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Abstract : Let T (X) be the full transformation semigroup on a set X. For an
equivalence E on X and a nonempty subset Y of X, let

TE∗(X,Y ) = {α ∈ T (X) : Xα ⊆ Y and ∀x, y ∈ X, (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

In this article, we give a necessary and sufficient condition for TE∗(X,Y ) to be a
subsemigroup of T (X) under the composition of functions and study the regularity
of TE∗(X,Y ). Finally, we characterize Green’s relations on this semigroup.
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1 Introduction

Let T (X) be the set of all functions from X into itself. We have T (X) under
the composition of functions is a semigroup which is called the full transformation
semigroup on X. In 1975, J. S. V. Symons [9] studied the subsemigroup T (X,Y )
of T (X) defined by

T (X,Y ) = {α ∈ T (X) : Xα ⊆ Y }
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where Y is a nonempty subset of X. The author studied the automorphism of
T (X,Y ) and the isomorphism between two semigroups T (X1, Y1) and T (X2, Y2).

In 2008, J. Sanwong and W. Sommanee [5] gave a necessary and sufficient
condition for T (X,Y ) to be regular and found the largest regular subsemigroup
of T (X,Y ). Then they characterized Green’s relations and obtained a class of
maximal inverse subsemigroups of T (X,Y ). Furthermore, a natural partial order
on T (X,Y ) was studied in some detail in [4, 8].

Let E be an equivalence on X. Write

TE(X) = {α ∈ T (X) : ∀(x, y) ∈ E, (xα, yα) ∈ E},

then TE(X) is a subsemigroup of T (X). Moreover, we see that TE(X) is S(X),
the semigroup of all continuous self-maps of the topological space X for which
all E classes form a basis. In 2005, H. Pei [3] studied the regularity and Green’s
relations for TE(X). Moreover, in 2008, L. Sun, H. Pei and Z. Cheng [6] studied
TE(X) with the natural partial order ≤ and investigated the condition under which
α ≤ β for two elements α, β ∈ TE(X). Then they considered the compatibility
of multiplication under ≤. Finally, the maximal, minimal and covering elements
were described.

In 2010, L.-Z. Deng, J.-W. Zeng and B. Xu [1] defined a subsemigroup TE∗(X)
of T (X) by

TE∗(X) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

Similar to the semigroup TE(X), we obtain that TE∗(X) is a semigroup of con-
tinuous self-maps of the topological space X for which all E classes form a basis.
In [1], the authors studied regularity and Green’s relations for TE∗(X). In 2013,
L. Sun and J. Sun [7] characterized the natural partial order on TE∗(X). Then
they studied the compatibility and described the maximal (minimal) elements. In
addition, they considered the greatest lower bound of two elements.

In this paper, we aim to generalize the results of [1] by defining a subset
TE∗(X,Y ) of TE∗(X) as follows. Let E be an equivalence on X and Y a nonempty
subset of X. Define

TE∗(X,Y ) = {α ∈ T (X) : Xα ⊆ Y and ∀x, y ∈ X, (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

Equivalently,

TE∗(X,Y ) = {α ∈ TE∗(X) : Xα ⊆ Y } = TE∗(X) ∩ T (X,Y ).

In the next section, we give a necessary and sufficient condition for TE∗(X,Y ) to
be a subsemigroup of TE∗(X). Obviously, if X = Y , then TE∗(X,Y ) = TE∗(X).
Hence TE∗(X) is a special case of TE∗(X,Y ). Furthermore, if E is the universal
relation, E = X×X, then TE∗(X,Y ) becomes T (X,Y ), as shown in Theorem 2.5.
Moreover, it is not difficult to check that TE∗(X,Y ) is a semigroup of all continuous
self-maps of the topological space X for which all E classes form a basis carrying
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X into a subspace Y , and is referred to as a semigroup of continuous functions
(see [2] for details).

In section 3, we study regularity for TE∗(X,Y ) and then the characterization
of Green’s relations will be considered in the last section.

2 Preliminaries

Let X/E be the quotient set where E is an equivalence on X. For each
α ∈ TE∗(X,Y ), let

π(α) = {xα−1 : x ∈ Xα}

be the partition of X induced by α. Then π(α) = X/ ker(α) where ker(α) =
{(x, y) ∈ X ×X : xα = yα}. As in [1], for a subset A of X, we write

πA(α) = {M ∈ π(α) : M ∩A ̸= ∅}.

We also define
π̃A(α) = {M ∈ π(α) : M ∩A ∩ Y ̸= ∅}.

It is clear that π̃A(α) is an appropriate extension of πA(α) in the sense that if
Y = X, then π̃A(α) = πA(α). Obviously, π̃A(α) ⊆ πA(α).

We denote by ∆(X) the diagonal relation on X, that is, ∆(X) = {(x, x) : x ∈
X}.

Let α ∈ TE∗(X). The restriction of the equivalence E on Xα, denoted by Eα,
is defined by

Eα = {(x, y) : x, y ∈ Xα, (x, y) ∈ E} = E ∩ (Xα×Xα).

Then

Xα/Eα = {A ∩Xα : A ∈ X/E,A ∩Xα ̸= ∅} = {Aα : A ∈ X/E}.

Let E be an equivalence relation on a set X and let U, V be subsets of X and φ
a mapping from U into V . If for any u, v ∈ U , (u, v) ∈ E implies (uφ, vφ) ∈ E,
then we say that φ is E-preserving. If (u, v) ∈ E if and only if (uφ, vφ) ∈ E, then
φ is said to be E∗-preserving.

For convenience, we state the following two lemmas appeared in [1] which will
prove useful.

Lemma 2.1 ([1]). Let E be an equivalence on X, M ⊆ X and

EM = {(x, y) ∈ E : x, y ∈ M} = E ∩ (M ×M).

Then the following statements hold.

(1) EM is an equivalence on M .

(2) M/EM = {A ∩M : A ∈ X/E,A ∩M ̸= ∅}.
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Lemma 2.2 ([1]). Let α ∈ TE∗(X) and x, y ∈ X. Then the following statements
hold.

(1) (x, y) ̸∈ E if and only if (xα, yα) ̸∈ E.

(2) |X/E| = |Xα/Eα|.

Next, we give a necessary and sufficient condition for TE∗(X,Y ) to be a sub-
semigroup of TE∗(X). Clearly, TE∗(X,Y ) = TE∗(X) ∩ T (X,Y ). Therefore, we
need only to find a condition that TE∗(X,Y ) is nonempty.

Theorem 2.3. TE∗(X,Y ) is nonempty if and only if |Y/EY | = |X/E|.

Proof. Assume that α ∈ TE∗(X,Y ) ̸= ∅. By Lemma 2.2 (2), we obtain that

|X/E| = |Xα/Eα| ≤ |Y/EY | ≤ |X/E|.

Thus |Y/EY | = |X/E|.
Conversely, suppose that |Y/EY | = |X/E|. Then there is a bijection Φ :

X/E → Y/EY . For each A ∈ X/E, choose yA ∈ AΦ and define a function
α : X → Y by xα = yA for each x ∈ A. It is clear that α ∈ TE∗(X,Y ) ̸= ∅.

By the above theorem, since TE∗(X,Y ) must not be empty, we will assume
that Y is a subset of X such that |Y/EY | = |X/E| in the remaining of this paper.

Lemma 2.4. Let α ∈ TE∗(X,Y ), EY α = {(x, y) : x, y ∈ Y α, (x, y) ∈ E} and
Y α/EY α = {A∩ Y α : A ∈ X/E,A∩ Y α ̸= ∅}. Then Y α/EY α = {(A∩ Y )α : A ∈
X/E,A ∩ Y ̸= ∅}.

Proof. Let A ∩ Y α ∈ Y α/EY α. Then A ∈ X/E and A ∩ Y α ̸= ∅. There exists
y ∈ A ∩ Y α which implies that y ∈ A and y = xα for some x ∈ Y . Then there is
B ∈ X/E such that x ∈ B ∩ Y and hence y = xα ∈ (B ∩ Y )α.

Next, we claim that A∩Y α = (B ∩Y )α. Indeed, let a ∈ A∩Y α. Then a ∈ A
and a ∈ Y α. We note that (a, y) ∈ E since y ∈ A. Thus a = bα for some b ∈ Y
and so (bα, xα) = (a, y) ∈ E which implies that (b, x) ∈ E. Hence b ∈ B ∩ Y and
so a = bα ∈ (B∩Y )α. Therefore, A∩Y α ⊆ (B∩Y )α. For the other containment,
let zα ∈ (B ∩ Y )α. Then z ∈ B ∩ Y from which it follows that (x, z) ∈ E since
x ∈ B ∩ Y . Hence (y, zα) = (xα, zα) ∈ E. Then zα ∈ Y α and zα ∈ A since
y ∈ A ∩ Y α. Thus zα ∈ A ∩ Y α and so (B ∩ Y )α ⊆ A ∩ Y α.

Therefore, A ∩ Y α ∈ {(A ∩ Y )α : A ∈ X/E,A ∩ Y ̸= ∅} which implies that
Y α/EY α ⊆ {(A ∩ Y )α : A ∈ X/E,A ∩ Y ̸= ∅}.

On the other hand, let C ∈ X/E such that C ∩Y ̸= ∅. There exists p ∈ C ∩Y
and then pα ∈ (C ∩ Y )α from which it follows that pα ∈ Y α and pα ∈ Cα ⊆ D
for some D ∈ X/E. Hence pα ∈ D ∩ Y α.

We claim that (C∩Y )α = D∩Y α. Indeed, let cα ∈ (C∩Y )α. Then c ∈ C∩Y
and so (c, p) ∈ E since p ∈ C ∩ Y . Now, we have (cα, pα) ∈ E. Then cα ∈ Y α
and cα ∈ D since pα ∈ D ∩ Y α. Thus cα ∈ D ∩ Y α and so (C ∩ Y )α ⊆ D ∩ Y α.
For the other containment, let d ∈ D ∩ Y α. Then d ∈ D and d ∈ Y α. We note
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that (d, pα) ∈ E since pα ∈ D ∩ Y α. We obtain d = qα for some q ∈ Y and hence
(qα, pα) = (d, pα) ∈ E which implies that (q, p) ∈ E. Then q ∈ C ∩ Y . Hence
d = qα ∈ (C ∩ Y )α and so D ∩ Y α ⊆ (C ∩ Y )α.

Therefore, {(A ∩ Y )α : A ∈ X/E,A ∩ Y ̸= ∅} ⊆ Y α/EY α. Consequently,
Y α/EY α = {(A ∩ Y )α : A ∈ X/E,A ∩ Y ̸= ∅}.

Theorem 2.5. The following statements hold.

(1) E = X ×X if and only if TE∗(X,Y ) = T (X,Y ).

(2) E = ∆(X) if and only if TE∗(X,Y ) = {α ∈ T (X,Y ) : α is injective.}.

Proof. (1) (⇒) Suppose that E = X × X. It remains to show that T (X,Y ) ⊆
TE∗(X,Y ). Let α ∈ T (X,Y ). For each x, y ∈ X, we obtain that (x, y) ∈ E if and
only if (xα, yα) ∈ E since E = X ×X. Therefore, α ∈ TE∗(X,Y ) which implies
that T (X,Y ) ⊆ TE∗(X,Y ).

(⇐) Assume that TE∗(X,Y ) = T (X,Y ). Obviously, E ⊆ X×X, it remains to
show that X×X ⊆ E. Let a be a fixed element in Y , define a function α : X → Y
by xα = a for all x ∈ X. It is easy to see that α ∈ T (X,Y ) = TE∗(X,Y ).
Let (x, y) ∈ X × X. We obtain (x, y) ∈ E since (xα, yα) = (a, a) ∈ E. Hence
X ×X ⊆ E.

(2) For convenience, we let S = {α ∈ T (X,Y ) : α is injective.}.
(⇒) Suppose E = ∆(X). Let α ∈ TE∗(X,Y ). To show that α ∈ S, let x, y ∈ X

with xα = yα. Then (xα, yα) ∈ E = ∆(X) which implies that x = y. Thus α ∈ S
and so TE∗(X,Y ) ⊆ S. On the other hand, let α ∈ S and (x, y) ∈ X × X.
If (x, y) ∈ E = ∆(X), then x = y and so xα = yα. Further (xα, yα) ∈ E.
Conversely, if (xα, yα) ∈ E = ∆(X), then xα = yα which implies that x = y since
α ∈ S. Hence (x, y) ∈ E and thus α ∈ TE∗(X,Y ). Therefore, S ⊆ TE∗(X,Y )

(⇐) Assume that TE∗(X,Y ) = S. By Theorem 2.3, we have |Y/EY | = |X/E|.
Then we can write X/E = {Ai : i ∈ I} and Y/EY = {Bi : i ∈ I}. Choose bi ∈ Bi

for all i ∈ I. For each Ai ∈ X/E, define a function α : X → Y by zα = bi where
z ∈ Ai. It is easy to verify that α ∈ TE∗(X,Y ) = S. To show that E = ∆(X),
it remains to show that E ⊆ ∆(X). Let (x, y) ∈ E. Then x, y ∈ Ai for some
Ai ∈ X/E. By the definition of α, we have xα = bi = yα which implies that x = y
since α ∈ S. Therefore, E = ∆(X).

For α ∈ TE∗(X,Y ), let

E(α) = {Aα−1 : A ∈ Xα/Eα}.

The following two theorems are consequences of Theorems 1.4 and 1.5 in [1],
respectively.

Theorem 2.6. Let α ∈ TE∗(X,Y ) and A ∈ Xα/Eα. Then Aα−1 ∈ X/E.

Theorem 2.7. Let α ∈ TE∗(X,Y ). Then E(α) = X/E.
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3 Regularity

In this section, we characterize regular elements in TE∗(X,Y ) and then give a
necessary and sufficient condition for TE∗(X,Y ) to be regular.

In [5], the authors defined a subset F of T (X,Y ) by

F = {α ∈ T (X,Y ) : Xα ⊆ Y α}

and proved that F is the largest regular subsemigroup of T (X,Y ). Now, we define
the subset FE∗ of TE∗(X,Y ) by FE∗ = F ∩ TE∗(X,Y ). Equivalently,

FE∗ = {α ∈ TE∗(X,Y ) : Xα ⊆ Y α} = {α ∈ TE∗(X,Y ) : Xα = Y α}.

It is clear that FE∗ is an appropriate extension of F in the sense that if E = X×X,
then FE∗ = F . In addition, if X = Y , then FE∗ = TE∗(X).

By Lemma 2.2 in [5], the authors proved that F is a right ideal of T (X,Y ).
Hence we obtain the following lemma immediately.

Lemma 3.1. FE∗ is a right ideal of TE∗(X,Y ). Consequently, it is a subsemigroup
of TE∗(X,Y ).

Lemma 3.2. If FE∗ ̸= ∅, then Y ∩A ̸= ∅ for all A ∈ X/E

Proof. Let α ∈ FE∗ , A ∈ X/E and x ∈ A. Then xα ∈ Xα ⊆ Y α which implies
that xα = yα for some y ∈ Y . Hence (x, y) ∈ E and so y ∈ A. Therefore,
y ∈ Y ∩A ̸= ∅.

By Lemma 3.2, we have the following corollary.

Corollary 3.3. If Y ∩A = ∅ for some A ∈ X/E, then FE∗ = ∅.

Theorem 3.4. Let α ∈ TE∗(X,Y ). Then α is regular if and only if α ∈ FE∗ and
A ∩ Y α ̸= ∅ for any A ∈ X/E.

Proof. (⇒) Suppose that α is regular. Then α = αβα for some β ∈ TE∗(X,Y ).
Let A ∈ X/E and x ∈ A. Then xβ = y for some y ∈ Y . Moreover, since
yα = yαβα, we obtain (yα, yαβα) ∈ E which implies that (xβα, yαβα) ∈ E.
Hence (x, yα) ∈ E. Therefore, yα ∈ A ∩ Y α ̸= ∅. In addition, we have Xα =
Xαβα ⊆ Y βα ⊆ Y α and so α ∈ FE∗ .

(⇐) For eachA ∈ X/E, we haveA∩Y α ̸= ∅ which implies that (A∩Y α)α−1∩Y
is nonempty. Let bA be a fixed element in (A ∩ Y α)α−1 ∩ Y . Define a function β
by

xβ =

{
a if x ∈ Y α where a ∈ xα−1 ∩ Y

bA if x ∈ A \ Y α

The proof that β ∈ TE∗(X,Y ) is routine. By the definition of β, we obtain
xαβα ∈ xαα−1α = {xα} for all x ∈ X since Xα = Y α. Thus αβα = α.
Consequently, α is regular.
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Now, we give a necessary and sufficient condition for TE∗(X,Y ) to be regular.

Theorem 3.5. TE∗(X,Y ) is regular if and only if the following statements hold.

(1) |Y/EY | is finite.

(2) Either E ∩ (Y × Y ) = ∆(Y ) or X = Y .

Proof. (⇒) Suppose that TE∗(X,Y ) is regular. By Theorem 3.4, we conclude that
FE∗ is nonempty. Hence Y ∩A ̸= ∅ for all A ∈ X/E by Lemma 3.2.

(1) Assume that |Y/EY | is infinite. We note that |X/E| = |Y/EY |. Choose
B1 ∈ Y/EY , then |(Y/EY ) \ {B1}| = |Y/EY | = |X/E| since |Y/EY | is infinite.
Then we can write X/E = {Ai : i ∈ I} and Y/EY \ {B1} = {Bi : i ∈ I}. We
assume that B1 = Y ∩A1 for some A1 ∈ X/E and define a function α by

xα = bi where bi ∈ Bi for any x ∈ Ai, i ∈ I.

Clearly, α ∈ TE∗(X,Y ) and A1 ∩ Y α = ∅. By Theorem 3.4, α is not regular and
so TE∗(X,Y ) is not regular which is a contradiction. Hence |Y/EY | is finite.

(2) Suppose to the contrary that E∩(Y ×Y ) ̸= ∆(Y ) and X ̸= Y . Then there
exists A ∈ X/E such that A\Y and Y ∩A are nonempty. By E∩(Y ×Y ) ̸= ∆(Y ),
there is a class B ∈ X/E such that |B ∩ Y | > 1. Let a, b be distinct elements in
B∩Y . Moreover, since |X/E| = |Y/EY |, we can write (X/E)\{A} = {Ai : i ∈ I}
and (Y/EY ) \ {B ∩ Y } = {Bi : i ∈ I}. Choose ci ∈ Bi and define a function
α : X → Y by

xα =


a if x ∈ Y ∩A

b if x ∈ A \ Y
ci if x ∈ Ai

It is obvious that α ∈ TE∗(X,Y ) and b ∈ Xα \ Y α. Hence α /∈ FE∗ which implies
that α is not regular. It leads to a contradiction.

(⇐) Assume that (1) and (2) hold. If |Y/EY | is finite and X = Y , then
TE∗(X,Y ) is regular by Theorem 3.2 of [1]. Now, we suppose that |Y/EY | is
finite and E ∩ (Y × Y ) = ∆(Y ). We note that |X/E| = |Y/EY | is also finite and
|Y ∩ A| = 1 for all A ∈ X/E. Let a ∈ TE∗(X,Y ) and xα ∈ Xα. Then x ∈ A for
some A ∈ X/E and there is y ∈ Y ∩ A. Moreover, since E ∩ (Y × Y ) = ∆(Y )
we obtain that Aα is a singleton. Thus xα = yα ∈ Y α and so Xα ⊆ Y α. Hence
α ∈ FE∗ . Let B ∈ X/E. We obtain Bα−1 = C for some C ∈ X/E since |X/E| =
|Y/EY | is finite. There is z ∈ Y ∩ C and hence zα ∈ Cα ∩ Y α ⊆ B ∩ Y α ̸= ∅.
Therefore, α is regular.

4 Green’s relations

To study Green’s relations, we introduce some definitions for using throughout
this paper. Actually, we extend the notions of E-admissibility and E∗-admissibility
presented in [1].
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Let α, β ∈ TE∗(X,Y ) and let φ be a mapping from π(α) into π(β). We say
that φ is Ẽ-admissible if and only if for each A ∈ X/E, there exists B ∈ X/E
such that

πA(α)φ ⊆ π̃B(β).

Equivalently, φ : π(α) → π(β) is Ẽ-admissible if and only if for each A ∈ X/E,
there exists B ∈ X/E such that for each P ∈ πA(α), B ∩ Pφ ∩ Y ̸= ∅. If φ is a
bijection such that φ and φ−1 are Ẽ-admissible, then φ is called Ẽ∗-admissible. We
remark that if X = Y , then the notions of E-admissibility (resp. Ẽ-admissibility)
and Ẽ-admissibility (resp. Ẽ∗-admissibility) are the same.

If η ∈ TE∗(X,Y ), then denote by η∗ the map from π(η) ontoXη by (xη−1)η∗ =
x for each x ∈ Xη.

We note that, in general, if X ̸= Y , then the semigroup TE∗(X,Y ) does not
contain the identity element. Hence TE∗(X,Y )1 ̸= TE∗(X,Y ). We are now in a
position to prove some characterization of Green’s L -relation.

Theorem 4.1. Let α, β ∈ FE∗ . Then the following statements are equivalent.

(1) (α, β) ∈ L in TE∗(X,Y ).

(2) Xα = Xβ.

(3) There exists an Ẽ∗-admissible bijection φ : π(α) → π(β) such that α∗ = φβ∗.

Proof. The implication (1) ⇒ (2) follows from [1, Theorem 2.1] .
(2)⇒ (3). Suppose that (2) holds. Then we haveXα = Y α = Y β = Xβ which

implies that Eα = EY β . For each A ∈ X/E, we have Aα ∈ Xα/Eα = Y β/EY β

and so there exist B ∈ X/E such that Aα = (B ∩ Y )β by Lemma 2.4. Similarly,
Aβ = (C ∩ Y )α for some C ∈ X/E.

Define a function φ : π(α) → π(β) by (xα−1)φ = xβ−1 for all x ∈ Xα = Xβ.
It is easy to verify that φ is a bijection. Furthermore, for each xα−1 ∈ π(α), we
have (xα−1)φβ∗ = (xβ−1)β∗ = x = (xα−1)α∗. Thus α∗ = φβ∗.

Next, we show that φ is Ẽ-admissible. Let A ∈ X/E. Then there exists
B ∈ X/E such that Aα = (B ∩ Y )β. Let P ∈ πA(α). Then P = xα−1 for
some x ∈ Xα and P ∩ A ̸= ∅ which implies that there is y ∈ P ∩ A. Hence
x = yα ∈ Aα = (B ∩ Y )β and so there exists z ∈ B ∩ Y such that x = zβ. We
see that z ∈ xβ−1 = (xα−1)φ = Pφ. Thus z ∈ Pφ ∩ B ∩ Y ̸= ∅ and so φ is an
Ẽ-admissible. Similarly, we can prove that φ−1 is also Ẽ-admissible. Therefore,
φ is an Ẽ∗-admissible.

(3)⇒ (1). Suppose that (3) holds. Then for any x ∈ A ∈ X/E, (xα)α−1φ∩B∩
Y ̸= ∅ for some B ∈ X/E. Define a function η : X → Y by xη ∈ (xα)α−1φ∩B∩Y .

Next, we show that η ∈ TE∗(X,Y ). Let x, y ∈ X and (x, y) ̸∈ E. Then

(xα, yα) ̸∈ E since α ∈ TE∗(X,Y ). We see that
(
{xα}×{yα}

)
∩E = ∅. Moreover,

(xα)α−1φβ∗ = (xα)α−1α∗ = xα and (yα)α−1φβ∗ = (yα)α−1α∗ = yα.

Thus [(xα)α−1φ]β = {xα} and [(yα)α−1φ]β = {yα} which implies that(
[(xα)α−1φ]β × [(yα)α−1φ]β

)
∩ E = ∅.
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Hence (
[(xα)α−1φ]× [(yα)α−1φ]

)
∩ E = ∅.

Therefore, (xη, yη) ̸∈ E. Conversely, let x, y ∈ X be such that (x, y) ∈ E. Then
there exists A ∈ X/E such that x, y ∈ A. Hence xη ∈ (xα)α−1φ ∩ B ∩ Y and
yη ∈ (yα)α−1φ ∩ B ∩ Y for some B ∈ X/E and so (xη, yη) ∈ E. Therefore,
η ∈ TE∗(X,Y ).

Let x ∈ X. Then xηβ ∈ [(xα)α−1φ ∩ B ∩ Y ]β ⊆ [(xα)α−1φ]β = {xα}. Thus
xηβ = xα for any x ∈ X. Hence α = ηβ. Similarly, we can find a function
θ ∈ TE∗(X,Y ) such that β = θα. Consequently, (α, β) ∈ L .

By the above theorem, if X = Y , then we obtain Theorem 2.1 of [1].
Recall that for each element a in a semigroup S, we denote L -class, R-class,

H -class, D-class and J -class containing a by La, Ra,Ha, Da and Ja, respectively.

Theorem 4.2. For α ∈ TE∗(X,Y ), the following statements hold.

(1) If α ∈ TE∗(X,Y ) \ FE∗ , then Lα = {α}.

(2) If α ∈ FE∗ , then Lα = {β ∈ FE∗ : Xα = Xβ}.

Proof. (1) Let α ∈ TE∗(X,Y ) \ FE∗ and let β ∈ Lα. Then αL β which implies
that α = ηβ and β = θα for some η, θ ∈ TE∗(X,Y )1. If η, θ ∈ TE∗(X,Y ), then
Xα = Xηβ = Xηθα ⊆ Y α. Thus α ∈ FE∗ which is a contradiction and so η = 1
or θ = 1. Hence β = α.

(2) Let α ∈ FE∗ and let β ∈ Lα. Then (α, β) ∈ L which implies that α = ηβ
and β = θα for some η, θ ∈ TE∗(X,Y )1. The case α = β is obvious. If α ̸= β,
then η, θ ∈ TE∗(X,Y ). We obtain Xβ = Xθα ⊆ Y α = Y ηβ ⊆ Y β which implies
that β ∈ FE∗ . In addition, Xα = Xβ by Theorem 4.1. The other containment is
clear.

Now, we have already done for Green’s L -relation of TE∗(X,Y ). To study the
remaining Green’s relations, we introduce some definitions for using throughout
this paper. Let α ∈ TE∗(X,Y ), as in [1], the authors defined Z(α) = {A ∈ X/E :
A ∩Xα = ∅}. Moreover, we define

ZY (α) = {A ∈ X/E : A ∩Xα = ∅, A ∩ Y ̸= ∅} = {A ∈ Z(α) : A ∩ Y ̸= ∅}.

It is clear that ZY (α) is an appropriate extension of Z(α) in the sense that if
Y = X, then ZY (α) = Z(α). Furthermore, we have the following two lemmas.

Lemma 4.3. Let α ∈ FE∗ . Then π(α) = πY (α).

Proof. Let α ∈ FE∗ . We have known that πY (α) ⊆ π(α). It remains to show that
π(α) ⊆ πY (α). Let M ∈ π(α). Then M = xα−1 for some x ∈ Xα = Y α and so
there exists y ∈ Y such that yα = x. Hence y ∈ xα−1 = M which implies that
M ∩ Y ̸= ∅. Thus M ∈ πY (α). Therefore, π(α) = πY (α).

Lemma 4.4. Let α ∈ FE∗ . Then Z(α) = ZY (α).
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Proof. Let α ∈ FE∗ . Then α ∈ TE∗(X,Y ) and Xα = Y α. Obviously, ZY (α) ⊆
Z(α). It remains to show that Z(α) ⊆ ZY (α). We note by Lemma 4.3 that π(α) =
πY (α). Let A ∈ Z(α). Then there is x ∈ A and (xα)α−1 ∈ π(α) = πY (α). Hence
(xα)α−1 ∩ Y ̸= ∅ which implies that there exists y ∈ (xα)α−1 ∩ Y . Thus yα = xα
and (xα, yα) ∈ E. Then (x, y) ∈ E from which it follows that y ∈ A ∩ Y ̸= ∅ and
so A ∈ ZY (α).

Lemma 4.5. Let α, β ∈ TE∗(X,Y ). If α = βγ for some γ ∈ TE∗(X,Y ), then
ker(β) ⊆ ker(α).

Proof. Suppose that α = βγ for some γ ∈ TE∗(X,Y ). Let (a, b) ∈ ker(β). Then
aβ = bβ and so aα = aβγ = bβγ = bα. Thus (a, b) ∈ ker(α).

Now, we prove the characterization of Green’s R-relation.

Theorem 4.6. Let α, β ∈ TE∗(X,Y ) be such that α ̸= β. Then the following
statements are equivalent.

(1) (α, β) ∈ R.

(2) π(α) = π(β) and |Z(α)| = |ZY (α)| = |ZY (β)| = |Z(β)|.

(3) There exists δ ∈ TE∗(X,Y ) such that δ|Xα : Xα → Xβ is a bijection and
β = αδ.

There exists σ ∈ TE∗(X,Y ) such that σ|Xβ : Xβ → Xα is a bijection and
α = βσ.

Proof. (1) ⇒ (2). Suppose that (α, β) ∈ R. Then α = βθ, β = αη for some
η, θ ∈ TE∗(X,Y )1. We see that θ and η belong to TE∗(X,Y ) since α ̸= β. Hence
ker(α) = ker(β) by Lemma 4.5 and thus π(α) = X/ ker(α) = X/ ker(β) = π(β).

Let A ∈ Z(α). We claim that Aη ⊆ B for some B ∈ Z(β). Now, we have
A ∈ X/E, A ∩Xα = ∅ and Aη ⊆ B for some B ∈ X/E. Assume to the contrary
that B ̸∈ Z(β). Then B∩Xαη = B∩Xβ ̸= ∅ since Xαη = Xβ. Hence there exists
b ∈ B∩Xαη and so b = xαη for some x ∈ X. Let a ∈ A. Then aη ∈ Aη ⊆ B from
which it follows that (aη, xαη) ∈ E and so (a, xα) ∈ E. Hence xα ∈ A ∩Xα ̸= ∅
which contradicts to A ∈ Z(α). Thus Aη ⊆ B for some B ∈ Z(β). Moreover,
B ∩ Y ̸= ∅ since η ∈ TE∗(X,Y ). Hence Aη ⊆ B for some B ∈ ZY (β).

Now, we show that |Z(α)| = |ZY (β)|. For each A ∈ Z(α), Aη ⊆ B for some
B ∈ ZY (β). Define a function Ψ : Z(α) → ZY (β) by AΨ = B. It is easy to verify
that Ψ is injective since η ∈ TE∗(X,Y ). Thus |Z(α)| ≤ |ZY (β)|. By the same
argument as above, we can show that |Z(β)| ≤ |ZY (α)|. Hence |Z(α)| ≤ |ZY (β)| ≤
|Z(β)| ≤ |ZY (α)| ≤ |Z(α)| and so |Z(α)| = |ZY (α)| = |ZY (β)| = |Z(β)|.

(2) ⇒ (3). Suppose that π(α) = π(β) and |Z(α)| = |ZY (α)| = |ZY (β)| =
|Z(β)|. We can write Z(α) = {Ai : i ∈ I} and ZY (β) = {Bi : i ∈ I}. Choose
yi ∈ Y ∩Bi for each i ∈ I and define an E∗-preserving mapping

ρ :
∪

Ai∈Z(α)

Ai → Y by zρ = yi for each z ∈ Ai.
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Define a function δ : X → Y by

xδ =


xα−1β∗ , if x ∈ Xα

yα−1β∗ , if x ∈ A \Xα where A ∈ X/E with A ∩Xα ̸= ∅ and y ∈ A ∩Xα

xρ , if x ∈ A where A ∈ X/E with A ∩Xα = ∅.

The proof that δ ∈ TE∗(X,Y ) is routine. Now, we show that δ|Xα : Xα → Xβ
is a bijection. Let y ∈ Xβ. Then yβ−1 ∈ π(β) = π(α) which implies that
yβ−1α∗ ∈ Xα. Hence yβ−1α∗δ = yβ−1α∗α

−1β∗ = y from which it follows that
δ|Xα is a surjection. Let x, y ∈ Xα with xδ = yδ. Then xα−1β∗ = yα−1β∗ and so
x = y. Hence δ|Xα is an injection. Consequently, δ|Xα : Xα → Xβ is a bijection
and xαδ = xαα−1β∗ = xβ for any x ∈ X. Therefore β = αδ. Similarly, we can
find a function σ ∈ TE∗(X,Y ) such that σ|Xβ : Xβ → Xα is a bijection and
α = βσ.

The implication (3) ⇒ (1) is clear.

By Lemma 4.4 and Theorem 4.6, we obtain the following corollary which covers
Theorem 2.2 of [1].

Corollary 4.7. Let α, β ∈ FE∗ . Then the following statements are equivalent.

(1) (α, β) ∈ R in TE∗(X,Y ).

(2) π(α) = π(β) and |Z(α)| = |Z(β)|.

(3) There exists δ ∈ TE∗(X,Y ) such that δ|Xα : Xα → Xβ is a bijection and
β = αδ.

There exists σ ∈ TE∗(X,Y ) such that σ|Xβ : Xβ → Xα is a bijection and
α = βσ.

Lemma 4.8. Let α, β ∈ TE∗(X,Y ). If π(α) = π(β), then either both α and β are
in FE∗ , or neither is in FE∗ .

Proof. Assume that π(α) = π(β) and α ∈ FE∗ . It suffices to show β ∈ FE∗ . Let
xβ ∈ Xβ. Then (xβ)β−1 ∈ π(β) = π(α) which implies that (xβ)β−1 = (zα)α−1

for some z ∈ X. We have zα ∈ Xα ⊆ Y α implies zα = yα for some y ∈ Y . Thus
y ∈ (zα)α−1 = (xβ)β−1 and so xβ = yβ ∈ Y β. Therefore, β ∈ FE∗ .

By Theorem 4.6, Corollary 4.7 and Lemma 4.8, we have the following result.

Corollary 4.9. For α ∈ TE∗(X,Y ), the following statements hold.

(1) If α ∈ FE∗ , then Rα = {β ∈ FE∗ : π(α) = π(β) and |Z(α)| = |Z(β)|}.

(2) If α ∈ TE∗(X,Y ) \ FE∗ , then

Rα = {α} ∪ {β ∈ TE∗(X,Y ) \ FE∗ : π(α) = π(β)

and |Z(α)| = |ZY (α)| = |ZY (β)| = |Z(β)|}.
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Theorem 4.10. Let α, β ∈ FE∗ . Then the following statements are equivalent.

(1) (α, β) ∈ H in TE∗(X,Y ).

(2) π(α) = π(β) and Xα = Xβ.

(3) There exists an Ẽ∗-admissible bijection φ : π(α) → π(β) such that α∗ = φβ∗.

There exist δ, σ ∈ TE∗(X,Y ) such that δ|Xα : Xα → Xβ, σ|Xβ : Xβ → Xα
are bijections and β = αδ, α = βσ.

Proof. (1) ⇒ (2). Suppose that (α, β) ∈ H in TE∗(X,Y ). Then (α, β) ∈ L and
(α, β) ∈ R. By Theorems 4.1 and 4.6, we obtain that π(α) = π(β) and Xα = Xβ.

(2) ⇒ (3). Suppose that π(α) = π(β) and Xα = Xβ. Then

Z(α) = {A ∈ X/E : A ∩Xα = ∅} = {A ∈ X/E : A ∩Xβ = ∅} = Z(β)

which implies that |ZY (α)| = |ZY (β)|. By Lemma 4.4, we obtain |Z(α)| =
|ZY (α)| = |ZY (β)| = |Z(β)|. Hence (3) is true by Theorems 4.1 and 4.6.

The implication (3) ⇒ (1) follows by Theorems 4.1 and 4.6.

As an immediate consequence of the previous theorems, we get the following
corollary.

Corollary 4.11. For α ∈ TE∗(X,Y ), the following statements hold.

(1) If α ∈ TE∗(X,Y ) \ FE∗ , then Hα = {α}.

(2) If α ∈ FE∗ , then Hα = {β ∈ FE∗ : π(α) = π(β) and Xα = Xβ}.

Next, we consider Green’s relation D .

Theorem 4.12. Let α, β ∈ FE∗ . Then the following statements are equivalent.

(1) (α, β) ∈ D in TE∗(X,Y ).

(2) |Z(α)| = |Z(β)| and there exists δ ∈ TE∗(X,Y ) such that δ|Xα : Xα → Xβ is
a bijection.

Proof. (1) ⇒ (2). Suppose that (α, β) ∈ D in TE∗(X,Y ). Then (α, γ) ∈ L
and (γ, β) ∈ R for some γ ∈ TE∗(X,Y ). By Theorem 4.2 and Corollary 4.9, we
have π(γ) = π(β), Xα = Y α = Y γ = Xγ and |Z(γ)| = |Z(β)|. Moreover, since
Xα = Xγ, we obtain Z(α) = Z(γ) which implies that |Z(α)| = |Z(γ)|. Hence
|Z(α)| = |Z(γ)| = |Z(β)|. We note that |ZY (β)| = |Z(β)| = |Z(γ)| since β ∈ FE∗ .

Next, let Z(γ) = {Ai : i ∈ I} and ZY (β) = {Bi : i ∈ I}. Then we choose
yi ∈ Y ∩Bi for each i ∈ I. Define a function

ρ :
∪

Ai∈Z(γ)

Ai → Y by zρ = yi where z ∈ Ai.
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We see that ρ is an E∗-preserving mapping. For each A ∈ X/E, define

xδ =


xγ−1β∗ if x ∈ A ∩Xγ where A ∩Xγ ̸= ∅
b if x ∈ A \Xγ where A ∩Xγ ≠ ∅ and b ∈ (A ∩Xγ)γ−1β

xρ if x ∈ A where A ∩Xγ = ∅.

The proof that δ ∈ TE∗(X,Y ) is routine. Next, we will show that δ|Xα :
Xα → Xβ is a bijection. Let z ∈ Xβ. Then zβ−1γ∗ ∈ Xγ = Xα. Hence
zβ−1γ∗δ = zβ−1γ∗γ

−1β∗ = z which implies that δ|Xα is surjective. Let x, y ∈ Xα
with xδ = yδ. Then xγ−1β∗ = yγ−1β∗. Thus x = y implies δ|Xα is injective.

(2) ⇒ (1). Suppose that (2) holds. Define γ : X → Y by xγ = xβδ−1 ∈ Xα.
We see that γ ∈ TE∗(X,Y ) since β and δ are E∗-preserving. Moreover, since
α, β ∈ FE∗ , we obtain Xγ = Xβδ−1 = Xα = Y α and Y γ = Y βδ−1 = Xβδ−1 =
Xα. Then Xα = Y α = Y γ = Xγ and so (α, γ) ∈ L by Theorem 4.1. We see
that Z(α) = Z(γ) since Xα = Xγ from which it follows that |Z(α)| = |Z(γ)|. In
addition, we have γ ∈ FE∗ since Xγ = Y γ. Hence |Z(γ)| = |ZY (γ)| by Lemma
4.4. Similarly, we obtain |Z(β)| = |ZY (β)| and so |ZY (γ)| = |Z(γ)| = |Z(α)| =
|Z(β)| = |ZY (β)|. Furthermore,

ker(γ) = {(x, y) : xγ = yγ}
= {(x, y) : xβδ−1 = yβδ−1}
= {(x, y) : xβ = yβ}
= ker(β).

Hence π(γ) = X/ ker(γ) = X/ ker(β) = π(β). Therefore, (γ, β) ∈ R by Theorem
4.6. Consequently, (α, β) ∈ D since (α, γ) ∈ L and (γ, β) ∈ R.

We remark that the above theorem extends Theorem 2.4 of [1].

Theorem 4.13. For α ∈ TE∗(X,Y ), the following statements hold.

(1) If α ∈ TE∗(X,Y ) \ FE∗ , then Dα = Rα.

(2) If α ∈ FE∗ , then

Dα = {β ∈ FE∗ : β satisfies the condition (2) of Theorem 4.12}.

Proof. (1) Let α ∈ TE∗(X,Y ) \ FE∗ and let β ∈ Dα. Then αL γ and γRβ for
some γ ∈ TE∗(X,Y ). By Theorem 4.2, we obtain that γ = α and and thus αRβ.
Hence β ∈ Rα. The other containment is clear since R ⊆ D .

(2) Let α ∈ FE∗ and let β ∈ Dα. Then αL γ and γRβ for some γ ∈ TE∗(X,Y ).
It is clear that β ∈ FE∗ by Theorem 4.2 and Corollary 4.9. The remaining part of
(2) has a straightforward proof.

Finally, we consider Green’s J -relation.

Lemma 4.14. Let α, β ∈ TE∗(X,Y ) and A ∈ X/E. If α = λβρ for some λ, ρ ∈
TE∗(X,Y ), then |Xα| ≤ |Xβ| and Aα ⊆ (B ∩ Y )βρ for some class B.
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Proof. It is clear that |Xα| = |Xλβρ| ≤ |Xλβ| ≤ |Xβ| and Aα = Aλβρ ⊆
(B ∩ Y )βρ for some class B.

Lemma 4.15. Let α ∈ FE∗ . Then Aα ⊆ (A ∩ Y )α for all A ∈ X/E.

Proof. Let A ∈ X/E and aα ∈ Aα. Then aα ∈ Xα ⊆ Y α which implies that
aα = yα for some y ∈ Y . Hence (aα, yα) ∈ E implies (a, y) ∈ E. Thus y ∈ A.
Therefore, aα = yα ∈ (A ∩ Y )α.

Lemma 4.16. Let α, β ∈ FE∗ . If (α, β) ∈ D in TE∗(X,Y ), then |Xα| = |Xβ|
and there exist ρ, τ ∈ TE∗(X,Y ) such that for any A ∈ X/E, Aα ⊆ (B ∩ Y )βρ
and Aβ ⊆ (C ∩ Y )ατ for some B,C ∈ X/E.

Proof. Assume that (α, β) ∈ D in TE∗(X,Y ). Then, by Theorem 4.12, it is clear
that |Xα| = |Xβ|. In addition, since (β, α) ∈ D , there exists ρ ∈ TE∗(X,Y ) such
that ρ|Xβ : Xβ → Xα is a bijection by Theorem 4.12. Let A ∈ X/E. Then
Aα ⊆ G ∩ Xα = (G′ ∩ Xβ)ρ for some E-classes G and G′ since ρ ∈ TE∗(X,Y )
and ρ|Xβ : Xβ → Xα is a bijection. Moreover, we obtain G′ ∩ Xβ = Bβ for
some B ∈ X/E since β ∈ TE∗(X,Y ). Thus Aα ⊆ Bβρ ⊆ (B ∩ Y )βρ by Lemma
4.15. Similarly, there exists τ ∈ TE∗(X,Y ) such that Aβ ⊆ (C ∩ Y )ατ for some
C ∈ X/E.

Theorem 4.17. Let α, β ∈ TE∗(X,Y ) be such that α ̸= β. Then (α, β) ∈ J if
and only if either

(1) π(α) = π(β) and |Z(α)| = |ZY (α)| = |ZY (β)| = |Z(β)|; or

(2) |Xα| = |Xβ| and there exist ρ, τ ∈ TE∗(X,Y ) such that for any A ∈ X/E,
Aα ⊆ (B ∩ Y )βρ and Aβ ⊆ (C ∩ Y )ατ for some B,C ∈ X/E.

Proof. (⇒). Suppose that (α, β) ∈ J . Then α = θβη, β = µαν for some
θ, η, µ, ν ∈ TE∗(X,Y )1. If θ = 1 = µ, then α = βη and β = αν which implies
that (α, β) ∈ R. Hence (1) holds by Theorem 4.6. If θ ∈ TE∗(X,Y ) or µ ∈
TE∗(X,Y ), then we have α = λβξ and β = ραδ for some λ, ρ ∈ TE∗(X,Y ) and
ξ, δ ∈ TE∗(X,Y )1. For example, if θ = 1 and µ ∈ TE∗(X,Y ), then α = βη =
µανη = µβ(ηνη). We split the proof into four cases.
Case 1. ξ = 1 = δ. In this case, α = λβ and β = ρα. Thus, (α, β) ∈ L ⊆ D .
Then, by Theorem 4.13 and Lemma 4.16, we obtain (1) or (2).
Case 2. ξ, δ ∈ TE∗(X,Y ). We have (2) holds by Lemma 4.14.
Case 3. ξ = 1 and δ ∈ TE∗(X,Y ). In this case, α = λβ and β = ραδ. Then
α = λβ = λραδ = (λρλ)βδ, which reduces to Case 2.
Case 4. ξ ∈ TE∗(X,Y ) and δ = 1. In this case, α = λβξ and β = ρα. Then
β = ρα = ρλβξ = (ρλρ)αξ, which also reduces to Case 2.

(⇐). If (1) holds, then (α, β) ∈ R ⊆ J by Theorem 4.6. Now, we suppose
(2) holds. Define a function θ : X → Y by xθ ∈ xαρ−1β−1 ∩ Y . Next, we will
prove that θ ∈ TE∗(X,Y ). Let (m,n) ∈ E. Then (mα,nα) ∈ E. Moreover, since
β, ρ ∈ TE∗(X,Y ), we get (mθ, nθ) ∈ mαρ−1β−1 ×nαρ−1β−1 ⊆ E. Conversely, let
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(a, b) /∈ E. Then (aα, bα) /∈ E. We obtain that
(
aαρ−1β−1× bαρ−1β−1

)
∩E = ∅.

Thus (aθ, bθ) ̸∈ E. Consequently, θ ∈ TE∗(X,Y ).
To show that θβρ = α, let x ∈ X. Then xθ ∈ xαρ−1β−1 ∩ Y which implies

that xθβρ ∈
(
xαρ−1β−1 ∩ Y

)
βρ. Hence there exists y ∈ xαρ−1β−1 ∩Y such that

yβρ = xθβρ and so xθβρ = yβρ = xα. Similarly, we can construct a function
µ ∈ TE∗(X,Y ) such that µατ = β. Therefore, (α, β) ∈ J .

Finally, we characterize Green’s D and J relations on FE∗ when the set of
all equivalent classes is finite.

Theorem 4.18. Let α, β ∈ FE∗ , |X/E| = n (n is a positive integer). Then the
following statements are equivalent.

(1) (α, β) ∈ D .

(2) (α, β) ∈ J .

Proof. The implication (1) ⇒ (2) is clear.
(2) ⇒ (1). Suppose that (α, β) ∈ J . Clearly, if α = β, then (α, β) ∈ D .

Now, we assume that α ̸= β. Then the items (1) or (2) of Theorem 4.17 holds.
If the item (1) of Theorem 4.17 is true, then (α, β) ∈ R ⊆ D by Theorem 4.6.
Suppose that the item (2) of Theorem 4.17 holds, that is, |Xα| = |Xβ| and
there exist ρ, τ ∈ TE∗(X,Y ) such that for any A ∈ X/E, Aα ⊆ (B ∩ Y )βρ and
Aβ ⊆ (C ∩ Y )ατ for some B,C ∈ X/E.

Let
X/E = {Ai : Ai ∩Aj = ∅, i ̸= j}.

For any A ∈ X/E, Aα ⊆ (B ∩ Y )βρ and Aβ ⊆ (C ∩ Y )ατ for some B,C ∈ X/E.
Let Ai, Aj ∈ X/E with Ai ̸= Aj . Then there exist Bi, Bj ∈ X/E with Bi ̸= Bj

such that
Aiα ⊆ (Bi ∩ Y )βρ and Ajα ⊆ (Bj ∩ Y )βρ.

Similarly, there exist Ci, Cj ∈ X/E with Ci ̸= Cj such that

Biβ ⊆ (Ci ∩ Y )ατ and Bjβ ⊆ (Cj ∩ Y )ατ.

Let A1 ∈ X/E. Then there exists B1 ∈ X/E such that A1α ⊆ (B1 ∩ Y )βρ. Thus

|A1α| ≤ |(B1 ∩ Y )βρ| ≤ |B1βρ| ≤ |B1β|.

Similarly, there exists A2 ∈ X/E such that B1β ⊆ (A2 ∩ Y )ατ . Thus

|B1β| ≤ |(A2 ∩ Y )ατ | ≤ |A2ατ | ≤ |A2α|.

Moreover, there exists B2 ∈ X/E such that A2α ⊆ (B2 ∩ Y )βρ. Thus

|A2α| ≤ |(B2 ∩ Y )βρ| ≤ |B2βρ| ≤ |B2β|.

Repeat above processes, we get

|A1α| ≤ |B1β| ≤ |A2α| ≤ |B2β| ≤ · · · ≤ |Aiα| ≤ |Biβ| ≤ · · ·
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Then there exists Ak ∈ X/E such that Ak = A1 since |X/E| is finite. Thus

|A1α| = |B1β| = · · · = |Ak−1α| = |Bk−1β|

and Aiα ⊆ (Bi ∩ Y )βρ,Biβ ⊆ (Ai+1 ∩ Y )ατ where i = 1, 2, . . . , k − 1. For any
A ∈ (X/E)\{Ai : i = 1, 2, . . . , k−1}, Aα ⊆ (B∩Y )βρ for some B ∈ (X/E)\{Bi :
i = 1, 2, . . . , k − 1}. In addition, for any B ∈ (X/E) \ {Bi : i = 1, 2, . . . , k − 1},
Bβ ⊆ (A ∩ Y )ατ for some A ∈ (X/E) \ {Ai : i = 1, 2, . . . , k − 1}.

Repeat above processes between (X/E)\{Ai : i = 1, 2, . . . , k−1} and (X/E)\
{Bi : i = 1, 2, . . . , k − 1}. Finally, we get |Aiα| = |Biβ| where i = 1, 2, . . . , n and
so

X/E = {Ai : i = 1, 2, . . . , n} = {Bi : i = 1, 2, . . . , n}.

Then there exist bijections δi : Aiα → Biβ where i = 1, 2, . . . , n. Let

xδ =

{
xδi , if x ∈ Aiα

yδi , if x ∈ A \Xα where y ∈ Aiα, Aiα ⊆ A ∈ X/E.

The prove that δ ∈ TE∗(X,Y ) is routine. We can see that Xα =
∪n

i=1 Aiα and
Xβ =

∪n
i=1 Biβ since X/E = {Ai : i = 1, 2, . . . , n} = {Bi : i = 1, 2, . . . , n}.

Thus δ|Xα : Xα → Xβ is a bijection since δi : Aiα → Biβ for all i = 1, 2, . . . , n
are bijections. Moreover, since X/E is finite, we have Z(α) = Z(β) = ∅. Thus
|Z(α)| = |Z(β)| = 0. By Theorem 4.12, (α, β) ∈ D .
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