Common Fixed Point Theorems for Some Admissible Contraction Mapping in JS-Metric Spaces

Chaiporn Thangthong ${ }^{\dagger}$ and Phakdi Charoensawan ${ }^{\ddagger \text { 四 }}$
${ }^{\dagger}$ Center of Excellence in Mathematics and Applied Mathematics Department of Mathematics,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : cthangthong@hotmail.com
\ddagger Center of Excellence in Mathematics and Applied Mathematics Department of Mathematics,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : phakdi@hotmail.com

Abstract

In this work, we will to investigate some existence results for coincidence point and common fixed point theorems for some admissible contraction mappings, a generalization of Kannan and Chatterjea contraction mappings, in JS-Metric Spaces. Some examples supported our main results are also presented and the results generalize those presented in [2]].

Keywords : Fixed point; Coincidence point, Admissible, Common fixed point. 2000 Mathematics Subject Classification : $47 \mathrm{H} 09 ; 47 \mathrm{H} 10$

1 Introduction and preliminaries

In 2012, Samet et al. [4] studied the existing results for $\alpha-\psi$-contractions. His concept was given in the following definition. Suppose that $X \neq \emptyset$ and α :

[^0]$X \times X \rightarrow[0, \infty)$ ．
Definition 1．1．［4］Let f be a self－mapping on X and $u, v \in X$ ．If $\alpha(f u, f v) \geq 1$ whenever $\alpha(u, v) \geq 1$ ，then we say that f is α－admissible．

Later，Karapinar $[5]$ added more condition to Definition 1．1．
Definition 1．2．［5］Let f be an α－admissible self－mapping on X and $u, v, w \in X$ ． If $\alpha(u, w) \geq 1$ and $\alpha(w, v) \geq 1$ imply $\alpha(u, v) \geq 1$ ，then we say that f is triangular α－admissible．

Furthermore，another essential part in this topic is a metric space．There were a large number of literatures that worked not only on a metric space，but also on other topological spaces．Appeared in 2015，a generalization of metric spaces which includes many classes of topological spaces such as metric spaces，b－metric spaces，dislocated metric spaces，and modular spaces are introduced by Jleli and Samet［3］．These new spaces are studied among many researchers．For instance， ElKouch and Marhrani［［8］extended some fixed point theorems for Kannan and Chatterjea contraction mappings to this more general setting．

To begin with，let X be a nonempty set，and let $D: X \times X \rightarrow[0,+\infty]$ be a function．For each $x \in X$ ，we set

$$
C(D, X, x)=\left\{\left\{x_{n}\right\} \subseteq X: \lim _{n \rightarrow \infty} D\left(x_{n}, x\right)=0\right\}
$$

Definition 1．3．［间 Let X be a nonempty set．A function $D: X \times X \rightarrow[0,+\infty]$ is called a generalized metric on a set X if it satisfies the following conditions：
（ D_{1} ）For any $x, y \in X, D(x, y)=0$ implies $x=y$ ；
（ D_{2} ）For any $x, y \in X, D(x, y)=D(y, x)$ ；and
$\left(D_{3}\right)$ There is a constant $C>0$ such that

$$
D(x, y) \leq C \limsup _{n \rightarrow \infty} D\left(x_{n}, y\right)
$$

whenever $x, y \in X$ and $\left\{x_{n}\right\} \in C(D, X, x)$ ．
In this case，(X, D) will be called a JS－metric space．
Definition 1．4．［図］Suppose that (X, D) is a JS－metric space，and $\left\{x_{n}\right\}$ is a sequence in X ．We say that the sequence $\left\{x_{n}\right\} D$－converges to $x \in X$ whenever $\left\{x_{n}\right\} \in C(D, X, x)$ ．Moreover，$\left\{x_{n}\right\}$ is called a D－Cauchy sequence if and only if $\lim _{m, n \rightarrow \infty} D\left(x_{n}, x_{m}\right)=0$ ．Finally，(X, D) is said to be D－complete if each D－Cauchy sequence in X is D－converging to some element in X ．
Proposition 1．5．［㖨］Given a JS－metric space (X, D) ，a sequence $\left\{x_{n}\right\}$ in X ，and $x, y \in X$ ．Then $x=y$ whenever $\left\{x_{n}\right\} \in C(D, X, x) \cap C(D, X, y)$ ．

The purpose of this work is to present some existence results for coincidence point theorems for admissible BKS－contraction mappings in JS－Metric Spaces． Some examples supported our main results are also presented．

2 Main Results

We begin this section by introducing terms and concepts employed later in this work.

Definition 2.1. Let (X, D) be a JS-metric space. A function $f: X \rightarrow X$ is called continuous at a point $x_{0} \in X$, if $\left\{x_{n}\right\} \in C\left(D, X, x_{0}\right)$ implies $\left\{f x_{n}\right\} \in$ $C\left(D, X, f x_{0}\right)$.

In addition, f is said to be continuous if it continuous at each x in X.
Definition 2.2. Let (X, D) be a JS-metric space and $f, g: X \rightarrow X$ and α : $X \times X \rightarrow[0, \infty)$. We say that f is triangular- (α, D)-admissible with respect to g if, for all $x, y, z \in X$, we have
(1) $\alpha(g x, g y) \geq 1$ implies $\alpha(f x, f y) \geq 1$ and $D(g x, g y)<\infty$;
(2) $\alpha(x, z) \geq 1$ and $\alpha(z, y) \geq 1$ imply $\alpha(x, y) \geq 1$.

Now, we introduce a generalization of contraction mappings.
Definition 2.3. Let (X, D) be a JS-metric space endowed with a directed graph G, and let $f, g: X \rightarrow X$ be given functions and let $\alpha: X \times X \rightarrow[0, \infty)$. The pair (f, g) is called a admissible BKC-contraction if:
(i) f is triangular- (α, D)-admissible with respect to g; and
(ii) There exists $\lambda \in[0,1 / 2)$ such that for all $x, y \in X$ with $\alpha(g x, g y) \geq 1$, we have

$$
\begin{align*}
& \alpha(g x, g y) D(f x, f y) \\
& \leq \lambda \max \{2 D(g x, g y), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\} . \tag{2.1}
\end{align*}
$$

Let (X, D) be a JS-metric space, $f, g: X \rightarrow X$ be functions and let α : $X \times X \rightarrow[0, \infty)$. We denote the set of all coincidence points of mappings f and g of X by

$$
C(f, g)=\{u \in X: f u=g u\} .
$$

We also define the set of all common fixed points of mappings f and g by

$$
C m(f, g)=\{u \in X: f u=g u=u\} .
$$

For any sequence $\left\{x_{n}\right\} \subseteq X$ and $n \in \mathbb{N} \cup\{0\}$, we denote

$$
\left.\beta\left(D, f, x_{n}\right)=\sup \left\{D\left(f x_{n+i}, f x_{n+j}\right): i, j \in \mathbb{N}\right)\right\}
$$

Finally, we set

$$
A(f, g)=\left\{x_{0} \in X: \alpha\left(g x_{0}, f x_{0}\right) \geq 1 \text { and } \beta\left(D, f, x_{0}\right)<\infty\right\} .
$$

Next, we give a lemma for proving our main results.
Lemma 2.4. Let (X, D) be a JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be functions such that (f, g) is a admissible BKC-contraction. Then any $x, y \in C(f, g)$ satisfy the following properties.
(i) If $\alpha(g x, g x) \geq 1$, then $D(g x, g x)=0$.
(ii) If $\alpha(g x, g y) \geq 1$, then $g x=g y$.

Moreover, suppose that $f(X) \subseteq g(X)$ and there exists $x_{0} \in A(f, g)$. Then we obtain a sequence $\left\{g x_{n}\right\}$ (defined in the following proof) which is a D-Cauchy sequence in (X, D).

Proof. (i) Let $x \in C(f, g)$. Since $\alpha(g x, g x) \geq 1$ and f is triangular- (α, D) admissible with respect to g, we have $D(g x, g x)<\infty$

$$
\begin{aligned}
D(g x, g x) & =D(f x, f x) \\
& \leq \alpha(g x, g x) D(f x, f x) \\
& \leq \lambda \max \{2 D(g x, g x), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\} \\
& \leq 2 \lambda D(g x, g x)
\end{aligned}
$$

Since $2 \lambda<1$, we have $D(g x, g x)=0$.
(ii) Let $x, y \in C(f, g)$ and $\alpha(g x, g y) \geq 1$. By f is triangular- (α, D)-admissible with respect to $g, \alpha(g x, g y) \geq 1$, then $D(g x, g y)<\infty$, we have

$$
\begin{aligned}
D(g x, g y) & =D(f x, f y) \\
& \leq \alpha(g x, g y) D(f x, f y) \\
& \leq \lambda \max \{2 D(g x, g y), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\} .
\end{aligned}
$$

Now, we will consider in 3 case.
Case (1); If $\max \{2 D(g x, g y), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\}=$ $2 D(g x, g y)$, we have

$$
D(g x, g y) \leq 2 \lambda D(g x, g y) .
$$

Since $2 \lambda \in(0,1)$, thus $g x=g y$.
Case (2); If $\max \{2 D(g x, g y), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\}=$ $D(g x, f x)+D(g y, f y)$, we have

$$
\begin{aligned}
D(g x, g y) & \leq \lambda\{D(g x, g x)+D(g y, g y)\} \\
& =0 .
\end{aligned}
$$

This mean that $g x=g y$.
Case (3); If $\max \{2 D(g x, g y), D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\}=$ $D(g x, f y)+D(g y, f x)$, we have

$$
\begin{aligned}
D(g x, g y) & \leq \lambda\{D(g x, f y)+D(g y, f x)\} \\
& =\lambda\{D(g x, g y)+D(g y, g x)\} \\
& =2 \lambda D(g x, g y) .
\end{aligned}
$$

Since $\lambda<1 / 2$, we obtain that $D(g x, g y)=0$, then $g x=g y$.
Now, let $x_{0} \in X$ be such that $x_{0} \in A(f, g)$. Then we have $\alpha\left(g x_{0}, f x_{0}\right) \geq 1$ and $\beta\left(D, f, x_{0}\right)<\infty$. By the assumption that $f(X) \subseteq g(X)$ and $f\left(x_{0}\right) \in X$, it is easy to construct a sequence $\left\{x_{n}\right\}$ in X for which

$$
g x_{n}=f x_{n-1}
$$

for all $n \in \mathbb{N}$. If $g x_{n_{0}}=g x_{n_{0}-1}$ for some $n_{0} \in \mathbb{N}$, then $x_{n_{0}-1}$ is a coincidence point of f and g. Therefore, we will only consider the case that $g x_{n} \neq g x_{n-1}$ is satisfied for each $n \in \mathbb{N}$.

Since $\alpha\left(g x_{0}, f x_{0}\right)=\left(g x_{0}, g x_{1}\right) \geq 1$ and f is triangular- (α, D)-admissible with respect to g, we obtain $\alpha\left(f x_{0}, f x_{1}\right)=\alpha\left(g x_{1}, g x_{2}\right) \geq 1$. Continuing this process inductively, we get that

$$
\begin{equation*}
\alpha\left(g x_{n}, g x_{n+1}\right) \geq 1 \quad \text { for each } \quad n \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

Moreover, since f is triangular- (α, D)-admissible with respect to g, we have

$$
\begin{equation*}
\alpha\left(g x_{k}, g x_{l}\right) \geq 1 \quad \text { for each } \quad k, l \in \mathbb{N} \text { such that } k<l . \tag{2.3}
\end{equation*}
$$

Next, let $n \in \mathbb{N}$ with $n \geq 2$. Then, for all $i, j \in \mathbb{N}$, we have

$$
\begin{aligned}
& D\left(g x_{n+i+1}, g x_{n+j+1}\right)=D\left(f x_{n+i}, f x_{n+j}\right) \\
& \leq \alpha\left(g x_{n+i}, g x_{n+j}\right) D\left(f x_{n+i}, f x_{n+j}\right) \\
& \leq \lambda \max \left\{2 D\left(g x_{n+i}, g x_{n+j}\right), D\left(g x_{n+i}, f x_{n+i}\right)+D\left(g x_{n+j}, f x_{n+j}\right), D\left(g x_{n+j}, f x_{n+i}\right)\right. \\
& \left.\quad+D\left(g x_{n+i}, f x_{n+j}\right)\right\} \\
& \leq 2 \lambda \beta\left(D, f, x_{n-1}\right)
\end{aligned}
$$

which implies that

$$
\beta\left(D, f, x_{n}\right) \leq 2 \lambda \beta\left(D, f, x_{n-1}\right)
$$

Consequently, we have

$$
\beta\left(D, f, x_{n}\right) \leq(2 \lambda)^{n} \beta\left(D, f, x_{0}\right)
$$

and

$$
D\left(g x_{n}, g x_{m}\right)=D\left(f x_{n-1}, f x_{m-1}\right) \leq \beta\left(D, f, x_{n-2}\right) \leq(2 \lambda)^{n-2} \beta\left(D, f, x_{0}\right)
$$

for all integer m such that $m>n$.
Since $\beta\left(D, f, x_{0}\right)<\infty$ and $2 \lambda<1$, we receive

$$
\lim _{n, m \rightarrow \infty} D\left(g x_{n}, g x_{m}\right)=0 .
$$

As a conclusion, it is proved that $\left\{g x_{n}\right\}$ is a D-Cauchy sequence in (X, D).
We offer a theorem on the existence of coincidence points and common fixed points of admissible BKC-contractions as follows.

Theorem 2.5. Let (X, D) be a D-complete JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be functions. Suppose that:
(a) $f(X) \subseteq g(X)$;
(b) (f, g) is a admissible BKC-contraction;
(c) There exists $x_{0} \in A(f, g)$.

Then there exists $u \in X$ such that the sequence $\left\{g x_{n}\right\}$ (as defined in Lemma 2.4) D-converges to $g u \in X$. Moreover if we assume further that:
(d) f and g are continuous; and
(e) f and g are commuting, i.e $f g=g f$.

Then we have $C(f, g) \neq \emptyset$. Moreover, if we get $\alpha(g x, g y) \geq 1$ for any $x, y \in C(f, g)$, then $C m(f, g) \neq \emptyset$.

Proof. By Lemma 2.4 and the fact that (X, D) is a D-complete JS-metric space, there exists $u \in X$ such that

$$
\lim _{n \rightarrow \infty} D\left(g x_{n}, u\right)=\lim _{n \rightarrow \infty} D\left(f x_{n}, u\right)=0 .
$$

Thus,

$$
\left\{g x_{n}\right\},\left\{f x_{n}\right\} \in C(D, X, u) .
$$

By the G-continuity of f and the continuity of g on (X, D), we get

$$
\left\{f g x_{n}\right\} \in C(D, X, f u) \quad \text { and } \quad\left\{g f x_{n}\right\} \in C(D, X, g u) .
$$

Since f and g are commuting, we have $\left\{g f x_{n}\right\} \in C(D, X, f u)$. Moreover, from Proposition [.5.5, we have that $f u=g u$. Hence, u is a coincidence point of f and g. This means that $u \in C(f, g)$.

Next, we will show the last statement. Let $c=g u=f u$. Since f and g are commuting, $g c=g f u=f g u=f c$. Thus, $c \in C(f, g)$. By the assumption, we have $\alpha(g u, g c) \geq 1$. By lemma [.4, we can conclude that $f c=g c=g u=c$. Hence, $c \in C m(f, g)$ and the proof is complete.

We give examples to illustrate Theorems 2.5.

Example 2.6. Suppose that $X=[0,1]$. Given the generalized metrics D on X defined by

$$
D(x, y)= \begin{cases}x+y, & x \neq 0 \text { and } y \neq 0 \\ \frac{x}{2}, & y=0 \\ \frac{y}{2}, & x=0\end{cases}
$$

where $x, y \in X$.
We have that (X, D) is D-complete. Now, we consider $\alpha(x, y)$ given by

$$
\alpha(x, y)= \begin{cases}1 & x, y \in\left[0, \frac{1}{4}\right] \text { with } x \neq 0 \text { or } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

Given the self-mappings f and g on X defined by

$$
f(x)=x^{4} \quad \text { and } \quad g(x)=x^{2}
$$

Some tedious manipulation yields the assumptions (a), (c), (d) and (e) in Theorem [.5. Further, notice that $x_{0}=\frac{1}{2} \in X$ such that $\alpha\left(g \frac{1}{2}, f \frac{1}{2}\right)=\alpha\left(\frac{1}{4}, \frac{1}{16}\right) \geq 1$ and let sequence $\left\{x_{n}\right\} \subseteq X$ and $n \in \mathbb{N} \cup\{0\}$, we have $\beta\left(D, f, x_{0}\right)=\sup \left\{D\left(f x_{i}, f x_{j}\right)=\right.$ $\left.\left.D\left(\left(x_{i}\right)^{4},\left(x_{j}\right)^{4}\right): i, j \in \mathbb{N}\right)\right\}<\infty$, then $\frac{1}{2} \in A(f, g)$.

We would like to show that (b) (f, g) is a admissible BKC-contraction.
Claim 1: f is triangular- (α, D)-admissible with respect to g.
Let $x, y, z \in X$. Assume that $\alpha(g x, g y) \geq 1$. Then, $x^{2}, y^{2} \in\left[0, \frac{1}{4}\right]$, and $g x=x^{2} \neq 0$ or $g y=y^{2}=0$. It follows that $x^{4}, y^{4} \in\left[0, \frac{1}{16}\right]$, and $f x=x^{4} \neq 0$ or $f y=x^{4}=0$. Therefore, $\alpha(f x, f v) \geq 1$ and it easy to see that $D(g x, g y)<\infty$.

Next, assume that $\alpha(x, z) \geq 1$ and $\alpha(z, y) \geq 1$. It can be observed that if $z=0$, then $y=0$, and if $z \neq 0$, then $x \neq 0$. That is, $x \neq 0$ or $y=0$. Therefore, $\alpha(x, y) \geq 1$, this implies, f is triangular- (α, D)-admissible with respect to g.

Claim 2: (f, g) is an admissible BKC-contraction.
Given $x, y \in X$. Assume that $\alpha(g x, g y) \geq 1$, that is, $x^{2}, y^{2} \in\left[0, \frac{1}{4}\right]$, and $g x=x^{2} \neq 0$ or $g y=y^{2}=0$. Consider the following cases :

Case 1:gy=0. We have that

$$
\begin{aligned}
\alpha(g x, g y) D(f x, f y) & =D\left(x^{4}, 0\right) \\
& =\frac{x^{4}}{2} \\
& \leq \frac{1}{4}\left(\frac{x^{2}}{2}\right) \\
& \leq \frac{1}{4}\left(\frac{x^{2}}{2}+\frac{x^{4}}{2}\right) \\
& =\frac{1}{4}(D(g x, f y)+D(g y, f x)) \\
& \leq \frac{1}{4} \max \{D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\}
\end{aligned}
$$

Case 2 : $g y \neq 0$. Then, $g x \neq 0$. Consider

$$
\begin{aligned}
\alpha(g x, g y) D(f x, f y) & =D\left(x^{4}, y^{4}\right) \\
& =x^{4}+y^{4} \\
& \leq \frac{x^{2}}{4}+\frac{y^{2}}{4} \\
& \leq \frac{x^{2}}{4}+\frac{y^{4}}{4}+\frac{y^{2}}{4}+\frac{x^{4}}{4} \\
& \leq \frac{1}{4}\left[x^{2}+y^{4}+y^{2}+x^{4}\right] \\
& \leq \frac{1}{4} \max \{D(g x, f x)+D(g y, f y), D(g x, f y)+D(g y, f x)\}
\end{aligned}
$$

Therefore, (f, g) is an admissible BKC-contraction.
Thus, f and g have a coincidence point, precisely, 0.
To state next theorem, let us introduce some terms we will use throughout our work.

Definition 2.7. Let (X, D) be a JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be given functions. Then the pair (f, g) will be called a admissible K-contraction if:
(a) f is triangular- (α, D)-admissible with respect to g; and
(b) There exists $\lambda \in[0,1 / 2)$ such that for all $x, y \in X$ with $\alpha(g x, g y) \geq 1$, we have

$$
\begin{equation*}
\alpha(g x, g y) D(f x, f y) \leq \lambda[D(g x, f x)+D(g y, f y)] \tag{2.4}
\end{equation*}
$$

Definition 2.8. Let (X, D) be a JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be given functions. Then the pair (f, g) will be called a admissible C-contraction if:
(a) f is triangular- (α, D)-admissible with respect to g; and
(b) There exists $\lambda \in[0,1 / 2)$ such that for all $x, y \in X$ with $\alpha(g x, g y) \geq 1$, we have

$$
\begin{equation*}
\alpha(g x, g y) D(f x, f y) \leq \lambda[D(g x, f y)+D(g y, f x)] \tag{2.5}
\end{equation*}
$$

Remark 2.9. It easy to see that if (f, g) is a admissible K-contraction or admissible C-contraction, then (f, g) is a admissible BKC-contraction.

Now, we will show an existence theorem for coincidence points of admissible K-contraction case, as follows.

Theorem 2.10. Let (X, D) be a D-complete JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be functions. Suppose that:
(a) $f(X) \subseteq g(X)$ and $(g(X), D)$ is complete;
(b) (f, g) is a admissible K-contraction; and
(c) There exists $x_{0} \in A(f, g)$.

Then there exists $u \in X$ such that the sequence $\left\{g x_{n}\right\}$ (as defined in Lemma [2.4) D-converges to $g u \in X$. Moreover if we assume further that:
(d) $D(f u, g u)<\infty$;
(e) for any $\left\{x_{n}\right\}$ in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and for all $u \in X$, if $x_{n} \in C(D, X, u)$, then $\alpha\left(x_{n}, u\right) \geq 1$ for all n; and
(f) $C \lambda<1$ whenever there exist $C>0$ and $\lambda \in[0,1 / 2)$ such that

$$
D(f u, g u) \leq C \lambda \limsup _{n \rightarrow \infty}\left[D\left(f x_{n-1}, f x_{n}\right)+D(g u, f u)\right]
$$

Then we can conclude that $C(f, g) \neq \emptyset$.
Proof. By Lemma [2.4, there exists a sequence $\left\{g x_{n}\right\}$ which is D-Cauchy in (X, D). In addition, by assumption (a), $(g(X), D)$ is a complete JS-metric space. Thus, there exists $u \in X$ satisfying

$$
\lim _{n \rightarrow \infty} D\left(g x_{n}, g u\right)=\lim _{n \rightarrow \infty} D\left(f x_{n}, g u\right)=0
$$

Moreover, by property of D, there exists $C_{X}>0$ such that

$$
D(f u, g u) \leq C_{X} \limsup _{n \rightarrow \infty} D\left(f u, f x_{n}\right)
$$

By the fact (f, g) is a admissible K-contraction and assumption (e), there is $\lambda \in$ $[0,1 / 2)$ such that

$$
D\left(f x_{n}, f u\right) \leq \alpha\left(g x_{n}, g u\right) D\left(f x_{n}, f u\right) \leq \lambda\left[D\left(g x_{n}, f x_{n}\right)+D(g u, f u)\right]
$$

Moreover, we obtain that

$$
D(f u, g u) \leq C \lambda \limsup _{n \rightarrow \infty}\left[D\left(f x_{n-1}, f x_{n}\right)+D(g u, f u)\right]=C \lambda D(g u, f u)
$$

By assumption (d) and (f), we get that $D(f u, g u)=0$. This implies that $C(f, g) \neq \emptyset$.

To obtain an existence theorem for coincidence points of admissible C-contraction case, we start with the following lemma.

Lemma 2.11. [7] Suppose that λ is a real number with $0 \leq \lambda<1$, and $\left\{b_{n}\right\}$ is a sequence of positives real numbers with $\lim _{n \rightarrow \infty} b_{n}=0$. Then, for any sequence of positives real numbers $\left\{a_{n}\right\}$ such that $a_{n+1} \leq \lambda a_{n}+b_{n}$ for all $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem 2.12. Let (X, D) be a D-complete JS-metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and let $f, g: X \rightarrow X$ be functions. Suppose that:
(a) $f(X) \subseteq g(X)$ and $(g(X), D)$ is complete;
(b) (f, g) is a admissible C-contraction; and
(c) There exists $x_{0} \in A(f, g)$.

Then there exists $u \in X$ such that the sequence $\left\{g x_{n}\right\}$ (as defined in Lemma (2.4) D-converges to $g u \in X$. Moreover if we assume further that:
(d) $D\left(f x_{0}, f u\right)<\infty$; and
(e) for any $\left\{x_{n}\right\}$ in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and for all $u \in X$, if $x_{n} \in C(D, X, u)$, then $\alpha\left(x_{n}, u\right) \geq 1$ for all n.

Then we can conclude that $C(f, g) \neq \emptyset$.
Proof. By Lemma [2.4, there exists a sequence $\left\{g x_{n}\right\}$ which is D-Cauchy in (X, D). In addition, by assumption (a), $(g(X), D)$ is a complete JS-metric space. Thus, there exists $u \in X$ satisfying

$$
\lim _{n \rightarrow \infty} D\left(g x_{n}, g u\right)=\lim _{n \rightarrow \infty} D\left(f x_{n}, g u\right)=0
$$

By the fact (f, g) is a admissible C-contraction and assumption (e), we have $\alpha\left(g x_{n}, g u\right) \geq 1$ and there exists $\lambda \in[0,1 / 2)$ such that

$$
\begin{align*}
D\left(f x_{n}, f u\right) & \leq \alpha\left(g x_{n}, g u\right) D\left(f x_{n}, f u\right) \\
& \leq \lambda\left[D\left(g u, f x_{n}\right)+D\left(g x_{n}, f u\right)\right] \\
& =\lambda\left[D\left(g u, g x_{n+1}\right)+D\left(f x_{n-1}, f u\right)\right] . \tag{2.6}
\end{align*}
$$

By assumption (e) and the fact that f is triangular- (α, D)-admissible with respect to g, we have $D\left(g u, g x_{n+1}\right)=D\left(g u, f x_{n}\right)<\infty$. Continuing the process in ([2.6), we have $D\left(f x_{n}, f u\right)<\infty$ by assumption (d). By lemma [.] we obtain that

$$
\lim _{n \rightarrow \infty} D\left(f x_{n}, f u\right)=0
$$

In conclusion, we have $g u=f u$. This implies that $C(f, g) \neq \emptyset$.
Example 2.13. Let $X=[0,1]$, and let D be a generalized metric such that

$$
D(x, y)= \begin{cases}x+y, & x \neq 0 \text { and } y \neq 0 \\ \frac{x}{2}, & y=0 \\ \frac{y}{2}, & x=0\end{cases}
$$

Then (X, D) is D-complete.

Next, suppose that

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x \neq 0 \text { or } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

In addition, define self-mappings f and g on X by

$$
f(x)=\frac{x}{x+12} \quad \text { and } \quad g(x)=\frac{x}{4} .
$$

We will show that $C(f, g) \neq \emptyset$ by using Theorem 2.19.
First, note that $f(X) \subseteq g(X)$ and $g(X)$ is D-complete. Moreover, we have $x_{0}=0 \in X$ such that $\alpha(g(0), f(0))=\alpha(0,0) \geq 1$ and $\beta(D, f, 0)<\infty$.

Moreover, since $x_{0}=0$, we have $D\left(f x_{0}, f u\right)=\frac{u}{2}<\infty$ for any $u \in X$.
Next, we will prove that following claims:
Claim 1: f is triangular- (α, D)-admissible with respect to g.
Let $x, y, z \in X$. Assume that $\alpha(g x, g y) \geq 1$. Then, $g x \neq 0$ or $g y=0$. That is $x \neq 0$ or $y=0$. Thus, $f x \neq 0$ or $f y=0$. Therefore, $\alpha(f x, f y) \geq 1$, and it easy to see that $D(g x, g y)=D\left(\frac{x}{4}, \frac{y}{4}\right)<\infty$.

Next, assume that $\alpha(x, z) \geq 1$ and $\alpha(z, y) \geq 1$. It can be observed that if $z=0$, then $y=0$, and if $z \neq 0$, then $x \neq 0$. That is, $x \neq 0$ or $y=0$. Therefore, $\alpha(x, y) \geq 1$. Hence, f is triangular- (α, D)-admissible with respect to g.

Claim 2: (f, g) is an admissible C-contraction with $\lambda=\frac{1}{3}$.
Suppose $x, y \in X$. Assume that $\alpha(g x, g y) \geq 1$. Consider the following cases: Case 1: $g y=0$. Then $f y=0$ and we have

$$
\begin{aligned}
\alpha(g x, g y) D(f x, f y) & =D(f x, f y) \\
& =D\left(\frac{x}{x+12}, 0\right) \\
& =\frac{1}{2}\left(\frac{x}{x+12}\right) \\
& =\frac{1}{3}\left(\frac{x}{2(x+12)}+\frac{x}{2(x+12)}+\frac{x}{2(x+12)}\right) \\
& \leq \frac{1}{3}\left(\frac{x}{2(8)}+\frac{x}{2(8)}+\frac{x}{2(x+12)}\right) \\
& =\lambda[D(g x, f y)+D(g y, f x)] .
\end{aligned}
$$

Case 2: $g y \neq 0$. Then $g x \neq 0$ and

$$
\begin{aligned}
\alpha(g x, g y) D(f x, f y) & =D(f x, f y) \\
& =D\left(\frac{x}{x+12}, \frac{y}{y+12}\right) \\
& =\frac{x}{x+12}+\frac{y}{y+12} \\
& \leq \frac{1}{3}\left(\frac{x}{4}+\frac{y}{4}\right) \\
& \leq \frac{1}{3}\left(\frac{x}{4}+\frac{x}{x+12}+\frac{y}{4}+\frac{y}{y+12}\right) \\
& =\lambda[D(g x, f y)+D(g y, f x)] .
\end{aligned}
$$

Therefore, we have Claim 2.
Finally, we have to prove that assumption (e) in Theorem [.19. let $\left\{x_{n}\right\}$ be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $\left\{x_{n}\right\} \in C(D, X, c)$ for some $c \in X$. We will show that $\alpha\left(x_{n}, c\right) \geq 1$. By the definition of $\alpha(x, y)$,

$$
\begin{equation*}
x_{n} \neq 0 \text { or } x_{n+1}=0, \text { for each } n \in N \tag{2.7}
\end{equation*}
$$

If $x_{n} \neq 0$ for each $n \in \mathbb{N}$, then we have $\alpha\left(x_{n}, c\right) \geq 1$ for each $n \in \mathbb{N}$. On the other hand, if there exists $n_{0} \in N$ such that $x_{n_{0}}=0$, then by (2.7), $x_{k}=0$ whenever $k \geq n_{0}$. Now, we will show that $c=0$. Suppose on the contrary that $c \neq 0$. Observe that

$$
D\left(x_{k}, c\right)=D(0, c)=\frac{c}{2} \neq 0 \quad \text { for all } k \geq n_{0}
$$

which contradicts to the fact that $\left\{x_{n}\right\} \in C(D, X, c)$. Hence, $c=0$ and we receive that $\alpha\left(x_{n}, c\right) \geq 1$. By Theorem [.19, there exists a coincidence point of f and g.

3 Application

We wish to apply our finding to the existence problem of a solution to the integral equation. This is one of the crucial uses of fixed point theorems that can be found in the literatures (See $[\underline{[}, \underline{\square}, \underline{\Delta}, \underline{\underline{~}}]$).

$$
\begin{equation*}
x(t)=\int_{0}^{T} F(t, s, x(s)) d s+b(t) \tag{3.1}
\end{equation*}
$$

for $t \in[0, T]$, where T is a real number such that $T>0$.
Suppose that $X=C([0, T], \mathbb{R})$ and

$$
D(x, y)=\max _{t \in[0, T]}|x(t)|+\max _{t \in[0, T]}|y(t)|
$$

for any $x, y \in C([0, T], \mathbb{R})$. We have that (X, D) is a D-complete JS-metric space.
Theorem 3.1. According to (3.1), if we suppose that:
(i) $F:[0, T] \times[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function;
(ii) For any $x, y \in \mathbb{R}, x \leq y$ implies $F(t, s, x) \leq F(t, s, y)$ and

$$
|F(t, s, x)|+|F(t, s, y)| \leq \frac{1}{4 T}(|x|+|y|)
$$

where $s, t \in[0, T]$; and
(iii) There is $x_{0} \in X$ such that $x_{0}(t) \geq \int_{0}^{T} F\left(t, s, x_{0}(s)\right) d s$ where $t \in[0, T]$.

Then, there is a solution to the integral equation (3.1).
Proof. Let us define functions f and g on X so that

$$
f x(t)=\int_{0}^{T} F(t, s, x(s)) d s
$$

and $g x(t)=x(t)$ for any $x \in X$ and $t \in[0, T]$.
Suppose that $\alpha: X \times X \rightarrow[0, \infty)$ is a function defined by

$$
\alpha(x, y)= \begin{cases}1, & x(t) \geq y(t) \text { for any } t \in[0, T] \\ 0, & \text { otherwise }\end{cases}
$$

It easy to see that $f(X) \subseteq g(X)$, and f and g are continuous functions.
In addition, assumption (iii) induces assumption (c) of Theorem [2.5, and $u=$ x_{0} so $D\left(f x_{0}, f u\right)=0$, which implies assumption (c) of Theorem 2.5. Moreover, assumption (e) of Theorem [2.5 is clearly satisfied.

Next, we will show that (f, g) is an admissible $B K C$-contraction for some $\lambda \in[0,1 / 2)$.

To begin with, we will prove that f is triangular- (α, D)-admissible with respect to g. Observe that if $\alpha(g x, g y) \geq 1$, then $g x(t) \geq g y(t)$ for any $t \in[0, T]$. In other words, $x(t) \geq y(t)$ for any $t \in[0, T]$. So, by assumption (ii), we have that $F(t, s, x) \geq F(t, s, y)$. This leads to

$$
\begin{aligned}
f x(t) & =\int_{0}^{T} F(t, s, x(s)) d s \\
& \geq \int_{0}^{T} F(t, s, y(s)) d s \\
& =f y(t) .
\end{aligned}
$$

Consequently, $\alpha(f x, f y) \geq 1$. Now let $\alpha(x, y) \geq 1$ and $\alpha(y, z) \geq 1$, it easy to see that $\alpha(x, z) \geq 1$, thus f is triangular- (α, D)-admissible with respect to g.

Finally, we show the following.
Given $x(t) \geq y(t)$ for all $t \in[0, T]$, by assumption (ii), we have that for any $t \in[0, \infty)$,

$$
\begin{aligned}
\alpha(g x, g y)(|f x(t)|+|f y(t)|) & =|f x(t)|+|f y(t)| \\
& \leq \int_{0}^{T}|F(t, s, x(s))|+|F(t, s, y(s))| d s \\
& \leq \frac{1}{4 T} \int_{0}^{T}(|x(s)|+|y(s)|) d s \\
& \leq \frac{1}{4}\left(\max _{t \in[0, T]}|g x(t)|+\max _{t \in[0, T]}|g y(t)|\right) .
\end{aligned}
$$

This implies that (f, g) is an admissible $B K C$-contraction for $\lambda=\frac{1}{4}$.
By Theorem [L.5, there is a coincidence point of f and g. It is clear that this point is a solution to the integral equation.

Conflict of interests : The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgement(s) : This research was supported by Chiang Mai University.

References

[1] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics 2nd Edition. Springer, Berlin (2007).
[2] Y. ElKouch and E. M. Marhrani, On some fixed point theorems in generalized metric spaces, Fixed Point Theory Appl., Vol. 2017:23 (2017).
[3] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., Vol. 2015:61 (2015).
[4] B.Samet, C.Vetro and P.Vetro, Fixed point theorems for $\alpha-\psi$-contractive mappings, Nonlinear Anal. 2(2012), 2154-2165.
[5] E.Karapinar, $\alpha-\psi$ Geraghty contraction type mappings and some related fixed point results. Filomat, 28:1 (2014), 37-48.
[6] J. Ahmad, N. Hussain, A. Azam and M. Arshad, Common fixed point results in complex valued metric space with applications to system of integral equations, J. Nonlinear Convex Anal., 16(5) (2015), 855-871.
[7] N. Hussain, A. Azam, J. Ahmad and M. Arshad, Common fixed point results in complex valued metric spaces with application to integral equations, Filomat, 28:7 (2014), 1363-1380.
[8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 725-737.
[9] X. Wu and L. Zhao, Fixed point theorems for generalized $\alpha-\psi$ type contractive mappings in b-metric spaces and applications, J. Math. Computer Sci., 18 (2018), 49-62.
(Received 21 August 2018)
(Accepted 27 December 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{0}$ This research was supported by Chiang Mai University
 ${ }^{1}$ Corresponding author email: phakdi@hotmail.com

