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1 Introduction

Let E be a compact subset of the complex plane C such that C \ E is simply
connected and E contains more than one point. It is convenient to assume that
0 ∈ E and this can be done, if necessary, without loss of generality making a
change of variables. By the Riemann mapping theorem, there exists a unique
exterior conformal mapping Φ from C \ E onto C \ {w ∈ C : |w| ≤ 1} satisfying
Φ(∞) = ∞ and Φ′(∞) > 0. For any ρ > 1, we define

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

as the level curve of index ρ and the canonical domain of index ρ, respectively.
We denote by ρ0(F ) the index ρ > 1 of the largest canonical domain Dρ to which
F can be extended as a holomorphic function, and by ρm(F ) the index ρ > 1 of
the largest canonical domain Dρ to which F can be extended as a meromorphic
function with at most m poles (counting multiplicities). We denote by

Dρ∞(F ) :=

∞∪
m=0

Dρm(F )

the maximum canonical domain in which F can be continued to a meromorphic
function.

The Faber polynomial of E of degree n is defined by the formula

Φn(z) :=
1

2πi

∫
Γρ

Φn(t)

t− z
dt, z ∈ Dρ, n = 0, 1, 2, . . . .

Denote by H(E) the space of all functions holomorphic in some neighborhood of
E. The n-th Faber coefficient of F ∈ H(E) with respect to Φn is given by

[F ]n :=
1

2πi

∫
Γρ

F (t)Φ′(t)

Φn+1(t)
dt,

where 1 < ρ < ρ0(F ). Denote by N the set of all positive integers. Set N0 :=
N ∪ {0}.

The definition of Padé-Faber approximants (first introduced in [1]) is stated
below.

Definition 1.1. Let F ∈ H(E) and (n,m) ∈ N × N be fixed. Then, there exist
polynomials qEn,m, pEn,m,k, k = 0, 1, . . . ,m− 1 such that

deg(pEn,m,k) ≤ n− 1, deg(qEn,m) ≤ m, qEn,m ̸≡ 0, (1.1)

[zkqEn,mF − pEn,m,k]j = 0, j = 0, 1, 2, . . . , n. (1.2)

For each k = 0, 1, . . . ,m− 1, the rational function

RE
n,m,k :=

pEn,m,k

qEn,m

is called an (n,m, k) Padé-Faber approximant of F .
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To solve for ordered pairs (pEn,m,k, q
E
n,m), we need to find nm+m+1 unknown

coefficients in (1.1) from nm+m linear equations in (1.2). Then, RE
n,m,k always ex-

ist but they may not be unique. Moreover, since qEn,m ̸≡ 0, we normalize it to have
leading coefficient equal to 1. Note that the definition of Padé-Faber approximants
in Definition 1.1 is totally different from the definition of “classical” Padé-Faber
approximants (see, e.g. [2]). Since this new definition of Padé-Faber approximants
was recently introduced, there are only two publications [1, 3] studying this ap-
proximation. In [1], Bosuwan and López gave necessary and sufficient conditions
for the convergence with geometric rate of {qEn,m}n∈N (when m is fixed), namely,
proving the analogue of the Montessus de Ballore-Gonchar theorem for Padé-Faber
approximants on row sequences (see [1, Corollary 1.6]). Later, Bosuwan [3] further
studied the convergence of zeros of {qEn,m}n∈N (when m is fixed). These two results

show that the zeros of {qEn,m}n∈N can be used to detect the location of the poles
of the approximated function F ∈ H(E).

Next, let us introduce a concept of convergence in Hausdorff content. Let B
be a subset of the complex plane C. By U(B), we denote the class of all coverings
of B by at most a numerable set of disks. Let β > 0 and set

hβ(B) := inf


∞∑
j=1

|Uj |β : {Uj} ∈ U(B)

 ,

where |Uj | stands for the radius of the disk Uj . The quantity hβ(B) is called the
β-dimensional Hausdorff content of the set B. This set function is not a measure
but it is subadditive and monotonic. Clearly, if B is a disk, then hβ(B) = |B|β .

Definition 1.2. Let {gn}n∈N be a sequence of complex valued functions defined
on a domain D ⊂ C and g be another complex function defined on D. We say that
{gn}n∈N converges in β-dimensional Hausdorff content to the function g inside D
if for every compact subset K of D and for each ε > 0, we have

lim
n→∞

hβ{z ∈ K : |gn(z)− g(z)| > ε} = 0.

Such a convergence will be denoted by hβ-limn→∞ gn = g in D.

The objective of this paper is to investigate a convergence in Hausdorff con-
tent of the sequences of Padé-Faber approximants RE

n,mn,k
as n → ∞ when the

sequences {mn}n∈N satisfy

lim
n→∞

mn lnn

n
= 0. (1.3)

This type of sequences of indices {(n,mn)}n∈N when {mn}n∈N satisfy the limit
(1.3) was first considered by Gonchar [4] for Padé (α, β)-approximants. In the
current paper, we prove many results analogous to those in the paper by Gonchar
(see Theorem 2, Corollary 1, and Corollary 2 in [4]). As a consequence of our
main theorem in this paper, we give an alternative proof of a Montessus de Ballore
type theorem for row sequences of Padé-Faber approximants which was originally
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proved in [1]. Note that the normalization of qEn,m introduced in the next section
is different from the one in [1].

An outline of the paper is as follows. In section 2, we state the main theorem
and its corollaries. All auxiliary lemmas are in section 3. Section 4 is devoted to
the proofs of all results in section 2.

2 Main Results

An analogue of Theorem 2 in [4] is the following theorem. This theorem
constitutes our main result.

Theorem 2.1. Let ρ > 1, F ∈ H(E) be meromorphic in Dρ. Assume that

m∗ := lim inf
n→∞

mn ≥ dk (2.1)

and

lim
n→∞

mn lnn

n
= 0, (2.2)

where k is a fixed number in {0, 1, . . . ,m∗−1} and dk denotes the number of poles
of zkF in Dρ. Then, for any β > 0, each sequence {RE

n,mn,k
}n∈N converges in

β-dimensional Hausdorff content to zkF inside Dρ as n → ∞.

One of the consequences of Theorem 2.1 is a Montessus de Ballore type theorem
for Padé-Faber approximants stated below.

Corollary 2.2. Let k ∈ {0, 1, . . . ,m− 1} be fixed. Suppose that zkF ∈ H(E) has
poles of total multiplicity exactly m in Dρm(zkF ) at the (not necessarily distinct)

points λ1, λ2, . . . , λm. Then, RE
n,m,k is uniquely determined for all sufficiently large

n and the sequence {RE
n,m,k}n∈N converges uniformly to zkF inside Dρm(zkF ) \

{λ1, λ2, . . . , λm} as n → ∞. Moreover, for any compact subset K of Dρm(zkF ) \
{λ1, λ2, . . . , λm},

lim sup
n→∞

∥zkF −RE
n,m,k∥

1/n
K ≤ ∥Φ∥K

ρm(zkF )
,

where ∥ · ∥K denotes the sup-norm on K and if K ⊂ E, then ∥Φ∥K is replaced by
1.

Here and in what follows, the phrase “uniformly inside a domain” means “uni-
formly on each compact subset of the domain”.

The following corollary is an analogue of Corollary 2 in [4].

Corollary 2.3. Let k ∈ N0 be fixed and F ∈ H(E). Denote by Dρ∞(zkF ) the max-

imal canonical domain in which zkF can be continued to a meromorphic function.
Assume that

lim
n→∞

mn = ∞ and lim
n→∞

mn lnn

n
= 0.

Then, for any β > 0, each sequence {RE
n,mn,k

}n∈N converges in β-dimensional

Hausdorff content to zkF inside Dρ∞(zkF ) as n → ∞.
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3 Notation and Auxiliary Results

For each n ∈ N, let QE
n,mn

be the polynomial qEn,mn
normalized in terms of its

zeros λn,j so that

QE
n,mn

(z) :=
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)
(3.1)

and for all k = 0, 1, . . . ,mn − 1,

RE
n,mn,k =

pEn,mn,k

qEn,mn

=
PE
n,mn,k

QE
n,mn

.

Now, we discuss some upper and lower estimates on the normalized QE
n,mn

in (3.1). Let ε > 0, d ∈ N, k ∈ N0, and F ∈ H(E) be fixed. Suppose that
the poles of zkF in Dρd(zkF ) are λ1, λ2, . . . , λd′ (they are not necessarily distinct

and d′ ≤ d) and the zeros of QE
n,mn

for F are λn,1, λn,2, . . . , λn,lmn
(they are not

necessarily distinct and lmn
≤ mn). We would like to emphasize that since 0 ∈ E,

for any k ∈ N0, Dρd(zkF ) = Dρd(F ) and λ1, λ2, . . . , λd′ are exactly all the poles of

F in Dρd(F ). We cover each pole of zkF in Dρd(zkF ) with an open disk of radius

(ε/(6d))1/β and denote by Jβ
0,ε(F, d) the union of these disks. For each n ∈ N, we

cover each zero of QE
n,mn

with an open disk of radius (ε/(6mnn
2))1/β and denote

by Jβ
n,ε(F ) the union of these disks. Set for each ℓ ∈ N,

Jβ
ε (F, d; ℓ) := Jβ

0,ε(F, d)
∪( ∞∪

n=ℓ

Jβ
n,ε(F )

)
(3.2)

and

Jβ
ε (F, d) := Jβ

ε (F, d; 1).

Using the monotonicity and subadditivity of hβ , we have

hβ(J
β
ε (F, d)) ≤ hβ(J

β
0,ε(F, d)) +

∞∑
n=1

hβ(J
β
n,ε(F ))

≤ ε

6
+

∞∑
n=1

ε

6n2
= ε

(
1

6
+

π2

62

)
< ε.

Note that Jβ
ε1(F, d) ⊂ Jβ

ε2(F, d) for ε1 < ε2. For any set B ⊂ Dρd(zkF ), we put

B(ε) := B \Jβ
ε (F, d). Clearly, if {gn}n∈N converges uniformly to g on K(ε) for any

compact K ⊂ Dρd(F ) and ε > 0, then hβ-limn→∞ gn = g in Dρd(zkF ).

The normalization of QE
n,mn

provides the following useful upper and lower

bounds on the estimation of QE
n,mn

.
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Lemma 3.1. Fix k ∈ N0 and d ∈ N. Let F ∈ H(E), K ⊂ Dρd(zkF ) be a compact
set, ε > 0 be fixed, and ℓ ∈ N be fixed. Suppose that

lim inf
n→∞

mn ≥ d′,

where d′ is the total multiplicity of poles of zkF in Dρd(zkF ), and

lim
n→∞

mn lnn

n
= 0.

Then, there exist constants C1 > 0 and C2 > 0 independent of n such that for all
sufficiently large n,

∥QE
n,mn

∥K ≤ Cmn
1 , (3.3)

where ∥ · ∥K is the sup-norm on K and

min
z∈K\Jβ

ε (F,d;ℓ)
|QE

n,mn
(z)| ≥ (C2mnn

2)−2mn/β , (3.4)

where the above inequality is meaningful when K \ Jβ
ε (F, d; ℓ) is a nonempty set.

Proof of Lemma 3.1. Without loss of generality, we assume that K is a nonempty
compact subset of Dρd(zkF ). Moreover, it is easy to check that if K = {0}, the
inequalities (3.3) and (3.4) hold. Then, we can assume further that K ̸= {0} and
set M := ∥z∥K > 0. Therefore, there exists S ∈ N such that SM > 1. From the
normalization of QE

n,mn
,

∥QE
n,mn

∥K = max
z∈K

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)∣∣∣∣∣∣ ≤ (M + 1)mn

and for z ∈ K \ Jβ
ε (F, d; ℓ) and n ≥ ℓ,

|QE
n,mn

(z)| =

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

1<|λn,j |≤SM

(
1− z

λn,j

) ∏
|λn,j |>SM

(
1− z

λn,j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

1<|λn,j |≤SM

(
λn,j − z

λn,j

) ∏
|λn,j |>SM

(
1− z

λn,j

)∣∣∣∣∣∣
≥

∏
|λn,j |≤1

(
ε

6mnn2

)1/β ∏
1<|λn,j |≤SM

[(
ε

6mnn2

)1/β
1

SM

] ∏
|λn,j |>SM

(
1− 1

S

)
.

(3.5)
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Since (ε/(6mnn
2))1/β → 0 as n → ∞, it is easy to see that for n sufficiently large,(

1− 1

S

)
≥
(

ε

6mnn2

)1/β

and
1

SM
≥
(

ε

6mnn2

)1/β

.

Therefore, there exists a constant C2 > 0 such that the expression in (3.5) is
greater than (C2mnn

2)−(2mn/β). This completes the proof.

Next, the following lemma (see, e.g., [5]) concerns the formula for computing
ρ0(F ) and the domain of convergence of Faber polynomial expansions of holomor-
phic functions.

Lemma 3.2. Let F ∈ H(E). Then,

ρ0(F ) =

(
lim sup
n→∞

|[F ]n|1/n
)−1

.

Moreover, the series
∑∞

n=0[F ]nΦn converges to F uniformly inside Dρ0(F ).

As a consequence of Lemma 3.2 and Definition 1.1, if F ∈ H(E), then for any
k = 0, 1, . . . ,mn,

zkQE
n,mn

(z)F (z)− PE
n,mn,k(z) =

∞∑
ℓ=n+1

[zkQE
n,mn

F ]ℓ Φℓ(z), z ∈ Dρ0(zkF ),

(3.6)

and PE
n,mn,k

=
∑n−1

ℓ=0 [z
kQE

n,mn
F ]ℓ Φℓ are uniquely determined by QE

n,mn
.

The next lemma (see [6, p. 43] or [7, p. 583] for its proof) gives an estimate
of Faber polynomials Φn on a level curve.

Lemma 3.3. Let ρ > 1 be fixed. Then, there exists c > 0 such that

∥Φn∥Γρ ≤ cρn, n ≥ 0. (3.7)

Indeed, by the maximum modulus principle, the inequalities in (3.7) can be
replaced by the inequalities

∥Φn∥Dρ
≤ cρn, n ≥ 0, (3.8)

which are used frequently in this paper.
The following lemma is about the uniqueness of QE

n,m (and qEn,m).

Lemma 3.4. Let (n,m) ∈ N×N be fixed. Assume that for all qEn,m in Definition

1.1, deg(qEn,m) = m. Then, qEn,m is unique.

Proof of Lemma 3.4. Let (n,m) ∈ N×N be fixed. From (1.1) and (1.2) in Defini-
tion 1.1, it is easy to check that a polynomial cmzm+cm−1z

m−1+ . . .+c0 is qEn,m if
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and only if cmzm+cm−1z
m−1+. . .+c0 is monic and the constants cm, cm−1, . . . , c0

must satisfy the following equation
[zmF ]n [zm−1F ]n . . . [F ]n

[zm+1F ]n [zmF ]n . . . [zF ]n
...

... . . .
...

[z2m−1F ]n [z2m−2F ]n . . . [zm−1F ]n




cm
cm−1

...
c0

 =


0
0
...
0

 . (3.9)

For contradiction, let us suppose that there are distinct polynomials q̂ = zm+
ĉm−1z

m−1 + ĉm−2z
m−2 + . . .+ ĉ0 and q̃ = zm + c̃m−1z

m−1 + c̃m−2z
m−2 + . . .+ c̃0

satisfying (3.9). Let q̌ be the polynomial q̂ − q̃ normalized to be monic. Clearly,
deg(q̌) < m and q̌ ̸≡ 0 is a monic polynomial where all coefficients satisfying
(3.9). Therefore, q̌ is qEn,m. This contradicts with the assumption that for all qEn,m,

deg(qEn,m) = m.

The final lemma proved by Gonchar (see [4, Lemma 1]) allows us to derive
uniform convergence on compact subsets of the region under consideration from
convergence in h1-content under appropriate assumptions.

Lemma 3.5. Suppose that h1-limn→∞ gn = g in D. Then the following assertions
hold true:

(i) If the functions gn, n ∈ N, are holomorphic in D, then the sequence {gn}n∈N
converges uniformly inside D and g is holomorphic in D.

(ii) If each of the functions gn is meromorphic in D and has no more than
k < +∞ poles in this domain, then the limit function g is also meromorphic
and has no more than k poles in D.

(iii) If each function gn is meromorphic and has no more than k < +∞ poles
in D and the function g is meromorphic and has exactly k poles in D,
then all gn, n ≥ N, also have k poles in D; the poles of gn tend to the poles
λ1, λ2, . . . , λk of g (taking account of their orders) and the sequence {gn}n∈N
tends to g uniformly inside the domain D′ = D \ {λ1, λ2, . . . , λk}.

4 Proofs of main results

Proof of Theorem 2.1. Let k ∈ {0, 1, . . . ,m∗ − 1} be fixed and d be the number
of poles of zkF (counting multiplicities) in Dρ (particularly, in Dρd(zkF )). For

j = 1, 2, . . . , γ, let αj be a distinct pole of zkF in Dρd(zkF ), and τj be the order of
αj . Note that since 0 ∈ E, Dρd(zkF ) = Dρd(F ) and α1, α2, . . . , αγ are all the poles
of F in Dρd(F ) with orders τ1, τ2, . . . , τγ , respectively.

In the first step, we want to show that for each j = 1, 2, . . . , γ,

lim sup
n→∞

|(QE
n,mn

)(u)(αj)|1/n ≤ |Φ(αj)|
ρd(F )

, (4.1)
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where u = 0, 1, . . . , τj − 1. This can be done by induction. Let j ∈ {1, 2, . . . , γ} be
fixed. Define

ωd(z) :=

γ∏
j=1

(z − αj)
τj ,

where d =
∑γ

j=1 τj ,

Gℓ(z) :=
ωd(z)F (z)

(z − αj)ℓ
, and Hℓ(z) := (z − αj)

ℓGℓ(z),

where ℓ = 1, 2, . . . , τj . Note that Hℓ(αj) ̸= 0 for all ℓ = 1, 2, . . . , τj . By Definition
1.1, since deg(ωd/(z − αj)

ℓ) = d− ℓ ≤ mn − 1, it is not difficult to check that

a(ℓ)n,n := [GℓQ
E
n,mn

]n =
1

2πi

∫
Γρ1

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz = 0, (4.2)

where 1 < ρ1 < |Φ(αj)|. Define

τ (ℓ)n,n :=
1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz,

where |Φ(αj)| < ρ2 < ρd(F ).
Because G1Q

E
n,mn

Φ′/Φn+1 is meromorphic on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and
has a pole at αj of order at most 1, it follows from Cauchy’s Residue theorem to
G1Q

E
n,mn

Φ′/Φn+1 at αj that

1

2πi

∫
Γρ2

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz − 1

2πi

∫
Γρ1

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

= res
(
G1Q

E
n,mn

Φ′/Φn+1, αj

)
= lim

z→αj

(z − αj)G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)

=
H1(αj)Q

E
n,mn

(αj)Φ
′(αj)

Φn+1(αj)
. (4.3)

From (4.2) and (4.3), we have

1

2πi

∫
Γρ2

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz =

H1(αj)Q
E
n,mn

(αj)Φ
′(αj)

Φn+1(αj)
, (4.4)

and by Lemma 3.1, we know that for all ℓ = 1, 2, . . . , τj ,∣∣∣∣∣ 1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

∣∣∣∣∣ ≤ c1c
mn

ρn2
, (4.5)
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where the numbers c and c1 do not depend on n (from now on, we will denote
some constants that do not depend on n by c2, c3, c4, . . .). By (4.4) and (4.5), we
obtain

|QE
n,mn

(αj)| ≤
c2c

mn |Φ(αj)|n

ρn2
.

Letting ρ2 → ρd(F ), it is easy to check that

lim sup
n→∞

|QE
n,mn

(αj)|1/n ≤ |Φ(αj)|
ρd(F )

.

Next, we suppose that the inequality (4.1) is true for u = 0, 1, . . . , ℓ−2, where
ℓ = 2, 3, . . . , τj , and we will show that the inequality (4.1) holds for ℓ − 1. Since
GℓQ

E
n,mn

Φ′/Φn+1 is meromorphic on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and has poles at αj

of order at most ℓ, it follows from Cauchy’s Residue theorem to GℓQ
E
n,mn

Φ′/Φn+1

at αj that

τ (ℓ)n,n − a(ℓ)n,n =
1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz − 1

2πi

∫
Γρ1

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

= res
(
GℓQ

E
n,mn

Φ′/Φn+1, αj

)
=

1

(ℓ− 1)!
lim

z→αj

(
(z − αj)

ℓGℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)

)(ℓ−1)

.

Using (4.2) and the Leibniz formula, we have

τ (ℓ)n,n =
1

(ℓ− 1)!

ℓ−1∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj).

Consequently,

(QE
n,mn

)(ℓ−1)(αj) =(ℓ− 1)!τ (ℓ)n,n

(
Φn+1

HℓΦ′

)
(αj)

−
ℓ−2∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj)

(
Φn+1

HℓΦ′

)
(αj).

(4.6)

Let δ > 0 such that ρ2 := ρd(F )− δ > |Φ(αj)|. Moreover, by (4.5),

|τ (ℓ)n,n| =

∣∣∣∣∣ 1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

∣∣∣∣∣ ≤ c1c
mn

ρn2
, (4.7)

and by Cauchy’s integral formula, for all t = 0, 1, . . . , ℓ− 2,∣∣∣∣∣
(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)

∣∣∣∣∣ =
∣∣∣∣∣ (ℓ− 1− t)!

2πi

∫
|z−αj |=ε

Hℓ(z)Φ
′(z)

(z − αj)ℓ−tΦn+1(z)
dz

∣∣∣∣∣
≤ c2

(|Φ(αj)| − δ)n
, (4.8)
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where {z ∈ C : |z − αj | = ε} ⊂ {z ∈ C : |Φ(z)| > |Φ(αj)| − δ}. From (4.7) and
(4.8), the equality (4.6) implies that

lim sup
n→∞

|(QE
n,mn

)(ℓ−1)(αj)|1/n

= lim sup
n→∞

∣∣∣∣(ℓ− 1)!τ (ℓ)n,n

(
Φn+1

HℓΦ′

)
(αj)

−
ℓ−2∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj)

(
Φn+1

HℓΦ′

)
(αj)

∣∣∣∣∣
1/n

≤ max

{
|Φ(αj)|

ρ2
,

(
|Φ(αj)|
ρd(F )

)(
|Φ(αj)|

|Φ(αj)| − δ

)}
.

Letting δ → 0, we obtain the inequality

lim sup
n→∞

|(QE
n,mn

)(ℓ−1)(αj)|1/n ≤ |Φ(αj)|
ρd(F )

.

Therefore, we have the inequality (4.1) for all u = 0, 1, . . . , τj − 1.
From (3.6), we obtain

zkQE
n,mn

F − PE
n,mn,k =

∞∑
ℓ=n+1

a
(k)
ℓ,nΦℓ, (4.9)

where
a
(k)
ℓ,n := [zkQE

n,mn
F ]ℓ.

Multiplying the equation (4.9) by ωd and expanding the result in terms of Faber
polynomial expansion, we have

zkωdQ
E
n,mn

F − ωdP
E
n,mn,k =

∞∑
ℓ=n+1

a
(k)
ℓ,nωdΦℓ =

∞∑
ν=0

b(k)ν,nΦν

=

n+d∑
ν=0

b(k)ν,nΦν +

∞∑
ν=n+d+1

b(k)ν,nΦν , (4.10)

where b
(k)
ν,n :=

∑∞
ℓ=n+1 a

(k)
ℓ,n[ωdΦℓ]ν or b

(k)
ν,n := [zkωdQ

E
n,mn

F − ωdP
E
n,mn,k

]ν .
Let K be a compact subset of Dρd(zkF ) and set

σ := max{||Φ||K , 1}

(σ = 1 when K ⊂ E). Next, we will estimate
∑∞

ν=n+d+1 |b
(k)
ν,n||Φν(z)| on Dσ.

Since deg(ωdP
E
n,mn,k

) < d+ n, for all ν ≥ n+ d+ 1,

b(k)ν,n := [zkωdQ
E
n,mn

F − ωdP
E
n,mn,k]ν = [zkωdQ

E
n,mn

F ]ν
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=
1

2πi

∫
Γρ2

zkωd(z)Q
E
n,mn

(z)F (z)Φ′(z)

Φν+1(z)
dz,

where σ < ρ2 < ρd(z
kF ). From Lemma 3.1, for sufficiently large n, it is easy to

see that

|b(k)ν,n| ≤
c3c

mn

ρν2
. (4.11)

By (3.8) and (4.11), we get∥∥∥∥∥
∞∑

ν=n+d+1

|b(k)ν,n||Φν |

∥∥∥∥∥
Dσ

≤
∞∑

ν=n+d+1

(
c3c

mn

ρν2

)
(c4σ

ν) = c5c
mn

(
σ

ρ2

)n

. (4.12)

Consequently, as ρ2 → ρd(z
kF ), we have

lim sup
n→∞

wwwww
∞∑

ν=n+d+1

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ σ

ρd(zkF )
. (4.13)

Now, we find the estimate of
∑n+d

ν=0 |b
(k)
ν,n||Φν(z)| on Dσ. By Definition 1.1, we

know

a
(k)
ℓ,n :=

1

2πi

∫
Γρ1

zkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)
dz,

where 1 < ρ1 < ρ0(z
kF ), and we define

τ
(k)
ℓ,n :=

1

2πi

∫
Γρ2

zkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)
dz, (4.14)

where ρd−1(z
kF ) < ρ2 < ρd(z

kF ). Because zkQE
n,mn

FΦ′/Φℓ+1 is meromorphic
on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and has poles at α1, α2, . . . , αd of orders at most
τ1, τ2. . . . , τd, respectively, it follows from Cauchy’s Residue theorem that

τ
(k)
ℓ,n − a

(k)
ℓ,n =

γ∑
j=1

res

(
zkQE

n,mn
(z)F (z)Φ′(z)

Φℓ+1(z)
, αj

)

=

γ∑
j=1

1

(τj − 1)!
lim

z→αj

(
(z − αj)

τjzkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)

)(τj−1)

=

γ∑
j=1

1

(τj − 1)!

τj−1∑
u=0

(
τj − 1

u

)(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)(Q
E
n,mn

)(u)(αj).

(4.15)
Let δ > 0. By computations similar to (4.7) and (4.8), we have

|τ (k)ℓ,n | ≤
c6c

mn

ρℓ2
(4.16)
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and ∣∣∣∣∣
(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)

∣∣∣∣∣ ≤ c7
(|Φ(αj)| − δ)ℓ

. (4.17)

Moreover, the inequalities (4.1) imply that for all u = 0, 1, . . . , τj − 1,

|(QE
n,mn

)(u)(αj)| ≤ c8

(
|Φ(αj)|+ δ

ρd(zkF ) + δ

)n

(4.18)

(recall that Dρd(zkF ) = Dρd(F )). From (4.15), (4.16), (4.17), and (4.18), we obtain

|a(k)ℓ,n| ≤|τ (k)ℓ,n |

+

∣∣∣∣∣∣
γ∑

j=1

1

(τj − 1)!

τj−1∑
u=0

(
τj − 1

u

)(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)(Q
E
n,mn

)(u)(αj)

∣∣∣∣∣∣
≤c6c

mn

ρℓ2
+

c9
(ρd(zkF ) + δ)n

γ∑
j=1

(|Φ(αj)|+ δ)n

(|Φ(αj)| − δ)ℓ
.

Next, we estimate |[ωdΦℓ]ν |. Suppose that δ > 0 is sufficiently small so that
ρ1 − δ > 1. Then, by (3.7),

|[ωdΦℓ]ν | =

∣∣∣∣∣ 1

2πi

∫
Γρ1−δ

ωd(z)Φℓ(z)Φ
′(z)

Φν+1(z)
dz

∣∣∣∣∣ ≤ c10(ρ1 − δ)ℓ

(ρ1 − δ)ν
.

Consequently, we get

|b(k)ν,n| ≤
∞∑

ℓ=n+1

|a(k)ℓ,n||[ωdΦℓ]ν |

≤
∞∑

ℓ=n+1

c6c
mn

ρℓ2
+

c9
(ρd(zkF ) + δ)n

γ∑
j=1

(|Φ(αj)|+ δ)n

(|Φ(αj)| − δ)ℓ

(c10(ρ1 − δ)ℓ

(ρ1 − δ)ν

)

=
c11c

mn

(ρ1 − δ)ν

(
ρ1 − δ

ρ2

)n

+
c12(ρ1 − δ)n

(ρd(zkF ) + δ)n(ρ1 − δ)ν

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n

.

(4.19)

Applying (3.8) and (4.19), we have

n+d∑
ν=0

|b(k)ν,n|∥Φν∥Dσ

≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 n+d∑

ν=0

(
σ

(ρ1 − δ)

)ν
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≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 n+d∑

ν=0

σν

≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 (n+ d+ 1)σn+d.

(4.20)
This implies that

lim sup
n→∞

wwwww
n+d∑
ν=0

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ max

{
σ(ρ1 − δ)

ρ2
,

σ(ρ1 − δ)

ρd(zkF ) + δ
max

j=1,...,γ

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)}
.

Letting δ → 0, ρ1 → 1+, and ρ2 → ρd(z
kF ), we have

lim sup
n→∞

wwwww
n+d∑
ν=0

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ σ

ρd(zkF )
. (4.21)

Finally, by (3.4), (4.10), (4.13) and (4.21), we obtain for sufficiently large ℓ,

lim sup
n→∞

wwzkF −RE
n,mn,k

ww1/n

Dσ\Jβ
ε (F,d;ℓ)

≤ lim sup
n→∞

wwwww
n+d∑
ν=0

b
(k)
ν,nΦν

wdQE
n,mn

+

∞∑
ν=n+d+1

b
(k)
ν,nΦν

wdQE
n,mn

wwwww
1/n

Dσ\Jβ
ε (F,d;ℓ)

,

≤ σ

ρd(zkF )
· lim sup

n→∞

 1

min
z∈K\Jβ

ε (F,d;ℓ)
|QE

n,mn
(z)|


1/n

≤ σ

ρd(zkF )
· lim sup

n→∞
(c15mnn

2)
2mn
nβ =

σ

ρd(zkF )
, (4.22)

where c15 > 0 and the last equality follows from the limit condition (2.2). There-
fore, for any β > 0, hβ-limn→∞ RE

n,mn,k
= zkF in Dρd(zkF ). Since Dρ ⊂ Dρd(zkF ),

hβ-limn→∞ RE
n,mn,k

= zkF in Dρ.

Proof of Corollary 2.2. Let k ∈ {0, 1, . . . ,m − 1} be fixed. By the assumption of
Corollary 2.2, we have mn = m. Then, the conditions (2.1) and (2.2) in Theorem
2.1 are obtained. By Theorem 2.1, we get h1-limn→∞ RE

n,mn,k
= zkF in Dρd(zkF ).

Applying (iii) in Lemma 3.5, we get that each pole of zkF in Dρm(zkF ) attracts as

many zeros of QE
n,m as its order. Therefore, since zkF has m poles in Dρm(zkF ),

degQE
n,m = m for all sufficiently large n. Applying Lemma 3.4, QE

n,m is unique for
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all such n. From the discussion below (3.6), since PE
n,m,k is uniquely determined

by QE
n,m, RE

n,m,k is also unique for all such n.
LetK ⊂ Dρd(zkF )\{λ1, λ2, . . . , λm} be a compact set. Choose σ := max{∥Φ∥K , 1}.

Since all points λ1, λ2, . . . , λm attract all zeros of QE
n,m, for sufficiently small ϵ > 0

and large ℓ,

K ⊂ Dσ \ Jβ
ϵ (F, d : ℓ).

By the inequality (4.22), we have

lim sup
n→∞

wwzkF −RE
n,m,k

ww1/n

K
≤ lim sup

n→∞

wwzkF −RE
n,m,k

ww1/n

Dσ\Jβ
ϵ (F,d;ℓ)

≤ σ

ρd(zkF )
.

This implies that the sequence {RE
n,m,k}n∈N converges uniformly to zkF inside

Dρm(zkF ) \ {λ1, λ2, . . . , λm} as n → ∞. The proof is completed.

Proof of Corollary 2.3. LetK be a compact subset ofDρ∞(zkF ), and let ε > 0, β >
0, and k ∈ N0 be fixed. Then, since K is compact, K ⊂ Dρd(zkF ) for some d ∈ N.
Clearly, limn→∞ mn ≥ d. Applying Theorem 2.1, because hβ-limn→∞ RE

n,mn,k
=

zkF in Dρd(zkF ),

lim
n→∞

hβ{z ∈ K : |RE
n,mn,k(z)− zkF (z)| > ε} = 0.

This completes the proof.
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[4] A. A. Gonchar, On the convergence of generalized Padé approximants of
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