Thai Journal of Mathematics : 257-271 Special Issue: Annual Meeting in Mathematics 2018

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Common Fixed Point Theorems for Some Admissible Contraction Mapping in JS-Metric Spaces

Chaiporn Thangthong^{\dagger} and Phakdi Charoensawan^{$\ddagger 1$}

[†] Center of Excellence in Mathematics and Applied Mathematics Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : cthangthong@hotmail.com
[‡] Center of Excellence in Mathematics and Applied Mathematics Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : phakdi@hotmail.com

Abstract : In this work, we will to investigate some existence results for coincidence point and common fixed point theorems for some admissible contraction mappings, a generalization of Kannan and Chatterjea contraction mappings, in JS-Metric Spaces. Some examples supported our main results are also presented and the results generalize those presented in [2].

Keywords : Fixed point; Coincidence point, Admissible, Common fixed point.2000 Mathematics Subject Classification : 47H09; 47H10

1 Introduction and preliminaries

In 2012, Samet et al. [4] studied the existing results for α - ψ -contractions. His concept was given in the following definition. Suppose that $X \neq \emptyset$ and α :

Copyright 2019 by the Mathematical Association of Thailand. All rights reserved.

⁰This research was supported by Chiang Mai University

¹Corresponding author email: phakdi@hotmail.com

 $X \times X \to [0, \infty).$

Definition 1.1. [4] Let f be a self-mapping on X and $u, v \in X$. If $\alpha(fu, fv) \ge 1$ whenever $\alpha(u, v) \ge 1$, then we say that f is α -admissible.

Later, Karapinar [5] added more condition to Definition 1.1.

Definition 1.2. [5] Let f be an α -admissible self-mapping on X and $u, v, w \in X$. If $\alpha(u, w) \geq 1$ and $\alpha(w, v) \geq 1$ imply $\alpha(u, v) \geq 1$, then we say that f is triangular α -admissible.

Furthermore, another essential part in this topic is a metric space. There were a large number of literatures that worked not only on a metric space, but also on other topological spaces. Appeared in 2015, a generalization of metric spaces which includes many classes of topological spaces such as metric spaces, b-metric spaces, dislocated metric spaces, and modular spaces are introduced by Jleli and Samet [3]. These new spaces are studied among many researchers. For instance, ElKouch and Marhrani [2] extended some fixed point theorems for Kannan and Chatterjea contraction mappings to this more general setting.

To begin with, let X be a nonempty set, and let $D: X \times X \to [0, +\infty]$ be a function. For each $x \in X$, we set

$$C(D, X, x) = \{\{x_n\} \subseteq X : \lim_{n \to \infty} D(x_n, x) = 0\}$$

Definition 1.3. [3] Let X be a nonempty set. A function $D: X \times X \to [0, +\infty]$ is called a generalized metric on a set X if it satisfies the following conditions:

- (D_1) For any $x, y \in X$, D(x, y) = 0 implies x = y;
- (D_2) For any $x, y \in X$, D(x, y) = D(y, x); and
- (D_3) There is a constant C > 0 such that

$$D(x,y) \le C \limsup_{n \to \infty} D(x_n,y)$$

whenever $x, y \in X$ and $\{x_n\} \in C(D, X, x)$.

In this case, (X, D) will be called a **JS-metric space**.

Definition 1.4. [3] Suppose that (X, D) is a JS-metric space, and $\{x_n\}$ is a sequence in X. We say that the sequence $\{x_n\}$ D-converges to $x \in X$ whenever $\{x_n\} \in C(D, X, x)$. Moreover, $\{x_n\}$ is called a D-Cauchy sequence if and only if $\lim_{m,n\to\infty} D(x_n, x_m) = 0$. Finally, (X, D) is said to be D-complete if each D-Cauchy sequence in X is D-converging to some element in X.

Proposition 1.5. [3] Given a JS-metric space (X, D), a sequence $\{x_n\}$ in X, and $x, y \in X$. Then x = y whenever $\{x_n\} \in C(D, X, x) \cap C(D, X, y)$.

The purpose of this work is to present some existence results for coincidence point theorems for admissible BKS-contraction mappings in JS-Metric Spaces. Some examples supported our main results are also presented.

Common Fixed point Theorems for Some Admissible Contraction Mapping

2 Main Results

We begin this section by introducing terms and concepts employed later in this work.

259

Definition 2.1. Let (X, D) be a JS-metric space. A function $f : X \to X$ is called **continuous at a point** $x_0 \in X$, if $\{x_n\} \in C(D, X, x_0)$ implies $\{fx_n\} \in C(D, X, fx_0)$.

In addition, f is said to be **continuous** if it is continuous at each x in X.

Definition 2.2. Let (X, D) be a JS-metric space and $f, g : X \to X$ and $\alpha : X \times X \to [0, \infty)$. We say that f is triangular- (α, D) -admissible with respect to g if, for all $x, y, z \in X$, we have

- (1) $\alpha(gx, gy) \ge 1$ implies $\alpha(fx, fy) \ge 1$ and $D(gx, gy) < \infty$;
- (2) $\alpha(x,z) \ge 1$ and $\alpha(z,y) \ge 1$ imply $\alpha(x,y) \ge 1$.

Now, we introduce a generalization of contraction mappings.

Definition 2.3. Let (X, D) be a JS-metric space endowed with a directed graph G, and let $f, g: X \to X$ be given functions and let $\alpha: X \times X \to [0, \infty)$. The pair (f, g) is called a **admissible** BKC-contraction if:

- (i) f is triangular- (α, D) -admissible with respect to g; and
- (ii) There exists $\lambda \in [0, 1/2)$ such that for all $x, y \in X$ with $\alpha(gx, gy) \ge 1$, we have

$$\alpha(gx, gy)D(fx, fy) \le \lambda \max\{2D(gx, gy), D(gx, fx) + D(gy, fy), D(gx, fy) + D(gy, fx)\}.$$
(2.1)

Let (X, D) be a JS-metric space, $f, g : X \to X$ be functions and let $\alpha : X \times X \to [0, \infty)$. We denote the set of all coincidence points of mappings f and g of X by

$$C(f,g) = \{ u \in X : fu = gu \}.$$

We also define the set of all common fixed points of mappings f and g by

$$Cm(f,g) = \{ u \in X : fu = gu = u \}.$$

For any sequence $\{x_n\} \subseteq X$ and $n \in \mathbb{N} \cup \{0\}$, we denote

$$\beta(D, f, x_n) = \sup\{D(fx_{n+i}, fx_{n+j}) : i, j \in \mathbb{N})\}.$$

Finally, we set

$$A(f,g) = \{ x_0 \in X : \alpha(gx_0, fx_0) \ge 1 \text{ and } \beta(D, f, x_0) < \infty \}.$$

Next, we give a lemma for proving our main results.

Lemma 2.4. Let (X, D) be a JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be functions such that (f, g) is a admissible BKC-contraction. Then any $x, y \in C(f, g)$ satisfy the following properties.

- (i) If $\alpha(gx, gx) \ge 1$, then D(gx, gx) = 0.
- (ii) If $\alpha(gx, gy) \ge 1$, then gx = gy.

Moreover, suppose that $f(X) \subseteq g(X)$ and there exists $x_0 \in A(f,g)$. Then we obtain a sequence $\{gx_n\}$ (defined in the following proof) which is a D-Cauchy sequence in (X, D).

Proof. (i) Let $x \in C(f,g)$. Since $\alpha(gx,gx) \ge 1$ and f is triangular- (α, D) -admissible with respect to g, we have $D(gx,gx) < \infty$

$$\begin{split} D(gx,gx) &= D(fx,fx) \\ &\leq \alpha(gx,gx)D(fx,fx) \\ &\leq \lambda \max\{2D(gx,gx), D(gx,fx) + D(gy,fy), D(gx,fy) + D(gy,fx)\} \\ &\leq 2\lambda D(gx,gx). \end{split}$$

Since $2\lambda < 1$, we have D(gx, gx) = 0.

(ii) Let $x, y \in C(f, g)$ and $\alpha(gx, gy) \ge 1$. By f is triangular- (α, D) -admissible with respect to g, $\alpha(gx, gy) \ge 1$, then $D(gx, gy) < \infty$, we have

$$\begin{split} D(gx,gy) &= D(fx,fy) \\ &\leq \alpha(gx,gy) D(fx,fy) \\ &\leq \lambda \max\{2D(gx,gy), D(gx,fx) + D(gy,fy), D(gx,fy) + D(gy,fx)\}. \end{split}$$

Now, we will consider in 3 case.

Case (1); If max{2D(gx, gy), D(gx, fx) + D(gy, fy), D(gx, fy) + D(gy, fx)} = 2D(gx, gy), we have

$$D(gx, gy) \le 2\lambda D(gx, gy).$$

Since $2\lambda \in (0,1)$, thus gx = gy. Case (2); If max $\{2D(gx, gy), D(gx, fx) + D(gy, fy), D(gx, fy) + D(gy, fx)\} = D(gx, fx) + D(gy, fy)$, we have

$$D(gx, gy) \le \lambda \{ D(gx, gx) + D(gy, gy) \}$$

= 0.

This mean that gx = gy.

Case (3); If max{2D(gx, gy), D(gx, fx) + D(gy, fy), D(gx, fy) + D(gy, fx)} = D(gx, fy) + D(gy, fx), we have

$$\begin{split} D(gx,gy) &\leq \lambda \{ D(gx,fy) + D(gy,fx) \} \\ &= \lambda \{ D(gx,gy) + D(gy,gx) \} \\ &= 2\lambda D(gx,gy). \end{split}$$

Since $\lambda < 1/2$, we obtain that D(gx, gy) = 0, then gx = gy.

Now, let $x_0 \in X$ be such that $x_0 \in A(f,g)$. Then we have $\alpha(gx_0, fx_0) \geq 1$ and $\beta(D, f, x_0) < \infty$. By the assumption that $f(X) \subseteq g(X)$ and $f(x_0) \in X$, it is easy to construct a sequence $\{x_n\}$ in X for which

$$gx_n = fx_{n-1}$$

for all $n \in \mathbb{N}$. If $gx_{n_0} = gx_{n_0-1}$ for some $n_0 \in \mathbb{N}$, then x_{n_0-1} is a coincidence point of f and g. Therefore, we will only consider the case that $gx_n \neq gx_{n-1}$ is satisfied for each $n \in \mathbb{N}$.

Since $\alpha(gx_0, fx_0) = (gx_0, gx_1) \ge 1$ and f is triangular- (α, D) -admissible with respect to g, we obtain $\alpha(fx_0, fx_1) = \alpha(gx_1, gx_2) \ge 1$. Continuing this process inductively, we get that

$$\alpha(gx_n, gx_{n+1}) \ge 1 \quad \text{for each} \quad n \in \mathbb{N}.$$
(2.2)

Moreover, since f is triangular- (α, D) -admissible with respect to g, we have

 $\alpha(gx_k, gx_l) \ge 1 \quad \text{for each} \quad k, l \in \mathbb{N} \quad \text{such that} \quad k < l.$

Next, let $n \in \mathbb{N}$ with $n \geq 2$. Then, for all $i, j \in \mathbb{N}$, we have

$$D(gx_{n+i+1}, gx_{n+j+1}) = D(fx_{n+i}, fx_{n+j})$$

$$\leq \alpha(gx_{n+i}, gx_{n+j})D(fx_{n+i}, fx_{n+j})$$

$$\leq \lambda \max\{2D(gx_{n+i}, gx_{n+j}), D(gx_{n+i}, fx_{n+i}) + D(gx_{n+j}, fx_{n+j}), D(gx_{n+j}, fx_{n+i})$$

$$+ D(gx_{n+i}, fx_{n+j})\}$$

$$\leq 2\lambda\beta(D, f, x_{n-1})$$

which implies that

$$\beta(D, f, x_n) \le 2\lambda\beta(D, f, x_{n-1}).$$

Consequently, we have

$$\beta(D, f, x_n) \le (2\lambda)^n \beta(D, f, x_0)$$

and

$$D(gx_n, gx_m) = D(fx_{n-1}, fx_{m-1}) \le \beta(D, f, x_{n-2}) \le (2\lambda)^{n-2}\beta(D, f, x_0)$$

261

for all integer m such that m > n.

Since $\beta(D, f, x_0) < \infty$ and $2\lambda < 1$, we receive

$$\lim_{n,m\to\infty} D(gx_n, gx_m) = 0.$$

As a conclusion, it is proved that $\{gx_n\}$ is a D-Cauchy sequence in (X, D). \Box

We offer a theorem on the existence of coincidence points and common fixed points of admissible BKC-contractions as follows.

Theorem 2.5. Let (X, D) be a D-complete JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be functions. Suppose that:

- (a) $f(X) \subseteq g(X);$
- (b) (f,g) is a admissible BKC-contraction;
- (c) There exists $x_0 \in A(f,g)$.

Then there exists $u \in X$ such that the sequence $\{gx_n\}$ (as defined in Lemma 2.4) D-converges to $gu \in X$. Moreover if we assume further that:

- (d) f and g are continuous; and
- (e) f and g are commuting, i.e fg = gf.

Then we have $C(f,g) \neq \emptyset$. Moreover, if we get $\alpha(gx,gy) \ge 1$ for any $x, y \in C(f,g)$, then $Cm(f,g) \neq \emptyset$.

Proof. By Lemma 2.4 and the fact that (X, D) is a *D*-complete JS-metric space, there exists $u \in X$ such that

$$\lim_{n \to \infty} D(gx_n, u) = \lim_{n \to \infty} D(fx_n, u) = 0.$$

Thus,

$$\{gx_n\}, \{fx_n\} \in C(D, X, u).$$

By the G-continuity of f and the continuity of g on (X, D), we get

$$\{fgx_n\} \in C(D, X, fu) \text{ and } \{gfx_n\} \in C(D, X, gu).$$

Since f and g are commuting, we have $\{gfx_n\} \in C(D, X, fu)$. Moreover, from Proposition 1.5, we have that fu = gu. Hence, u is a coincidence point of f and g. This means that $u \in C(f, g)$.

Next, we will show the last statement. Let c = gu = fu. Since f and g are commuting, gc = gfu = fgu = fc. Thus, $c \in C(f, g)$. By the assumption, we have $\alpha(gu, gc) \ge 1$. By lemma 2.4, we can conclude that fc = gc = gu = c. Hence, $c \in Cm(f, g)$ and the proof is complete.

We give examples to illustrate Theorems 2.5.

Common Fixed point Theorems for Some Admissible Contraction Mapping

Example 2.6. Suppose that X = [0,1]. Given the generalized metrics D on X defined by

$$D(x,y) = \begin{cases} x+y, & x \neq 0 \text{ and } y \neq 0, \\ \frac{x}{2}, & y = 0, \\ \frac{y}{2}, & x = 0, \end{cases}$$

where $x, y \in X$.

We have that (X, D) is D-complete. Now, we consider $\alpha(x, y)$ given by

$$\alpha(x,y) = \begin{cases} 1 & x, y \in [0, \frac{1}{4}] \text{ with } x \neq 0 \text{ or } y = 0 \\ \\ 0 & otherwise \end{cases}$$

Given the self-mappings f and g on X defined by

$$f(x) = x^4 \quad and \quad g(x) = x^2.$$

Some tedious manipulation yields the assumptions (a), (c), (d) and (e) in Theorem 2.5. Further, notice that $x_0 = \frac{1}{2} \in X$ such that $\alpha(g_2^1, f_2^1) = \alpha(\frac{1}{4}, \frac{1}{16}) \ge 1$ and let sequence $\{x_n\} \subseteq X$ and $n \in \mathbb{N} \cup \{0\}$, we have $\beta(D, f, x_0) = \sup\{D(fx_i, fx_j) = D((x_i)^4, (x_j)^4) : i, j \in \mathbb{N})\} < \infty$, then $\frac{1}{2} \in A(f, g)$.

We would like to show that (b) (f,g) is a admissible BKC-contraction. Claim 1: f is triangular- (α, D) -admissible with respect to g.

Let $x, y, z \in X$. Assume that $\alpha(gx, gy) \ge 1$. Then, $x^2, y^2 \in [0, \frac{1}{4}]$, and $gx = x^2 \ne 0$ or $gy = y^2 = 0$. It follows that $x^4, y^4 \in [0, \frac{1}{16}]$, and $fx = x^4 \ne 0$ or $fy = x^4 = 0$. Therefore, $\alpha(fx, fv) \ge 1$ and it easy to see that $D(gx, gy) < \infty$.

Next, assume that $\alpha(x,z) \geq 1$ and $\alpha(z,y) \geq 1$. It can be observed that if z = 0, then y = 0, and if $z \neq 0$, then $x \neq 0$. That is, $x \neq 0$ or y = 0. Therefore, $\alpha(x,y) \geq 1$, this implies, f is triangular- (α, D) -admissible with respect to g.

Claim 2: (f,g) is an admissible BKC-contraction.

Given $x, y \in X$. Assume that $\alpha(gx, gy) \ge 1$, that is, $x^2, y^2 \in [0, \frac{1}{4}]$, and $gx = x^2 \neq 0$ or $gy = y^2 = 0$. Consider the following cases :

Case 1 : gy = 0. We have that

$$\begin{split} \alpha(gx,gy)D(fx,fy) &= D(x^4,0) \\ &= \frac{x^4}{2} \\ &\leq \frac{1}{4}\left(\frac{x^2}{2}\right) \\ &\leq \frac{1}{4}\left(\frac{x^2}{2} + \frac{x^4}{2}\right) \\ &= \frac{1}{4}\left(D(gx,fy) + D(gy,fx)\right) \\ &\leq \frac{1}{4}\max\{D(gx,fx) + D(gy,fy), D(gx,fy) + D(gy,fx)\}. \end{split}$$

Case 2 : $gy \neq 0$. Then, $gx \neq 0$. Consider

$$\begin{split} \alpha(gx,gy)D(fx,fy) &= D(x^4,y^4) \\ &= x^4 + y^4 \\ &\leq \frac{x^2}{4} + \frac{y^2}{4} \\ &\leq \frac{x^2}{4} + \frac{y^4}{4} + \frac{y^2}{4} + \frac{x^4}{4} \\ &\leq \frac{1}{4}[x^2 + y^4 + y^2 + x^4] \\ &\leq \frac{1}{4}\max\{D(gx,fx) + D(gy,fy), D(gx,fy) + D(gy,fx)\}. \end{split}$$

Therefore, (f,g) is an admissible BKC-contraction. Thus, f and g have a coincidence point, precisely, 0.

To state next theorem, let us introduce some terms we will use throughout our work.

Definition 2.7. Let (X, D) be a JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be given functions. Then the pair (f, g) will be called a admissible K-contraction if:

- (a) f is triangular- (α, D) -admissible with respect to g; and
- (b) There exists $\lambda \in [0, 1/2)$ such that for all $x, y \in X$ with $\alpha(gx, gy) \ge 1$, we have

$$\alpha(gx, gy)D(fx, fy) \le \lambda[D(gx, fx) + D(gy, fy)].$$
(2.4)

Definition 2.8. Let (X, D) be a JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be given functions. Then the pair (f, g) will be called a admissible C-contraction if:

- (a) f is triangular- (α, D) -admissible with respect to g; and
- (b) There exists $\lambda \in [0, 1/2)$ such that for all $x, y \in X$ with $\alpha(gx, gy) \ge 1$, we have

$$\alpha(gx, gy)D(fx, fy) \le \lambda[D(gx, fy) + D(gy, fx)].$$
(2.5)

Remark 2.9. It easy to see that if (f, g) is a admissible K-contraction or admissible C-contraction, then (f, g) is a admissible BKC-contraction.

Now, we will show an existence theorem for coincidence points of admissible K-contraction case, as follows.

Theorem 2.10. Let (X, D) be a D-complete JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be functions. Suppose that:

(a) $f(X) \subseteq g(X)$ and (g(X), D) is complete;

- (b) (f,g) is a admissible K-contraction; and
- (c) There exists $x_0 \in A(f,g)$.

Then there exists $u \in X$ such that the sequence $\{gx_n\}$ (as defined in Lemma 2.4) D-converges to $gu \in X$. Moreover if we assume further that:

- (d) $D(fu,gu) < \infty;$
- (e) for any $\{x_n\}$ in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and for all $u \in X$, if $x_n \in C(D, X, u)$, then $\alpha(x_n, u) \ge 1$ for all n; and
- (f) $C\lambda < 1$ whenever there exist C > 0 and $\lambda \in [0, 1/2)$ such that

$$D(fu, gu) \le C\lambda \limsup_{n \to \infty} [D(fx_{n-1}, fx_n) + D(gu, fu)].$$

Then we can conclude that $C(f,g) \neq \emptyset$.

Proof. By Lemma 2.4, there exists a sequence $\{gx_n\}$ which is *D*-Cauchy in (X, D). In addition, by assumption (a), (g(X), D) is a complete JS-metric space. Thus, there exists $u \in X$ satisfying

$$\lim_{n \to \infty} D(gx_n, gu) = \lim_{n \to \infty} D(fx_n, gu) = 0.$$

Moreover, by property of D, there exists $C_X > 0$ such that

$$D(fu, gu) \le C_X \limsup_{n \to \infty} D(fu, fx_n).$$

By the fact (f,g) is a admissible K-contraction and assumption (e), there is $\lambda \in [0, 1/2)$ such that

$$D(fx_n, fu) \le \alpha(gx_n, gu) D(fx_n, fu) \le \lambda [D(gx_n, fx_n) + D(gu, fu)].$$

Moreover, we obtain that

$$D(fu,gu) \le C\lambda \limsup_{n \to \infty} [D(fx_{n-1},fx_n) + D(gu,fu)] = C\lambda D(gu,fu).$$

By assumption (d) and (f), we get that D(fu, gu) = 0. This implies that $C(f, g) \neq \emptyset$.

To obtain an existence theorem for coincidence points of admissible C-contraction case, we start with the following lemma.

Lemma 2.11. [1] Suppose that λ is a real number with $0 \leq \lambda < 1$, and $\{b_n\}$ is a sequence of positives real numbers with $\lim_{n\to\infty} b_n = 0$. Then, for any sequence of positives real numbers $\{a_n\}$ such that $a_{n+1} \leq \lambda a_n + b_n$ for all $n \in \mathbb{N}$, we have $\lim_{n\to\infty} a_n = 0$.

Theorem 2.12. Let (X, D) be a D-complete JS-metric space, $\alpha : X \times X \to [0, \infty)$ and let $f, g : X \to X$ be functions. Suppose that:

- (a) $f(X) \subseteq g(X)$ and (g(X), D) is complete;
- (b) (f,g) is a admissible C-contraction; and
- (c) There exists $x_0 \in A(f,g)$.

Then there exists $u \in X$ such that the sequence $\{gx_n\}$ (as defined in Lemma 2.4) D-converges to $gu \in X$. Moreover if we assume further that:

- (d) $D(fx_0, fu) < \infty$; and
- (e) for any $\{x_n\}$ in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and for all $u \in X$, if $x_n \in C(D, X, u)$, then $\alpha(x_n, u) \ge 1$ for all n.

Then we can conclude that $C(f,g) \neq \emptyset$.

Proof. By Lemma 2.4, there exists a sequence $\{gx_n\}$ which is *D*-Cauchy in (X, D). In addition, by assumption (a), (g(X), D) is a complete JS-metric space. Thus, there exists $u \in X$ satisfying

$$\lim_{n \to \infty} D(gx_n, gu) = \lim_{n \to \infty} D(fx_n, gu) = 0.$$

By the fact (f,g) is a admissible *C*-contraction and assumption (e), we have $\alpha(gx_n, gu) \geq 1$ and there exists $\lambda \in [0, 1/2)$ such that

$$D(fx_n, fu) \le \alpha(gx_n, gu)D(fx_n, fu)$$

$$\le \lambda[D(gu, fx_n) + D(gx_n, fu)]$$

$$= \lambda[D(gu, gx_{n+1}) + D(fx_{n-1}, fu)].$$
(2.6)

By assumption (e) and the fact that f is triangular- (α, D) -admissible with respect to g, we have $D(gu, gx_{n+1}) = D(gu, fx_n) < \infty$. Continuing the process in (2.6), we have $D(fx_n, fu) < \infty$ by assumption (d). By lemma 2.11 we obtain that

$$\lim_{n \to \infty} D(fx_n, fu) = 0$$

Example 2.13. Let X = [0, 1], and let D be a generalized metric such that

In conclusion, we have gu = fu. This implies that $C(f, g) \neq \emptyset$.

$$D(x,y) = \begin{cases} x+y, & x \neq 0 \text{ and } y \neq 0, \\ \frac{x}{2}, & y = 0, \\ \frac{y}{2}, & x = 0, \end{cases}$$

Then (X, D) is D-complete.

Next, suppose that

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x \neq 0 \text{ or } y = 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

In addition, define self-mappings f and g on X by

$$f(x) = \frac{x}{x+12}$$
 and $g(x) = \frac{x}{4}$.

We will show that $C(f,g) \neq \emptyset$ by using Theorem 2.12.

First, note that $f(X) \subseteq g(X)$ and g(X) is D-complete. Moreover, we have $x_0 = 0 \in X$ such that $\alpha(g(0), f(0)) = \alpha(0, 0) \ge 1$ and $\beta(D, f, 0) < \infty$.

Moreover, since $x_0 = 0$, we have $D(fx_0, fu) = \frac{u}{2} < \infty$ for any $u \in X$.

Next, we will prove that following claims:

Claim 1: f is triangular- (α, D) -admissible with respect to g.

Let $x, y, z \in X$. Assume that $\alpha(gx, gy) \ge 1$. Then, $gx \ne 0$ or gy = 0. That is $x \ne 0$ or y = 0. Thus, $fx \ne 0$ or fy = 0. Therefore, $\alpha(fx, fy) \ge 1$, and it easy to see that $D(gx, gy) = D(\frac{x}{4}, \frac{y}{4}) < \infty$.

Next, assume that $\alpha(x,z) \geq 1$ and $\alpha(z,y) \geq 1$. It can be observed that if z = 0, then y = 0, and if $z \neq 0$, then $x \neq 0$. That is, $x \neq 0$ or y = 0. Therefore, $\alpha(x,y) \geq 1$. Hence, f is triangular- (α, D) -admissible with respect to g.

Claim 2: (f,g) is an admissible C-contraction with $\lambda = \frac{1}{2}$.

Suppose $x, y \in X$. Assume that $\alpha(gx, gy) \ge 1$. Consider the following cases: Case 1: gy = 0. Then fy = 0 and we have

$$\begin{split} \alpha(gx,gy)D(fx,fy) &= D(fx,fy) \\ &= D(\frac{x}{x+12},0) \\ &= \frac{1}{2}\left(\frac{x}{x+12}\right) \\ &= \frac{1}{3}\left(\frac{x}{2(x+12)} + \frac{x}{2(x+12)} + \frac{x}{2(x+12)}\right) \\ &\leq \frac{1}{3}\left(\frac{x}{2(8)} + \frac{x}{2(8)} + \frac{x}{2(x+12)}\right) \\ &= \lambda[D(gx,fy) + D(gy,fx)]. \end{split}$$

267

Case 2: $gy \neq 0$. Then $gx \neq 0$ and

$$\begin{split} \alpha(gx, gy) D(fx, fy) &= D(fx, fy) \\ &= D(\frac{x}{x+12}, \frac{y}{y+12}) \\ &= \frac{x}{x+12} + \frac{y}{y+12} \\ &\leq \frac{1}{3} \left(\frac{x}{4} + \frac{y}{4}\right) \\ &\leq \frac{1}{3} \left(\frac{x}{4} + \frac{x}{x+12} + \frac{y}{4} + \frac{y}{y+12}\right) \\ &= \lambda [D(gx, fy) + D(gy, fx)]. \end{split}$$

Therefore, we have Claim 2.

Finally, we have to prove that assumption (e) in Theorem 2.12. let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ and $\{x_n\} \in C(D, X, c)$ for some $c \in X$. We will show that $\alpha(x_n, c) \ge 1$. By the definition of $\alpha(x, y)$,

$$x_n \neq 0 \text{ or } x_{n+1} = 0, \text{ for each } n \in N.$$
 (2.7)

If $x_n \neq 0$ for each $n \in \mathbb{N}$, then we have $\alpha(x_n, c) \geq 1$ for each $n \in \mathbb{N}$. On the other hand, if there exists $n_0 \in N$ such that $x_{n_0} = 0$, then by (2.7), $x_k = 0$ whenever $k \geq n_0$. Now, we will show that c = 0. Suppose on the contrary that $c \neq 0$. Observe that

$$D(x_k, c) = D(0, c) = \frac{c}{2} \neq 0 \text{ for all } k \ge n_0$$

which contradicts to the fact that $\{x_n\} \in C(D, X, c)$. Hence, c = 0 and we receive that $\alpha(x_n, c) \geq 1$. By Theorem 2.12, there exists a coincidence point of f and g.

Common Fixed point Theorems for Some Admissible Contraction Mapping

3 Application

We wish to apply our finding to the existence problem of a solution to the integral equation. This is one of the crucial uses of fixed point theorems that can be found in the literatures (See [6, 7, 8, 9]).

$$x(t) = \int_0^T F(t, s, x(s))ds + b(t)$$
(3.1)

for $t \in [0, T]$, where T is a real number such that T > 0. Suppose that $X = C([0, T], \mathbb{R})$ and

$$D(x,y) = \max_{t \in [0,T]} |x(t)| + \max_{t \in [0,T]} |y(t)|$$

for any $x, y \in C([0, T], \mathbb{R})$. We have that (X, D) is a D-complete JS-metric space.

Theorem 3.1. According to (3.1), if we suppose that:

- (i) $F: [0,T] \times [0,T] \times \mathbb{R} \to \mathbb{R}$ is a continuous function;
- (ii) For any $x, y \in \mathbb{R}$, $x \leq y$ implies $F(t, s, x) \leq F(t, s, y)$ and

$$|F(t,s,x)| + |F(t,s,y)| \le \frac{1}{4T} \left(|x| + |y| \right)$$

where $s, t \in [0, T]$; and

(iii) There is $x_0 \in X$ such that $x_0(t) \ge \int_0^T F(t, s, x_0(s)) ds$ where $t \in [0, T]$.

Then, there is a solution to the integral equation (3.1).

Proof. Let us define functions f and g on X so that

$$fx(t) = \int_0^T F(t, s, x(s)) ds,$$

and gx(t) = x(t) for any $x \in X$ and $t \in [0, T]$.

Suppose that $\alpha: X \times X \to [0,\infty)$ is a function defined by

$$\alpha(x,y) = \begin{cases} 1, & x(t) \ge y(t) \text{ for any } t \in [0,T], \\ 0, & \text{otherwise.} \end{cases}$$

It easy to see that $f(X) \subseteq g(X)$, and f and g are continuous functions.

In addition, assumption (iii) induces assumption (c) of Theorem 2.5, and $u = x_0$ so $D(fx_0, fu) = 0$, which implies assumption (c) of Theorem 2.5. Moreover, assumption (e) of Theorem 2.5 is clearly satisfied.

Next, we will show that (f, g) is an admissible *BKC*-contraction for some $\lambda \in [0, 1/2)$.

269

To begin with, we will prove that f is triangular- (α, D) -admissible with respect to g. Observe that if $\alpha(gx, gy) \ge 1$, then $gx(t) \ge gy(t)$ for any $t \in [0, T]$. In other words, $x(t) \ge y(t)$ for any $t \in [0, T]$. So, by assumption (ii), we have that $F(t, s, x) \ge F(t, s, y)$. This leads to

$$fx(t) = \int_0^T F(t, s, x(s))ds$$
$$\geq \int_0^T F(t, s, y(s))ds$$
$$= fy(t).$$

Consequently, $\alpha(fx, fy) \ge 1$. Now let $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$, it easy to see that $\alpha(x, z) \ge 1$, thus f is triangular- (α, D) -admissible with respect to g.

Finally, we show the following.

Given $x(t) \ge y(t)$ for all $t \in [0, T]$, by assumption (ii), we have that for any $t \in [0, \infty)$,

$$\begin{split} \alpha(gx,gy)(|fx(t)| + |fy(t)|) &= |fx(t)| + |fy(t)| \\ &\leq \int_0^T |F(t,s,x(s))| + |F(t,s,y(s))| ds \\ &\leq \frac{1}{4T} \int_0^T (|x(s)| + |y(s)|) ds \\ &\leq \frac{1}{4} \left(\max_{t \in [0,T]} |gx(t)| + \max_{t \in [0,T]} |gy(t)| \right). \end{split}$$

This implies that (f,g) is an admissible *BKC*-contraction for $\lambda = \frac{1}{4}$.

By Theorem 2.5, there is a coincidence point of f and g. It is clear that this point is a solution to the integral equation.

Conflict of interests : The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgement(s) : This research was supported by Chiang Mai University.

References

- V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics 2nd Edition. Springer, Berlin (2007).
- [2] Y. ElKouch and E. M. Marhrani, On some fixed point theorems in generalized metric spaces, Fixed Point Theory Appl., Vol. 2017:23 (2017).
- [3] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., Vol. 2015:61 (2015).

- [4] B.Samet, C.Vetro and P.Vetro, Fixed point theorems for α - ψ -contractive mappings, Nonlinear Anal. 2(2012), 2154-2165.
- [5] E.Karapinar, α-ψ Geraghty contraction type mappings and some related fixed point results. Filomat, 28:1 (2014), 37-48.
- [6] J. Ahmad, N. Hussain, A. Azam and M. Arshad, Common fixed point results in complex valued metric space with applications to system of integral equations, J. Nonlinear Convex Anal., 16(5) (2015), 855-871.
- [7] N. Hussain, A. Azam, J. Ahmad and M. Arshad, Common fixed point results in complex valued metric spaces with application to integral equations, Filomat, 28:7 (2014), 1363-1380.
- [8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered *b*-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 725-737.
- [9] X. Wu and L. Zhao, Fixed point theorems for generalized α - ψ type contractive mappings in *b*-metric spaces and applications, J. Math. Computer Sci., 18 (2018), 49-62.

(Received 21 August 2018) (Accepted 27 December 2018)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th