M/Eyy ={ANM: A€ X/E,ANM # (}.
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Lemma 2.2 ([0]). Let o € Tg«(X) and x,y € X. Then the following statements
hold.

(1) (z,y) € E if and only if (xa,ya) € E.
(2) |X/E| =|Xa/E.|.

Next, we give a necessary and sufficient condition for Tg+(X,Y") to be a sub-
semigroup of Tg«(X). Clearly, Tg-(X,Y) = Tp-(X) NT(X,Y). Therefore, we
need only to find a condition that T+ (X,Y) is nonempty.

Theorem 2.3. Tg+(X,Y) is nonempty if and only if |Y/Ey| = | X/E)|.
Proof. Assume that a € T~ (X,Y) # (). By Lemma P2 (2), we obtain that
[X/E| = [Xa/Eo| < |[Y/Ey| <|X/E|.

Thus |Y/Ey| = | X/E|.

Conversely, suppose that |Y/Ey| = |X/E|. Then there is a bijection ® :
X/E — Y/Ey. For each A € X/E, choose y4 € A® and define a function
a:X =Y by za =y4 for each x € A. Tt is clear that a € T« (X,Y) # 0. O

By the above theorem, since Tg+(X,Y) must not be empty, we will assume
that Y is a subset of X such that |Y/Ey| = |X/FE| in the remaining of this paper.

Lemma 2.4. Let a € Tp«(X,Y), Eyvo = {(z,y) : 2,y € Ya,(z,y) € E} and
Ya/Eyoa={ANYa: A X/E,ANYa#0}. ThenYa/Ey, ={(ANY)a:Ac
X/E,ANY #0}.

Proof. Let ANYa € Ya/Ey,. Then A € X/E and ANYa # (). There exists
y € ANYa which implies that y € A and y = za for some x € Y. Then there is
B € X/E such that x € BNY and hence y = za € (BNY)a.

Next, we claim that ANY o = (BNY)a. Indeed, let a € ANY . Thena € A
and a € Ya. We note that (a,y) € E since y € A. Thus ¢ = ba for some b € YV
and so (ba, za) = (a,y) € E which implies that (b,x) € E. Hence b€ BNY and
so a = ba € (BNY )a. Therefore, ANYa C (BNY)a. For the other containment,
let zaw € (BNY)a. Then z € BNY from which it follows that (x,z) € F since
x € BNY. Hence (y,za) = (za,za) € E. Then za € Ya and za € A since
ye ANYa. Thus za€ ANYaandso (BNY)a C AnYoa.

Therefore, ANYa € {(ANY)a: Ae X/E,ANY # ()} which implies that
Ya/Eyo, C{(ANY)a: A€ X/E,ANY # 0}.

On the other hand, let C' € X/F such that CNY # (). There exists p € CNY
and then pa € (CNY)a from which it follows that pa € Yo and pa € Ca C D
for some D € X/E. Hence pa € DNYau.

We claim that (CNY)a = DNYa. Indeed, let ca € (CNY)a. Thenc e CNY
and so (¢,p) € FE since p € CNY. Now, we have (ca,pa) € E. Then ca € Ya
and ca € D since pa € DNYa. Thus co € DNYa and so (CNY)a C DNYa.
For the other containment, let d € DN Ya. Then d € D and d € Ya. We note
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that (d,pa) € E since pa € DNY . We obtain d = ga for some ¢ € Y and hence
(g, pa)) = (d,pa) € E which implies that (¢,p) € E. Then ¢ € CNY. Hence
d=gae (CNY)aandso DNYa C (CNY)a.

Therefore, {(ANY)a : A € X/E,ANY # 0} C Ya/Fy,. Consequently,
Ya/Eye. ={(ANY)a: Ae X/E,ANY # (}. O

Theorem 2.5. The following statements hold.
(1) E=X xX if and only if Tp«(X,Y) =T(X,Y).
(2) E=A(X) if and only if Te-(X,Y) ={a € T(X,Y) : « is injective.}.

Proof. (1) (=) Suppose that £ = X x X. It remains to show that T(X,Y) C
Tp«(X,Y). Let « € T(X,Y). For each z,y € X, we obtain that (z,y) € E if and
only if (za,ya) € E since E = X x X. Therefore, a € T« (X,Y) which implies
that T(X,Y) C Tp-(X,Y).

(<) Assume that T« (X,Y) = T(X,Y). Obviously, E C X x X, it remains to
show that X x X C E. Let a be a fixed element in Y, define a function v : X — Y
by xa = a for all z € X. Tt is easy to see that a € T(X,Y) = Tg-(X,Y).
Let (z,y) € X x X. We obtain (z,y) € FE since (za,ya) = (a,a) € E. Hence
XxXCE.

(2) For convenience, we let S = {a € T(X,Y) : « is injective.}.

(=) Suppose E = A(X). Let « € Tg+(X,Y). Toshow that o € S, let x,y € X
with za = ya. Then (za, ya) € E = A(X) which implies that # = y. Thus a € S
and so Tp«(X,Y) C S. On the other hand, let @ € S and (z,y) € X x X.
If (z,y) € E = A(X), then = y and so za = ya. Further (za,ya) € E.
Conversely, if (za,ya) € E = A(X), then xa = ya which implies that = y since
a € S. Hence (z,y) € E and thus a € Tg-(X,Y). Therefore, S C Tp-(X,Y)

(<) Assume that Tg+(X,Y) = S. By Theorem P23, we have |Y/Ey| = |X/E].
Then we can write X/E = {A; :i € I} and Y/Ey = {B, : i € I}. Choose b; € B;
for all ¢+ € I. For each A; € X/E, define a function « : X — Y by za = b; where
z € A;. Tt is easy to verify that o € Tg-(X,Y) = S. To show that E = A(X),
it remains to show that £ C A(X). Let (z,y) € E. Then z,y € A; for some
A; € X/E. By the definition of «, we have zaw = b; = ya which implies that z =y
since a € S. Therefore, E = A(X). O

For a € Tp-(X,Y), let
E(a) ={Aa"': A€ Xa/E,}.

The following two theorems are consequences of Theorems 1.4 and 1.5 in [,
respectively.

Theorem 2.6. Let o € T+ (X,Y) and A € Xa/E,. Then Ao~ € X/E.

Theorem 2.7. Let a € Tp«(X,Y). Then E(a) = X/E.
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3 Regularity

In this section, we characterize regular elements in Tg-(X,Y) and then give a
necessary and sufficient condition for Tk« (X,Y") to be regular.
In [6], the authors defined a subset F' of T(X,Y) by

F={aeT(X,Y): XaCYa}

and proved that F' is the largest regular subsemigroup of T'(X,Y"). Now, we define
the subset Fg+ of Tg«(X,Y) by Fg« = FNTg«(X,Y). Equivalently,

Fp- ={ae€Tp:(X,Y): XaCYa}={aeTp:(X,Y): Xa=Ya}.

It is clear that Fig+ is an appropriate extension of F'in the sense that if £ = X x X,
then Fg« = F. In addition, if X =Y, then Fg« = Tg-(X).

By Lemma 2.2 in [§], the authors proved that F' is a right ideal of T(X,Y").
Hence we obtain the following lemma immediately.

Lemma 3.1. Fg- is a right ideal of Tg-(X,Y). Consequently, it is a subsemigroup
of Tp-(X,Y).

Lemma 3.2. If Fg- £ 0, then YNA#D forall A€ X/E

Proof. Let o € Fg«, A € X/E and x € A. Then za € Xa C Ya which implies
that za = ya for some y € Y. Hence (z,y) € E and so y € A. Therefore,
ycYNA#QD. O

By Lemma B, we have the following corollary.
Corollary 3.3. If YN A=0 for some A€ X/E, then Fg« = 0.

Theorem 3.4. Let a € T« (X,Y). Then « is regular if and only if o € Fg+ and
ANYa #0 for any A€ X/E.

Proof. (=) Suppose that « is regular. Then o = afBa for some § € Tg-(X,Y).
Let A € X/E and ¢ € A. Then z8 = y for some y € Y. Moreover, since
ya = yafa, we obtain (ya,yafa) € E which implies that (z8«,yafa) € E.
Hence (z,ya) € E. Therefore, yo € ANYa # 0. In addition, we have Xa =
Xapfa CYBaCYaand so o € Fg-.

(<) For each A € X/E, we have ANY a # () which implies that (ANY a)a™1NY
is nonempty. Let ba be a fixed element in (AN Ya)a~tNY. Define a function 3
by

3 a ifreYa wherea€za'nY
e ba fzeA\Ya

The proof that f € Tg-(X,Y) is routine. By the definition of 3, we obtain
raBa € raa la = {za} for all z € X since Xa = Ya. Thus afa = a.
Consequently, « is regular. O
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Now, we give a necessary and sufficient condition for Tz« (X,Y’) to be regular.

Theorem 3.5. T« (X,Y) is reqular if and only if the following statements hold.
(1) |Y/Ey]| is finite.
(2) Either EN(Y xY)=A(Y) or X =Y.

Proof. (=) Suppose that Tg+(X,Y) is regular. By Theorem B4, we conclude that
Fg- is nonempty. Hence Y N A # () for all A € X/FE by Lemma B™2.

(1) Assume that |Y/Ey| is infinite. We note that |X/E| = |Y/Ey|. Choose
By € Y/Ey, then |(Y/Ey) \ {B1}| = |Y/Ey| = |X/E| since |Y/Ey| is infinite.
Then we can write X/E = {A; : ¢ € I} and Y/Ey \ {B1} = {B; : i € I}. We
assume that By =Y N A; for some A; € X/E and define a function « by

ra = b; where b; € B; for any x € A;, i € I.

Clearly, a € Tg+(X,Y) and Ay NYa = @. By Theorem B4, « is not regular and
so Tg+(X,Y) is not regular which is a contradiction. Hence |Y/Ey| is finite.

(2) Suppose to the contrary that EN(Y xY) # A(Y) and X # Y. Then there
exists A € X/FE such that A\Y and YN A are nonempty. By EN(Y xY) # A(Y),
there is a class B € X/FE such that |[BNY| > 1. Let a,b be distinct elements in
BNY. Moreover, since | X/E| = |Y/Ey|, we can write (X/E)\{A} ={4; :i €I}
and (Y/Ey)\{BNY} = {B; : i € I}. Choose ¢; € B; and define a function
a: X —Y by

a ifzeYNA
T = b ifxzeA\Y
¢ ifxeA;

It is obvious that o € T~ (X,Y) and b € Xa\ Ya. Hence o ¢ Fg~ which implies
that « is not regular. It leads to a contradiction.

(<) Assume that (1) and (2) hold. If |Y/Ey]| is finite and X = Y, then
Tg+(X,Y) is regular by Theorem 3.2 of [I]. Now, we suppose that |Y/Ey| is
finite and EN (Y xY) = A(Y). We note that |X/E| = |Y/Ey| is also finite and
[YNAl=1foral Ae X/E. Let a € Tg+(X,Y) and zov € Xa. Then = € A for
some A € X/FE and there is y € Y N A. Moreover, since EN(Y xY) = A(Y)
we obtain that A« is a singleton. Thus za = ya € Ya and so Xa C Y. Hence
a € Fg+. Let B € X/E. We obtain Ba~! = C for some C € X/E since | X/E| =
|Y/Ey| is finite. There is z € Y N C and hence za € CanNYa C BNYa # 0.
Therefore, « is regular. O

4 Green’s relations
To study Green’s relations, we introduce some definitions for using throughout

this paper. Actually, we extend the notions of F-admissibility and E*-admissibility
presented in [0].
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Let a, f € Tr+(X,Y) and let ¢ be a mapping from 7(«) into 7(8). We say
that ¢ is E-admissible if and only if for each A € X/E, there exists B € X/E
such that

ma(a)p C 7p(B).
Equivalently, ¢ : m(a) — 7(8) is E-admissible if and only if for each A € X/E,
there exists B € X/F such that for each P € mq(a), BNPpoNY £ 0. If p is a
bijection such that ¢ and ¢ ~! are E-admissible, then  is called E*-admissible. We
remark that if X =Y, then the notions of E-admissibility (resp. E—admissibility)
and E-admissibility (resp. E*-admissibility) are the same.

If n € Tp+(X,Y), then denote by 7. the map from 7(n) onto Xn by (zn=1)n. =
x for each z € Xn.

We note that, in general, if X # Y, then the semigroup Tg-(X,Y) does not
contain the identity element. Hence Tg+(X,Y)! # Tg-(X,Y). We are now in a
position to prove some characterization of Green’s .Z-relation.

Theorem 4.1. Let o, 8 € Fg«. Then the following statements are equivalent.
(1) (o,8) € £ inTp-(X,Y).

(2) Xa=Xp.

(3) There exists an E*-admissible bijection ¢ : m(a) — w(B) such that o, = @B,

Proof. The implication (1) = (2) follows from [, Theorem 2.1] .

(2) = (3). Suppose that (2) holds. Then we have Xao = Ya = Y8 = X which
implies that E, = Eyg. For each A € X/E, we have Aa € Xa/E, = Y(3/Eyg
and so there exist B € X/F such that Aa = (BNY)S by Lemma P4. Similarly,
Ap = (CNY)a for some C € X/E.

Define a function ¢ : (o) — 7(3) by (za=1)p =z~ for all z € Xa = X}j.
It is easy to verify that ¢ is a bijection. Furthermore, for each za~! € 7m(a), we
have (za NS, = (28718 = 2 = (va™!)a,. Thus a, = ¢f..

Next, we show that ¢ is E-admissible. Let A € X/E. Then there exists
B € X/E such that Aa = (BNY)B. Let P € ma(a). Then P = za™?! for
some x € Xa and PN A # 0 which implies that there is y € P N A. Hence
r =ya € Ao = (BNY)pS and so there exists z € BNY such that z = z8. We
see that z € 871 = (ra™1)p = Pp. Thus z € PoNBNY # () and so ¢ is an
E-admissible. Similarly, we can prove that ¢! is also E-admissible. Therefore,
¢ is an E*-admissible.

(3) = (1). Suppose that (3) holds. Then for any x € A € X/E, (za)a"tpnBN
Y # () for some B € X/E. Define a function  : X — Y by an € (za)a"loNBNY.

Next, we show that n € Tg-(X,Y). Let z,y € X and (x,y) ¢ E. Then

(ra,ya) & E since a € Tp«(X,Y). We see that ({xa} X {ya}) NE = ). Moreover,

(za)ateB, = (ra)a o, = za and (ya)a tpB. = (ya)a o, = ya.

Thus [(za)a™ty]f = {xa} and [(ya)a~t¢]B = {ya} which implies that

(Iwa)al8 x [(va)a~"¢]8) N E = 0.
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Hence
(Iza)a™"e] x [(ya)a~"e]) N E=0.

Therefore, (xn,yn) € E. Conversely, let x,y € X be such that (z,y) € E. Then
there exists A € X/F such that x,y € A. Hence zn € (za)a"lp N BNY and
yn € (ya)a~lo N BNY for some B € X/E and so (xn,yn) € E. Therefore,
€ Te-(X,Y).

Let z € X. Then znf € [(za)alo N BNY]B C [(za)a~ty]s = {za}. Thus
xnf = xza for any x € X. Hence a = nf. Similarly, we can find a function
0 € Tp«(X,Y) such that § = 0. Consequently, («, 3) € Z. O

By the above theorem, if X =Y, then we obtain Theorem 2.1 of [d].
Recall that for each element a in a semigroup S, we denote .Z-class, Z-class,
J-class, P-class and _# -class containing a by L4, Rq, Hqa, D, and J,, respectively.

Theorem 4.2. For a € T« (X,Y), the following statements hold.
(1) If « € Tg=(X,Y) \ Fg~, then L, = {a}.
(2) If a € Fg~, then L, = {8 € Fg- : Xa = X3}.

Proof. (1) Let o € Tp«(X,Y) \ Fg~ and let 8 € L,. Then . which implies
that o = nB and B = fa for some 7,0 € Tg-(X,Y)L. If 1,0 € Tp«(X,Y), then
Xa=XnB = Xnla CYa. Thus a € Fg+ which is a contradiction and so n =1
or 6 =1. Hence 8 = a.

(2) Let a € Fg« and let 8 € L,. Then (a, 8) € £ which implies that o« = 73
and 8 = fa for some 7,0 € Tg«(X,Y)!. The case a = 8 is obvious. If a # f3,
then 1,0 € Tg«(X,Y). We obtain X = X0a C Ya = YnB C Y which implies
that 8 € Fg«. In addition, Xa = X8 by Theorem Bl. The other containment is
clear. O

Now, we have already done for Green’s Z-relation of T+ (X,Y"). To study the
remaining Green’s relations, we introduce some definitions for using throughout
this paper. Let a € T« (X,Y), as in [0, the authors defined Z(a) = {A € X/E :
AN Xa=0}. Moreover, we define

Zy(a)={A€X/E:ANXa=0,ANY £0} ={A€ Z(a): ANY #0}.

It is clear that Zy («) is an appropriate extension of Z(«) in the sense that if
Y = X, then Zy (o) = Z(«). Furthermore, we have the following two lemmas.

Lemma 4.3. Let a € Fg~. Then w(a) = my ().

Proof. Let o € Fg«. We have known that 7y () C 7(«). It remains to show that
7(a) C 7y (a). Let M € m(a). Then M = za~! for some z € Xa = Ya and so
there exists y € Y such that ya = x. Hence y € za~! = M which implies that
MNY #0. Thus M € my (). Therefore, () = my (). O

Lemma 4.4. Let o € Fg«. Then Z(a) = Zy ().
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Proof. Let a € Fg=. Then a € Tg-(X,Y) and Xa = Ya. Obviously, Zy («) C
Z(«). It remains to show that Z(a) C Zy (). We note by Lemma B3 that 7(«) =
7y (a). Let A € Z(a). Then there is z € A and (za)a~! € 7(a) = my(a). Hence
(xa)a~tNY # () which implies that there exists y € (za)a=tNY. Thus ya = za
and (za,ya) € E. Then (z,y) € E from which it follows that y € ANY # () and
so A € Zy(a). O

Lemma 4.5. Let o, € Tp«(X,Y). If a = By for some v € Tg«(X,Y), then
ker(3) C ker(«).

Proof. Suppose that « = v for some v € T« (X,Y). Let (a,b) € ker(8). Then
af = b and so aa = affy = bBy = ba. Thus (a,bd) € ker(a). O

Now, we prove the characterization of Green’s Z-relation.

Theorem 4.6. Let o, € Tg-(X,Y) be such that « # B. Then the following
statements are equivalent.

(1) (o, B) € Z.

(2) m(a) ==(B) and |Z(a)| = |Zy (a)| = |2y (B)| = |Z(B)].

(8) There exists § € Tr«(X,Y) such that d|xq : Xa — XB is a bijection and
B =ad.
There exists 0 € Tp«(X,Y) such that o|xpg : X5 — Xa is a bijection and
a = fo.

Proof. (1) = (2). Suppose that (a,8) € Z. Then a = 80, 8 = an for some
0,0 € Tp«(X,Y)!. We see that § and 1 belong to Tg«(X,Y) since a # 3. Hence
ker(a) = ker(8) by Lemma B3 and thus w(a) = X/ ker(a) = X/ ker(8) = w(5).

Let A € Z(a). We claim that Ap C B for some B € Z(3). Now, we have
Ae X/E, AnXa =0 and An C B for some B € X/E. Assume to the contrary
that B € Z(3). Then BNXan = BNXf # @ since Xan = X 3. Hence there exists
b e BNXan and so b = xan for some x € X. Let a € A. Then an € An C B from
which it follows that (an,zan) € E and so (a,za) € E. Hence zae € AN Xa # ()
which contradicts to A € Z(«). Thus An C B for some B € Z(3). Moreover,
BNY # 0 since n € T« (X,Y). Hence An C B for some B € Zy (8).

Now, we show that |Z(«)| = |Zy(B)|. For each A € Z(«), An C B for some
B € Zy(B). Define a function ¥ : Z(a) — Zy(8) by AV = B. It is easy to verify
that U is injective since nn € Tp«(X,Y). Thus |Z(a)| < |Zy(B)|. By the same
argument as above, we can show that | Z(8)| < |Zy (a)|. Hence |Z(a)| < |Zy(B)]| <
1Z(8)] < |2y (a)| < |Z(a)] and so |Z(a)] = [Zy(a)| = |2y (B)] = |Z().

(2) = (3). Suppose that 7w(«) = 7(B) and |Z(a)| = |Zy(a)| = |Zyv(B)| =
|Z(8)]. We can write Z(«) = {A; : i € I} and Zy(8) = {B; : i € I}. Choose
y; € Y N B; for each ¢ € I and define an E*-preserving mapping

p: U A; = Y by zp =y; for each z € A;.
AieZ(a)
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Define a function 6 : X — Y by

za~ 1B, Jifze Xa
26 =< ya 1B, ,ifxe A\ Xa where A€ X/E with ANXa#0andye AN Xa
xp Jfze A where A € X/E with AN Xa = 0.

The proof that § € T+ (X,Y) is routine. Now, we show that d|x, : Xa — X[
is a bijection. Let y € XB. Then y3~! € n(B) = m(a) which implies that
yBta, € Xa. Hence yB~'a.é = yB la.a !B, = y from which it follows that
8| xa is a surjection. Let 2,y € Xa with 26 = y§. Then xa~!3, = ya~!B, and so
x = y. Hence d|x, is an injection. Consequently, d|x, : Xa — X is a bijection
and zad = zaa~ !B, = B for any x € X. Therefore 8 = . Similarly, we can
find a function ¢ € Tg-(X,Y) such that o|xg : X8 — Xa is a bijection and
a = fo.

The implication (3) = (1) is clear. O

By Lemma B2 and Theorem B8, we obtain the following corollary which covers
Theorem 2.2 of [0].

Corollary 4.7. Let o, 5 € Fg«. Then the following statements are equivalent.
(1) (a,8) € Z in Tp-(X,Y).
(2) w(a) = 7(B) and |Z(a)| = |Z(B)].

(8) There exists 6 € Tg=(X,Y) such that 0|xo : Xa — X is a bijection and
B =ad.
There exists o0 € Tp+(X,Y) such that o|xp : X5 — Xa is a bijection and
a = fo.

Lemma 4.8. Let o, 5 € T« (X,Y). If 7(a) = w(B), then either both o and 3 are
in Fg«, or neither is in Fg-.

Proof. Assume that w(«) = 7(8) and a € Fg-. It suffices to show 8 € Fg«. Let
B € XB. Then (z8)5~! € m(8) = w(a) which implies that (z3)37! = (za)a™!
for some z € X. We have za € Xa C Ya implies za = ya for some y € Y. Thus
y € (za)a™! = (28)37! and so z8 = yB € Y 3. Therefore, 3 € Fg-. O

By Theorem B8, Corollary 20 and Lemma B8, we have the following result.

Corollary 4.9. For a € Tg+(X,Y), the following statements hold.
(1) If « € Fg+, then Ry, = {f € Fg+ : () = 7(B) and |Z(a)| = |Z(5)|}-
(2) If a € T« (X,Y) \ Fg~, then

Ry = {a}U{Be€Tp-(X,Y)\ F- : m(a) = (B)
and |Z()| = |Zy (o) = |2y (B)] = [Z(B)]}-
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Theorem 4.10. Let o, 8 € Fg«. Then the following statements are equivalent.
(1) (a,B) € H in Tp-(X,Y).
(2) m(a) =n(B) and Xa = X .

(3) There exists an E*-admissible bijection ¢ : w(a) — m(B) such that o, = P..

There exist 6,0 € Tp+(X,Y) such that §|xo : Xao — XB,0|xp : X = Xa
are bijections and B = ad, o = fo.

Proof. (1) = (2). Suppose that (o, 8) € 7 in Tp-(X,Y). Then (o, 8) € £ and
(o, B) € Z. By Theorems B and B8, we obtain that 7(«) = 7(8) and Xa = X3.
(2) = (3). Suppose that 7(a) = 7(8) and Xa = X8. Then

Z(e)={A€X/E:ANXa=0} ={A€ X/E: ANXB =0} = Z(B)

which implies that |Zy(a)] = |Zy(8)|. By Lemma B4, we obtain |Z(a)| =
|Zy ()| = |Zy (B)| = |Z(5)]. Hence (3) is true by Theorems B and E3.
The implication (3) = (1) follows by Theorems B0 and 8. O

As an immediate consequence of the previous theorems, we get the following
corollary.

Corollary 4.11. For o € Te«(X,Y), the following statements hold.

(1) If « € Tg«(X,Y) \ Fg~, then H, = {a}.

(2) If a € Fp-, then Hy = {8 € Fip- : w(@) = 7(8) and Xa = XS}
Next, we consider Green’s relation 2.

Theorem 4.12. Let a,f € Fg«. Then the following statements are equivalent.
(1) (a,B8) € Z in Tp-(X,Y).

(2) 1Z(a)| = |Z(B)| and there exists 6 € Tp-(X,Y) such that §|xq : Xa — X3 is
a bijection.

Proof. (1) = (2). Suppose that (a, ) € 2 in Tg+(X,Y). Then (a,v) € ¥
and (v, 8) € #Z for some v € Tp+(X,Y). By Theorem B2 and Corollary B9, we
have 7(v) = (), Xa = Ya =Yy = Xy and |Z(y)| = |Z(B)|. Moreover, since
Xa = X~, we obtain Z(«a) = Z(v) which implies that |Z(«)| = |Z(v)|. Hence
1Z(@)| = 1Z()| = 1Z(B)]. We note that |Zy (8)| = |Z(8)| = |Z(y)| since B € Fi-.

Next, let Z(y) = {A; : i € I} and Zy(B) = {B; : ¢ € I}. Then we choose
y; € Y N B; for each i € I. Define a function

p: U A; =Y by zp = y; where z € A;.
AiEZ("/)



328 Thai J. Math. (Special Issue, 2019)/ U. Chaichompoo and K. Sangkhanan

We see that p is an E*-preserving mapping. For each A € X/FE, define

xy 18, ifz € ANXy where AN Xy #()
x0=1< b ifre A\ Xy where ANXy#Pandbe (ANXy)y 18
xp ifxreA where AN X~ = 0.

The proof that § € Tg«(X,Y) is routine. Next, we will show that §|x :
Xa — Xp is a bijection. Let z € X3. Then 287 'y, € Xy = Xa. Hence
287 1y,6 = 2871y, 8. = 2z which implies that §|x, is surjective. Let x,y € Xa
with 28 = y§. Then v~ '3, = yy~1B,. Thus z = y implies 6| x,, is injective.

(2) = (1). Suppose that (2) holds. Define v: X — Y by oy = 285! € Xa.
We see that v € Tp«(X,Y) since 8 and § are E*-preserving. Moreover, since
a, € Fg+, we obtain Xy = XB0'=Xa=Yaand Yy =YB6 ! = X367 ! =
Xa. Then Xa = Ya =Yy = Xv and so («,7) € £ by Theorem E1. We see
that Z(a) = Z(v) since Xa = X~ from which it follows that |Z(«)| = |Z(7)|. In
addition, we have v € Fg+ since Xy = Y. Hence |Z(y)| = |Zy ()| by Lemma
Ba. Similarly, we obtain |Z(8)| = |Zy(8)| and so |Zy ()| = |Z(v)| = |Z(a)| =
|Z(8)| = |Zy(B)|. Furthermore,

ker(v) = {(z,y):zy=y7}
= {(z,y) 26~ =ypo~'}
= {(z,y): 2B =yp}
= ker(p).

Hence w(y) = X/ ker(y) = X/ ker(8) = n(5). Therefore, (v,8) € # by Theorem
BH. Consequently, (a, 5) € 2 since (a,v) € £ and (v, ) € Z%. O

We remark that the above theorem extends Theorem 2.4 of [f].

Theorem 4.13. For a € Tp«(X,Y), the following statements hold.
(1) Ifa € Te-(X,Y)\ Fp-, then Do = R,
(2) If o € Fg«, then

D, = {B € Fg~ : B satisfies the condition (2) of Theorem [-13}.

Proof. (1) Let « € Tg+(X,Y) \ Fg~ and let § € D,. Then a.%~ and v%f for
some v € Tg«(X,Y). By Theorem B2, we obtain that v = « and and thus aZg.
Hence 8 € R,. The other containment is clear since Z C 2.

(2) Let o € Fg~ and let 8 € D,,. Then a.Zy and 7% for some v € Tg-(X,Y).
It is clear that 8 € Fg+ by Theorem B2 and Corollary E9. The remaining part of
(2) has a straightforward proof. O

Finally, we consider Green’s ¢ -relation.

Lemma 4.14. Let o, € Tp«(X,Y) and A € X/E. If a = \Bp for some A\, p €
Tp«(X,Y), then | Xa| < |XS| and Ao C (BNY)Bp for some class B.
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Proof. Tt is clear that |Xa| = | XABp| < |XA8] < | XS] and Aa = ANGp C
(BNY)Bp for some class B. O

Lemma 4.15. Let o € Fg«. Then Ao C (ANY)a for all Ae X/E.

Proof. Let A € X/FE and aa € Aa. Then ac € Xa C Yo which implies that
ao = ya for some y € Y. Hence (aa, ya) € E implies (a,y) € E. Thus y € A.
Therefore, ac = ya € (ANY)au. O

Lemma 4.16. Let o, € Fg«. If (o, ) € Z in Tg-(X,Y), then |Xa| = | Xf]
and there exist p,7 € Tg~(X,Y) such that for any A € X/E, Ao C (BNY)Bp
and AB C (CNY)ar for some B,C € X/E.

Proof. Assume that (o, 8) € Z in Tg+(X,Y). Then, by Theorem B2, it is clear
that | Xa| = |X]. In addition, since (8, a) € 2, there exists p € Tg-(X,Y) such
that p|xs : X — Xa is a bijection by Theorem BTA. Let A € X/E. Then
Aa C GNXa = (G'NXPB)p for some E-classes G and G’ since p € Tp-(X,Y)
and p|xg : XB — Xa is a bijection. Moreover, we obtain G' N X = Bj for
some B € X/FE since § € Tp«(X,Y). Thus Aa C BBp C (BNY)Bp by Lemma
ETH. Similarly, there exists 7 € T+ (X,Y) such that A8 C (C NY)ar for some
CeX/E. O

Theorem 4.17. Let o, € Tg+(X,Y) be such that o # 3. Then (a,B) € ¢ if
and only if either

(1) m(a) =m(B) and |Z(a)| = [Zy(a)| = |Zy (B)| = |Z(B)I; or

(2) | Xa| = |XB| and there exist p,7 € Tg+(X,Y) such that for any A € X/E,
Aa C(BNY)Bp and AB C (CNY)ar for some B,C € X/E.

Proof. (=). Suppose that (o, 5) € #. Then o = 0fn, = pov for some
0,m,u,v € Tp«(X,Y)L. If = 1 = p, then a = fn and B = ar which implies
that (a,8) € #. Hence (1) holds by Theorem BB. If § € Tp-(X,Y) or u €
Te«(X,Y), then we have a = AB¢ and 8 = pad for some A\, p € Tp+(X,Y) and
£,6 € Tp«(X,Y)!. For example, if = 1 and p € Tp-(X,Y), then a = fn =
pavn = pB(nvn). We split the proof into four cases.
Case 1. £ =1 =/. In this case, « = A and 8 = pa. Thus, (a,8) € £ C 2.
Then, by Theorem BT3 and Lemma BI8H, we obtain (1) or (2).
Case 2. £, € Tg-(X,Y). We have (2) holds by Lemma BT4.
Case 3. { =1 and ¢ € Tp+(X,Y). In this case, « = AS and § = pad. Then
a = A3 = Apad = (ApA)Bd, which reduces to Case 2.
Case 4. £ € Tg-(X,Y) and 6 = 1. In this case, « = A\G¢ and 8 = pa. Then
B = pa = pABE = (pAp)ag, which also reduces to Case 2.

(«). If (1) holds, then (o, 5) € Z C _# by Theorem BB. Now, we suppose
(2) holds. Define a function § : X — Y by 20 € zap~ '~ NY. Next, we will
prove that 6 € Tg-(X,Y). Let (m,n) € E. Then (ma,na) € E. Moreover, since
B,p € Tp-(X,Y), we get (m,nd) € map= 1B~ x nap=tB~! C E. Conversely, let
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(a,b) ¢ E. Then (ac,ba) ¢ E. We obtain that (aap*ﬁ*l X bap’lﬁfl) NE = 0.

Thus (a8, b0) ¢ E. Consequently, 6 € T« (X,Y).
To show that 68p = «, let * € X. Then 20 € zap~ 1371 NY which implies
that z05p € (xap_lﬁ_l N Y) Bp. Hence there exists y € rap~ 371 NY such that

yBp = x08p and so z0Bp = yBp = xa. Similarly, we can construct a function
p € Tp+(X,Y) such that par = . Therefore, (o, 5) € 7. O

Finally, we characterize Green’s & and _# relations on Fg- when the set of
all equivalent classes is finite.

Theorem 4.18. Let o, 8 € Fg-, |X/E| = n (n is a positive integer). Then the
following statements are equivalent.

(1) (e, B) € 2.
(2) (@.8) € 7.

Proof. The implication (1) = (2) is clear.

(2) = (1). Suppose that (a,3) € #. Clearly, if a = §, then (a,3) € 2.
Now, we assume that a # §. Then the items (1) or (2) of Theorem ET7 holds.
If the item (1) of Theorem BT4 is true, then (a,5) € Z C 2 by Theorem ER.
Suppose that the item (2) of Theorem ETA holds, that is, |X«a| = |X3| and
there exist p,7 € Tg-(X,Y) such that for any A € X/E, Ao C (BNY)Bp and
AB C (CNY)ar for some B,C € X/E.

Let

For any A € X/E, Aa C(BNY)Bp and AB C (CNY)ar for some B,C € X/E.
Let Ai,Aj S X/E with A; 7é Aj. Then there exist Bi,Bj € X/E with B; 7é Bj
such that

Aja C (B;NY)pp and Aja C (B; NY)Pp.

Similarly, there exist C;, C; € X/E with C; # C; such that
B, C (CiNnY)ar and B;5 C (C;NY)ar.
Let A; € X/E. Then there exists By € X/FE such that Aja C (B; NY)Bp. Thus
[Aval < [(B1NY)Bp| < |B1fpl < [B1f.
Similarly, there exists As € X/F such that B18 C (A2 NY)ar. Thus
|B18| < [(A2NY)ar| < |Asar| < |Asa|.
Moreover, there exists By € X/E such that Asa C (BaNY)Bp. Thus
|Az0] < (B2 NY)Bp| < |BaBpl < BB,
Repeat above processes, we get

|Ara| < |B1f| < |Aza| < |Baf] < -+ < |Ajo| < BB < -
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Then there exists A, € X/E such that A = A since | X/E| is finite. Thus
|[Araf = [B18| = -+ = [Ag—1a] = [Bi-18]

and A;a C (B; NY)Bp,B;f C (Aix1 NY)ar where i = 1,2,..., k — 1. For any
Ae(X/EVZ{A;:i=1,2,...,k—1}, Aa C (BNY)Bp for some B € (X/E)\{B; :
i=1,2,...,k —1}. In addition, for any B € (X/E)\{B; :i=1,2,...,k — 1},
BB C (ANY)ar for some A € (X/E)\{4;:i=1,2,...,k—1}.

Repeat above processes between (X/E)\{A4;:i=1,2,...,k—1} and (X/E)\
{B; :i=1,2,...,k — 1}. Finally, we get |A;a| = |B;S| where i = 1,2,...,n and
S0

X/E={A;:i=1,2,...,n}={B;:i=1,2,...,n}.

Then there exist bijections §; : A;a — B; where i = 1,2,...,n. Let

s £C(52 ,ifoAia
xro =
yo; ,ifx e A\ Xa  wherey € A;a, AjaC Ae X/E.

The prove that § € Tg+(X,Y) is routine. We can see that Xa = (J;_; A;a and
X8 =, BiB since X/E = {A; :i=12,....,n} ={B; : i = 1,2,...,n}.
Thus d|xq : Xa — X is a bijection since §; : A;a — B; for alli =1,2,...,n
are bijections. Moreover, since X/FE is finite, we have Z(«) = Z () = (0. Thus
|Z ()| = 1Z(B)| = 0. By Theorem B3, (o, 8) € Z. O
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