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1 Introduction

The sine-Gordon equation is a nonlinear hyperbolic partial equation involving
the d’Alembert operator [30] and the sine of the unknown function. The equation
was known in the nineteenth century in the course of study of various problems. The
equation grew greatly in importance in the 1970s when it was realized that it led to
solitons [18]: a self-reinforcing solitary wave package that maintains its shape while
it propagates at a constant velocity. The sine-Gordon equation appears in many
physical applications, including relativistic field theory [7], Josephson junction [15]
and mechanical transmission line [29]. Many numerical methods for finding approx-
imate solution of the sine-Gordon equation have received considerable attention in
the literature [33, 34, 4, 19]. These methods usually require a large memory stor-
age with long computational time and hence make it inefficient during computation.
Model reduction techniques can be used to avoid this problem.

Projection-based model reduction approaches are commonly used in various
applications. Ding, Lili and Kong and Qin [12] in 2017 presented two robust modal
reduction bases, namely multi-model method (MM) and modal strain energy by
first-order correction method (MSEC) to reduce the order of viscoelastic systems
with multiple damping models. MM and MSEC are used to build a projection
basis representing the complex eigensolutions of structural system. In [3], Bonotto,
Cenedese and Bettini proposed a model order reduction method via Krylov sub-
space projection for applications in the field of computational electromagnetics.
The block Arnoldi with modified Gram-Schmidt algorithm is employed to construct
the basis for Krylov subspace. Model order reduction of glucose-insulin homeosta-
sis using empirical Gramians and balanced truncation is discussed in [39]. Other
projection-based model reduction includes Arnoldi-based model order reduction
for linear systems with inhomogeneous initial conditions [35], data-driven opera-
tor inference for nonintrusive projection-based model reduction [31] and dynamic
model reduction using data-driven Loewner-framework applied to thermally mor-
phing structures [32]. For the sine-Gordon equation, Afkham and Hesthaven [25]
studied projection-based model reduction approaches to construct a reduced-order
model that preserves the symplectic symmetry of dissipative Hamiltonian systems.
The basis used in [25] is generated from a greedy algorithm. In this work, we focus
on an optimal basis in the least-squares sense computed from proper orthogonal
decomposition (POD).

POD is also known by many different names, depending on the field of applica-
tion. Principal component analysis (PCA) is probably the oldest, generally traced
back more than a century to Pearson [13]. Other equivalent methods include the
Karhunen-Loève transform [24], the Hotelling transform [17] and empirical orthogo-
nal function (EOF) analysis [42]. POD has been applied in various fields. Karaszen,
Akkoyunlu and Uzunca [20] used POD to derive a reduced-order model for the non-
linear Schrödinger equation. In fluid mechanics, POD is applied as a reduce order
method for flow around an oscillating cylinder [22] and the upper tropical Pacific
ocean [6]. In [16], a reduced-order optimal control methodology mainly based on
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POD is proposed to optimize the operation of wells in water flooding reservoir. The
authors of [8] presented a reduced-order model for wall shear stress in abdominal
aortic aneurysms by using POD. Not only is POD used for model order reduction
for differential equations, but also its concept can be extended to missing data re-
construction. In particular, The POD basis has been used for data reconstruction in
the least-square sense for an inverse material characterization [40] and aerodynamic
problems [28].

In this work, we consider a finite difference discretization of partial differential
equations in a space variable, which will become a system of nonlinear ordinary
differential equations. The system generally can be defined on a large domain
that requires many spatial grid points. When we solve this full-order discretized
system directly, the computation can lead to long simulation time and require large
storage. To overcome this difficulty, the POD technique is used to construct a
subspace spanned by a basis with much smaller dimension. Galerkin projection
is then used to project the full-order system to the low-dimensional POD system.
By using the POD-Galerkin approach for linear dynamical system, the solution is
generally obtained with less computational effort while sacrificing small amount of
accuracy compared with the solution from full-order system. However, the effective
dimension reduction of the POD-Galerkin approach is limited to the linearity of
the system. If the system has nonlinear properties, additional model reduction
technique has to be applied to overcome this problem.

In the case of nonlinear dynamical systems, several methods are used for reduc-
ing the computational complexity. Mirgolbabaei and Echekki [26] presented kernel
principal component analysis (KPCA), a nonlinear alternative to classical principal
component analysis (PCA) for combustion composition space. The authors of [23]
proposed a novel learning framework called quasi-curvature local linear projection
(QLLP). This framework first selects small landmarks from original data to ob-
tain the low-dimensional coordinates in quasi-curvature locally linear embedding
(QLLE) and then adopts extreme learning machine (ELM) to learn the explicit
mapping function from original data to low-dimensional coordinates for nonlinear
dimensionality reduction. Furthermore, an enhanced 3D data transfer method for
fluidstructure interface by isometric mapping (ISOMAP) nonlinear space dimension
reduction is discussed in [43]. In general setting of large-scaled nonlinear differen-
tial equations, discrete empirical interpolation method (DEIM) is an efficient way
to handle this problem. DEIM [9] was developed from the empirical interpolation
method (EIM), which was first introduced by Barrault, Maday, Nguyen and Patera
[1] in 2004. The DEIM procedure constructs a selected interpolation indices that
indicate an interpolation-based projection to provide a nearly optimal subspace ap-
proximation to the nonlinear term. Consequently, the complexity in evaluating the
nonlinear term becomes proportional to a small number of selected spatial indices.

This work applies the DEIM procedure with the POD technique to further
reduce the complexity of nonlinearity. The POD-DEIM approach has been used
for reducing computational complexity of nonlinear dynamical systems in various
applications. In 2017, Dehghan and Abbaszadeh [11] presented a combination of
POD-DEIM and meshless local RBF-DQ approach for the application in preventing
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of groundwater contamination. Yang and Veneziani [41] studied an efficient esti-
mation of cardiac conductivities via POD-DEIM model order reduction. In [36],
Stanko, Boyce and Yeh applied a nonlinear model reduction of unconfined ground-
water flow using POD and DEIM. In addition, [5] employed POD-DEIM approach
for efficient reduction of a dynamic 2D catalytic reactor model. The POD-DEIM
is also used for computational EMG model [27], strain-softening viscoplasticity [14]
and four dimensional variational data assimilation [37]. In this work, the POD-
DEIM technique is applied to approximate solution of the sine-Gordon equation.
As a result of this study, we will illustrate POD and POD-DEIM approximations
compared with the full-order solution in the numerical experiments.

This work is arranged as follows. In Section 2, a brief overview of the methodol-
ogy is given. In Section 3, we describe an application of the POD-DEIM approach
on the sine-Gordon equation. Section 4 demonstrates the efficiency of the POD-
DEIM approach using three numerical experiments. First, the accuracy and the
efficiency in decreasing the storage and simulation time are shown through the sine-
Gordon equation with a fixed parameter value. Next, the effect of using different
amount of snapshots from coarse discretization to generate POD basis is investi-
gated. Finally, the POD-DEIM approach is shown to accurately construct different
reduced systems for various parameter values by using only one basis set for each
POD and DEIM approximations. Section 5 provides a conclusion and discusses
important issues presented in this work.

2 Methodology

We consider a finite difference discretization of a nonlinear hyperbolic partial
differential equation in a spatial domain, which becomes a system of nonlinear
second order ordinary differential equations of the form

d2

dt2
u(t) = Au(t) + F(t,u(t)), (2.1)

with some appropriate initial conditions, where A ∈ Rn×n is a constant matrix,
F : D×Rn → Rn is a nonlinear vector-valued function, and u : D → Rn is the state
variable with D ⊂ R. The dimension n of the problem is the number of spatial
grid points used in the discretization, which generally can be very large to obtain
accurate numerical solution. As a result, it can be very expensive to solve this
system. We will apply model reduction techniques to decrease the computational
complexity.

Projection-based techniques are commonly used for constructing a reduced-
order system with much smaller dimension than that of the original system. In this
work, the Galerkin projection will be used with a low-dimensional basis to construct
a reduced-order system. In particular, let Vk = [v1,v2, . . . ,vk] ∈ Rn×k be a matrix
whose columns are vectors in the reduced basis space and {v1,v2, . . . ,vk} is a set

of orthonormal vectors, i.e., vT
i vj =

{
0 , i ̸= j
1 , i = j

for all i, j = 1, 2, . . . , k. The
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solution of the original system can be approximated by u(t) ≈ Vkũ(t), where
ũ : D → Rk. By replacing Vkũ(t) in (2.1) and applying the Galerkin projection
onto a reduced subspace span{v1,v2, . . . ,vk}, we obtain the following reduced-
order system

d2

dt2
ũ(t) = Ãũ(t) +VT

kF(t,Vkũ(t)), (2.2)

where Ã = VT
kAVk ∈ Rk×k. The choice of the reduced basis clearly affects the

accuracy of the approximation. Several techniques for constructing a set of reduced
basis can be used here. In this work, we apply the proper orthogonal decomposi-
tion(POD) for obtaining a reduced basis that is optimal in the sense that a certain
approximation error involving the snapshots is minimized. Hence, a reduced space
spanned by the POD basis frequently gives an excellent low-dimensional approxi-
mation. The POD technique is described in Section. 2.1.

2.1 Proper orthogonal decomposition (POD)

POD is a method for constructing a low-dimensional representation of a subspace
in Hilbert space. It efficiently extracts the basis elements that contain dominant
characteristics of the space. POD can be obtained from the left singular vectors
of the singular value decomposition (SVD) in Euclidean space. The POD basis in
Euclidean space can be specified formally as follows.

Consider a set of snapshots {u1,u2, . . . ,um} ⊂ Rn, where snapshots are samples
of trajectories. Suppose that U = span{u1,u2, . . . ,um} with dim U = ru. A POD
basis of dimension k < ru is a set of orthonormal vectors whose linear span is the
best approximation of the space U , i.e. it solves the following minimization problem

min
{ϕi}k

i=1

m∑
j=1

∥uj −
k∑

i=1

(uT
j ϕi)ϕi∥22, (2.3)

with constrains ϕT
i ϕj = δij =

{
0 , i ̸= j
1 , i = j

for i, j = 1, 2, . . . , k. It is well known

that the solution to (2.3) is provided by the set of left singular vectors of the
snapshot matrix U = [u1,u2, . . . ,um] ∈ Rn×m. In particular, suppose the SVD of
U is

U = VΣWT , (2.4)

where V = [v1,v2, . . . ,vru ] ∈ Rn×ru and W = [w1,w2, . . . ,wru ] ∈ Rm×ru are
orthogonal matrices and Σ = diag(σ1, σ2, . . . , σru) ∈ Rru×ru with σ1 ≥ σ2 ≥ · · · ≥
σru > 0. Note that V is called the left singular matrix of U and W is called the
right singular matrix of U. The columns of V and W are called the left singular
vectors and the right singular vectors of U, respectively. The diagonal entries σi for
all i = 1, 2, . . . , ru of Σ are knowns as the singular values of U. Then the optimal
solution of (2.3) or the POD basis is {vi}ki=1. The minimum error for approximating
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the snapshots is given by

m∑
j=1

∥uj −
k∑

i=1

(uT
j vi)vi∥22 =

ru∑
i=k+1

σ2
i . (2.5)

Thus, we employ the set {vi}ki=1 or the first k columns of V to construct a matrix
Vk, which will be used to project the original system to a low dimensional subspace
as described in (2.2). More details on POD can be found in [21].

However, the effective dimension reduction of the POD-Galerkin approach is
usually restricted to the linear term. In (2.2), computing the nonlinear term still
has complexity that depends on n, the dimension of the original full-order system.
In particular, to compute

F̂(t, ũ(t)) := VT
k︸︷︷︸

k×n

F(t,Vkũ(t))︸ ︷︷ ︸
n×1

, (2.6)

it is required to perform matrix-vector multiplication with complexity O(kn). Solv-
ing the system (2.2) is still costly since the evaluation of the nonlinear term requires
the full computation. Therefore, we employ another efficient technique to overcome
the complexity problem that occurs on the nonlinear term as discussed in Section.
2.2.

2.2 Discrete empirical interpolation method (DEIM)

DEIM [9] is an efficient approach to reduce the complexity for evaluating the non-
linear term. To illustrate this issue, we consider again the nonlinearity in (2.6)

F̂(t, ũ(t)) := VT
k︸︷︷︸

k×n

F(t,Vkũ(t))︸ ︷︷ ︸
n×1

.

Let {f1, f2, . . . , fm} ⊂ Rn be the set of the nonlinear snapshots fj = F(tj ,u(tj)) for
all j = 1, 2, . . . ,m, where u(tj) is already computed from (2.1). Suppose that F =
span{f1, f2, . . . , fm} with dim(F) = rf . We denote the nonlinear snapshot matrix
with F̄ = [f1, f2, . . . , fm] ∈ Rn×m. The SVD is then used on F̄ to find the POD
basis of rank l < rf of the nonlinear term. In particular, assume that the SVD of

F̄ is F̄ = V̄Σ̄W̄
T
, where V̄ = [v̄1, v̄2, . . . , v̄rf ] ∈ Rn×rf , W̄ = [w̄1, w̄2, . . . , w̄rf ] ∈

Rm×rf and Σ̄ = diag(σ̄1, σ̄2, . . . , σ̄rf ) ∈ Rrf×rf . Thus, the POD basis of rank l of
the nonlinear term is the first l columns of the matrix V̄, denoted by V̄l. Then
the nonlinear function F(t,Vkũ(t)) can be approximated by a subspace spanned
by the basis {v̄1, v̄2, . . . , v̄l}, which is of the form

F(t,Vkũ(t)) ≈ V̄lc(t), (2.7)

where c : D → Rl and c(t) is the corresponding coefficient vector at the time t ∈ D.
The DEIM technique is applied here to specify c(t) by selecting the l rows of (2.7).
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Let P be a matrix used in the interpolation defined as P = [e℘1
, e℘1

, . . . , e℘l
] ∈

Rn×l, where e℘i
= [0, . . . , 0, 1, 0, . . . , 0]T is the ℘i column of the identity matrix

In ∈ Rn×n for all i = 1, 2, . . . , l. By multiplying PT both sides of Eq. (2.7), the
selection of components in the nonlinear term is made as follows

PTF(t,Vkũ(t)) ≈ PT V̄l︸ ︷︷ ︸
l×l

c(t). (2.8)

Assume that PT V̄l is a nonsingular matrix. Then c(t) can be determined uniquely
as c(t) ≈ (PT V̄l)

−1PTF(t,Vkũ(t)). As a result, the final approximation of (2.7)
becomes

F(t,Vkũ(t)) ≈ V̄l(P
T V̄l)

−1PTF(t,Vkũ(t)). (2.9)

The interpolation indices ℘1, ℘2, . . . , ℘l are generated by the DEIM algorithm shown
in Algorithm 1.

Algorithm 1 DEIM

Input: l < rf , {v̄}
rf
j=1 = {v̄1, v̄2, . . . , v̄rf } ⊂ Rn

Output: P ∈ Rn×l, ℘⃗l = [℘1, ℘2, . . . , ℘l]
T ∈ Rl

1: [|ρ|, ℘1] = max{|v̄1|}
2: V̄ = [v̄1], P̄ = [e℘1 ], ℘⃗ = [℘1]
3: for j = 2 : rf do

4: c = (P̄
T
V̄)−1P̄

T
v̄j

5: r = v̄j − V̄c
6: [|ρ|, ℘j ] = max{|r|}

7: V̄← [V̄ v̄j ], P̄← [P̄ e℘j ], ℘⃗←
[
℘⃗
℘j

]
8: end for
9: P = P̄(:, 1 : l), ℘⃗l = ℘⃗(1 : l)

From Algorithm 1, the procedure constructs a set of indices inductively on the
input basis. The process starts from selecting the first interpolation index ℘1 ∈
{1, 2, . . . , n} corresponding to the first input basis v̄1 entry which has the largest
magnitude. The remaining indices ℘j for j = 2, 3, . . . , l are selected from the entry
of the residual r = v̄j − V̄c with the largest magnitude. The linear independence
of the input basis {v̄j}lj=1 guarantees that in each iteration, r is a nonzero vector

and thus ρ is also nonzero. This implies that PT V̄l is always nonsingular. Hence,
the DEIM procedure is well-defined. This also implies that the interpolation in-
dices {℘j}

rf
j=1 are nonrepeated. The output matrix P is employed to construct a

low-dimensional approximation of the nonlinear term. Then the POD technique
described in Section. 2.1 is used in conjunction with the DEIM technique to con-
struct a reduced-order system that is completely independent of the full dimension



Model Order Reduction for Sine-Gordon Equation Using POD and DEIM 229

as shown below

d2

dt2
ũ(t) = Ã︸︷︷︸

k×k

ũ(t)︸︷︷︸
k×1

+VT
k V̄l︸ ︷︷ ︸
k×l

(PT V̄l)
−1︸ ︷︷ ︸

l×l

PTF(t,Vkũ(t))︸ ︷︷ ︸
l×1

. (2.10)

An error bound between the nonlinear function, F(t,u(t)) and its DEIM ap-
proximation, FDEIM (t,u(t)) := V̄l(P

T V̄l)
−1PTF(t,u(t)) [9] was given by

∥F− FDEIM∥2 ≤ C∥(I− V̄lV̄
T
l )F∥2, (2.11)

where C = ∥(PT V̄l)
−1∥2. To increase the accuracy of the DEIM approximation, the

value of ∥(I− V̄lV̄
T
l )F∥2 should be decreased while the value of C = ∥(PT V̄l)

−1∥2
is still bounded. By increasing the number of left singular vectors in V̄l, the value

of ∥(I − V̄lV̄
T
l )F∥2 becomes smaller. However, the DEIM algorithm described

in Algorithm 1 computes the interpolation matrix P that can be prevented the
growth of the term C = ∥(PT V̄l)

−1∥2 according to [10]. Hence, the accuracy can
be improved by increasing more left singular vectors in V̄l.

In the next section, the POD-DEIM approach will be applied to the full-order
discretized system of the sine-Gordon equation.

3 An application of POD and DEIM on the sine-
Gordon equation

The sine-Gordon equation plays an important role in many mathematical physics
applications such as quantum field theory, Josephson junction and mechanical trans-
mission line. The equation is of the form

utt = uxx − sin(u), (x, t) ∈ [0, L]× [0, T ], (3.1)

with the initial conditions: u(x, 0) = f(x) and ut(x, 0) = g(x), and the boundary
conditions u(0, t) = h0(t) and u(L, t) = hL(t).

Finite difference is used to discretize this problem here. We assume that n+ 2
spatial grid points 0 = x0 < x1 < · · · < xn+1 = L are distributed uniformly
with step size ∆x = L

(n+1) . Similarly, the time domain is partitioned uniformly by

0 = t0 < t1 < · · · < tm = T with step size ∆t = T
m . Define the approximation of

u(x, t) at (xi, tj) by uij ,i.e., uij ≈ u(xi, tj). The second order central difference is
used for the spatial discretization to obtain the following matrix form of differential
equation

d2

dt2
u(t) =

1

∆x2
[Au(t) + b(t)]− sin(u(t)), (3.2)

where A ∈ Rn×n is a constant matrix from finite difference discretization,
b(tj) = bj = [u(0, tj), . . . , 0, . . . , u(L, tj)]

T ∈ Rn is a vector computed from the
boundary conditions, and uj is the approximate solution of u(tj) = [u(x1, tj), u(x2, tj),
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. . . , u(xn, tj)]
T ∈ Rn at the time tj = j∆t. Then, we applied the second order

central difference discretization with the semi-implicit method, which gives the fol-
lowing update formula:

uj+1 = B
[
λ[bj+1 − (∆x2) sin(uj)] + 2uj − uj−1

]
, (3.3)

where B = (In − λA)−1. The formula (3.3) requires to use solutions from the
previous two steps, uj and uj−1 for updating uj+1. Thus, the two initial conditions
are then used to provide u0 and u1 for the first iteration. The full-order solutions
are then computed and the computation is terminated at the time T = m∆t. The
numerical solutions are denoted by u1,u2, . . . ,um and will be called snapshots.
Let Us = [u1,u2, . . . ,um] ∈ Rn×m be the snapshot matrix. We next apply model
reduction technique described earlier to reduce the computational complexity of
this full-order discretized sine-Gordon equation.

3.1 Reduced-order modelling using POD technique

Suppose Us = VpodΣpodWpodT is the SVD of Us with rank(Us) = rank(Vpod) =

rpod. Choose the first k ∈ {1, 2, . . . , rpod} columns of Vpod, denoted by Vpod
k ∈

Rn×k as the k-dimensional POD basis of the snapshot set {u1,u2, . . . ,um}. Thus,
the solution can be approximated by the subspace spanned by the POD basis,
u(t) ≈ Vpod

k ũ(t), where ũ : [0, T ] → Rk. By substituting u(t) ≈ Vpod
k ũ(t) into

the full-order model (3.2) and applying the Galerkin projection as described in the
previous section, we obtain the following POD reduced system

d2

dt2
ũ(t) =

1

∆x2
[Ãũ(t) +Vpod

k

T
b(t)]−Vpod

k

T
sin(Vpod

k ũ(t)), (3.4)

where Ã = Vpod
k

T
AVpod

k . The corresponding update formula for the POD reduced
system can be obtained by using the second order central difference on the time
domain with semi-implicit time integration as shown below:

ũj+1 = B̃
[
λ[b̃j+1 − (∆x2)Vpod

k

T
sin(Vpod

k ũj)]︸ ︷︷ ︸
nonlinear term

+2ũj − ũj−1

]
, (3.5)

where B̃ = (In − λÃ)
−1

, b̃j = Vpod
k

T
bj with ũ0 = Vpod

k

T
u0 and ũ1 = Vpod

k

T
u1

for updating at the first iteration. To obtain the POD approximation, the reduced
variable ũj which obtained from (3.5) for each iteration is projected back to the

solution space. Therefore, the POD approximate solution is upod
j = Vpod

k ũj , for all
j = 2, 3, . . . ,m.

3.2 Complexity reduction on the nonlinear term

To apply DEIM, we first define Fn(t,u(t)) = sin(u(t)). Then we construct the
nonlinear snapshot matrix F̄

n
= [Fn(t1,u(t1)),F

n(t2,u(t2)), . . . ,F
n(tm,u(tm))] ∈



Model Order Reduction for Sine-Gordon Equation Using POD and DEIM 231

Rn×m. Note that the evaluation of the nonlinear function at each time tj = j∆t
for all j = 1, 2, . . . ,m is a by-product which is obtained during the computation
of the full-order model. As discussed in Section 2.2, we first compute the SVD

of F̄
n
. Assume F̄

n
= VdeimΣdeimWdeimT

is the SVD of F̄
n

with rank(F̄
n
) =

rank(Vdeim) = rdeim. Choose the first l ∈ {1, 2, . . . , rdeim} columns of Vdeim,
denoted by Vdeim

l ∈ Rn×l as the l-dimensional POD basis of nonlinear snapshots.
The POD basis of nonlinear snapshots is used as an input in the DEIM algorithm
for generating the interpolation matrix P ∈ Rn×l as described in Algorithm 1.
Thhe DEIM approximation of the nonlinear function is given by

Fn(t,Vpod
k ũ(t)) ≈ ΦdeimPTFn(t,Vpod

k ũ(t)), (3.6)

where Φdeim = Vdeim
l (PTVdeim

l )
−1

and the approximation of the projected non-
linear term in the POD reduced system becomes

F̂
n
(t, ũ(t)) ≈ Vpod

k

T
ΦdeimPTFn(t,Vpod

k ũ(t)). (3.7)

By substituting (3.7) for the nonlinear term of (3.4), we obtain the following POD-
DEIM reduced system:

d2

dt2
ũ(t) =

1

∆x2
[Ãũ(t) +Vpod

k

T
b(t)]−Vpod

k

T
ΦdeimPTFn(t,Vpod

k ũ(t)). (3.8)

Finally, the model of the sine-Gordon equation can be solved entirely in the reduced
dimension with no dependence on the original dimension by using the following
iterative formula

ũj+1 = B̃

[
λ[b̃j+1 − (∆x2)Vpod

k

T
ΦdeimPT sin(Vpod

k ũj)] + 2ũj − ũj−1

]
, (3.9)

with ũ0 = Vpod
k

T
u0 and ũ1 = Vpod

k

T
u1. As for the POD reduced system, the POD-

DEIM approximate solution is given by upoddeim
j = Vpod

k ũj , for all j = 2, 3, . . . ,m.
In the next section, the numerical experiments compared between POD and

POD-DEIM approximate solutions and the full-order solution are presented. These
numerical results demonstrate the efficiency of the POD and POD-DEIM approaches
through the substantial reduction in simulation time while maintaining accuracy of
the approximate solution.

4 Numerical results

In this section, the numerical results from the POD-DEIM approach are ana-
lyzed in three different ways. In Section 4.1, both POD and DEIM are shown to be
efficient in decreasing both computational memory storage and simulation time. In
Section 4.2, the accuracy in approximating the solutions when the reduced models
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are constructed with different amount of snapshots is investigated. The POD-DEIM
approach is also shown to accurately approximate the solutions that may not be
corresponding to the time instances used in the snapshots for constructing the POD
basis. In Section 4.3, the POD-DEIM approach is demonstrated to be applicable
for parametrized sine-Gordon equation with different parameter values.

4.1 Numerical test I

This section considers the full-order model with spatial domain [0, L], where L = 10
with dimension of spatial grid points n = 499 and time interval [0, T ], where T = 10
with number of time steps m = 500, which give ∆x = L

n+1 = 10
500 = 0.02 and

∆t = T
m = 10

500 = 0.02. Here, the equation (3.1) is solved subject to the initial
conditions

u(x, 0) = 0, ut(x, 0) = 4 sech(x), (4.1)

and the boundary conditions

u(0, t) = 4 arctan(sech(0)t), u(10, t) = 4 arctan(sech(10)t). (4.2)

Note that the sine-Gordon equation subjected to the initial conditions and the
boundary conditions given above has the following exact solution [2]

u(x, t) = 4 arctan(sech(x)t). (4.3)

The result from the full-order system will be compared to both POD and POD-
DEIM systems. To investigate accuracy, we first construct the solution matrix
from the solution at every time step j∆t for all j = 0, 1, . . . ,m combined with the
boundary conditions. The solution matrices of the full-order, POD and POD-DEIM
models are denoted by Ufull, Upod and Upoddeim ∈ R(n+2)×(m+1), respectively. We
define an error between the full-order solution and the POD approximate solution
as

Epod =

√√√√ m∑
j=0

∥uj − upod
j ∥22 = ∥Ufull −Upod∥F . (4.4)

In the same way, an error between the full-order solution and the POD-DEIM
approximate solution is defined as

Epoddeim =

√√√√ m∑
j=0

∥uj − upoddeim
j ∥22 = ∥Ufull −Upoddeim∥F . (4.5)

The maximum error for matrix used in this analysis | · |m : R(n+2)×(m+1) → R is
defined by

|U|m = max
i,j
|ui,j |, (4.6)

where U = [ui,j ] ∈ R(n+2)×(m+1), which returns the maximum absolute value of
elements in the matrix. Note that the first two columns at time t0 and t1 of the
solution matrices are provided from the initial conditions (4.1).
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Figure 1: [Numerical test I] Left: The exact solution (4.3) of the sine-Gordon equation which is
subjected the initial conditions (4.1). Right: The corresponding numerical solution.

The solutions uj for all j = 1, 2, . . . ,m are arranged to construct a snapshot matrix.
The SVD of snapshot matrix is then computed to determine the POD basis of
snapshots. In Figure 2, the fast decay occurs around the first 90 singular values of
500 snapshots which implies that the first 90 left singular vectors can be used to
represent the dominant characteristic of the whole set of snapshots.

Figure 2: [Numerical test I] Singular values of 500 snapshots.

Figure 3: [Numerical test I] The number of left singular vectors used as the POD basis of snapshots
is plotted against Epod defined in (4.4) for k = 1, 2, . . . , 499.

In this section, the first k = 20, 50, 60, 65, 70, 95, 100 columns of the left singular
matrix are chosen as the dimensions of different POD basis sets. The values of
k will be considered as the POD reduced dimension. Here, the POD-Galerkin
approach is applied as described in Section 3.1 for each reduced dimension. The
POD approximate solution is obtained and compared with the full-order solution
(Figure 1). The resulting solution of each POD reduced model and its corresponding
absolute error for every component compared with the full-order solution are plotted
as shown in Figure 4. Since we hardly see the difference between the full-order
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solution (Figure 1) and the POD approximate solution (Figure 4), we provide the
maximum absolute error |Ufull−Upod|m defined in (4.6) and Epod defined in (4.4)
to demonstrate the accuracy as shown in Table 1.

Figure 4: [Numerical test I] The POD approximation using different POD reduced dimensions
k = 20, 70, 90 and the corresponding absolute error for every component compared with the full-
order solution.

Figure 3 illustrates the decreasing of the error when the number of left singular
vectors increase. This implies that larger number of left singular vectors can capture
solution space more accurate. The decreasing of error reached a plateau when
k = 70. As a result, k = 70 is chosen as an appropriate reduced dimension for POD.
However, the CPU time can be further reduced by using the DEIM procedure, so
that we fixed the POD reduced dimension k = 70 for constructing the POD-DEIM
reduced-order model later.

Figure 5: [Numerical test I] All nonzero singular values of 500 nonlinear snapshots.
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For nonlinear snapshots, the decay of singular values is considered in a similar way
as described before. Since the decreasing of singular values stops at l = 100 as
shown in Figure 5, we will consider the DEIM reduced dimension when l < 100. In
particular, we choose different DEIM reduced dimensions l = 20, 40, 50, 60, 65, 75
in this analysis (See Table 1). The fixed POD reduced dimension k = 70 is used
in conjunction with these chosen DEIM reduced dimensions. The POD-DEIM
reduced-order system is constructed as described in Section 3.2. In Figure 6, the
resulting solution of POD-DEIM reduced model is shown for each reduced dimen-
sion in the same manner as for the case of POD reduced model.

Figure 6: [Numerical test I] The POD-DEIM approximation for fixed POD reduced dimension
k = 70 using different DEIM reduced dimensions l = 20, 50, 75 and the corresponding absolute
error for every component compared with the full-order solution.

From Figure 7 (bottom), since there is no difference between the error of k = 70
and k = 90, then k = 70 should be used as the POD reduced dimension. To choose
a proper DEIM reduced dimension, we consider the results in Table 1. Notice
that, for k = 70, the decreasing of the error stops after using DEIM dimension
l = 50. I.e., the POD-DEIM reduced systems with k = 70 and l ≥ 50 have the
same order of both errors defined in (4.6) and (4.5) as the POD reduced system
with k = 70. Therefore, to obtain the most accurate approximation from the POD-
DEIM approach with the minimum memory storage and CPU time, the smallest
dimensions for POD and DEIM are k = 70 and l = 50, respectively.
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Figure 7: [Numerical test I] The number of left singular vectors used as the POD basis of nonlinear
snapshots is plotted against Epoddeim defined in (4.5) for each k = 20, 50, 60, 70, 90 belong to
l = 1, 2, . . . , 499 (top) and l = 1, 2, . . . , 70 (bottom).

Scaled |Ufull −Upod|m Epod

k l CPU defined in defined in
time usage (4.6) (4.4)

full-order - - 1 - -
POD 20 - 0.0263223464 2.0497× 10−4 6.7361× 10−3

POD 50 - 0.0489276980 7.7867× 10−8 1.6956× 10−6

POD 60 - 0.0527012237 2.7650× 10−9 5.5912× 10−8

POD 65 - 0.0641294614 3.4197× 10−10 1.4452× 10−8

POD 70 - 0.0708348793 1.2223× 10−10 1.0977× 10−8

POD 90 - 0.0869485303 1.2693× 10−10 1.1793× 10−8

POD 100 - 0.0926408364 1.2515× 10−10 1.1569× 10−8

Scaled |Ufull −Upoddeim|m Epoddeim

k l CPU defined in defined in
time usage (4.6) (4.5)

full-order - - 1 - -
POD-DEIM 70 20 0.0337271805 7.7991× 10−6 8.4465× 10−4

POD-DEIM 70 40 0.0357376960 9.8190× 10−9 9.1697× 10−7

POD-DEIM 70 50 0.0373398702 5.7891× 10−10 3.8234× 10−8

POD-DEIM 70 60 0.0386180176 1.3413× 10−10 1.2279× 10−8

POD-DEIM 70 65 0.0398271947 1.2461× 10−10 1.1126× 10−8

POD-DEIM 70 75 0.0401167150 1.2329× 10−10 1.1011× 10−8

Table 1: [Numerical test I] The POD and POD-DEIM reduced-order systems are shown the
simulation time and compared its accuracy with the full-order system.

However, smaller dimensions of POD and DEIM can be used in practice for more
efficient simulation time with certain acceptable trade off in accuracy. Note that
the simulation time is averaged from 5 times computation of each case and this
manner will be applied throughout the numerical results.

4.2 Numerical test II

We employ the full-order system which is defined as in previous section. The
corresponding full-order solution is collected at the time t = j∆t for j = 1, 2, . . . ,m,
where ∆t = T

m = 10
500 = 0.02. In this section, we construct POD basis from different

amount of snapshots that are solved from the full-order system with different time-
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step sizes. Here, a smaller set of snapshots is obtained from computing the full-order
system at the time t = j∆t′ for j = 1, 2, . . . ,m′, where ∆t′ = T

m′ with m′ < m.
I.e., the snapshots are computed from the full-order system with larger time step
size than the one used in the reduced system, ∆t′ > ∆t. In this section, the POD
reduced dimension k will be variously considered. To compare the accuracy for
each case of m′, we will consider two criteria for selecting k,

(1) we will use the retained energy [6] of the snapshots set for unbiased choice of
reduced dimension, which is defined as

I(e) =

∑e
i=1 σi∑m′

i=1 σi

, (4.7)

and choose k = argmin{e : I(e) ≥ γ}, where γ ∈ [0, 1] is the ratio of infor-
mation captured by the subspace which is spanned by k-dimensional POD
basis.

(2) we will use the fixed reduced dimension for every case of m′ to maintain the
computational complexity in the comparison.

In this numerical test, we construct the POD basis from different number of snap-
shots m′ = 200, 250, 300, 400, i.e., the snapshots are taken from the numerical
solution of the full-order system with time step ∆t′ = 0.05, 0.04, 0.033, 0.025.

m′ ∆t′ CPU time usage

Full-order

200 0.05 1.0399395420
250 0.04 1.2768116360
300 0.033 1.5967292390
400 0.025 1.9375945300
500 0.02 2.3625515580

Table 2: [Numerical test II] CPU time usage of the full-order system for each number of snapshots
m′ = 200, 250, 300, 400, 500.

As shown in Table 2, it is obvious that the simulation time becomes lower when
we use larger step size ∆t′, which will give smaller number of snapshots. This
means that constructing the reduced-order model with fewer snapshots used less
computational cost and memory storage. In Figure 8, the singular values are plotted
for each case of different number of snapshots m′. We observe that the decreasing
of singular values reached a plateau when k ≥ 85 for every case as shown in Figure
8 (bottom). Therefore, the POD reduced dimension k∗ = 85 will be used later in
this numerical test for the POD-DEIM procedure. The retained energy defined in
(4.7) is computed for different number of singular value k as shown in Figure 9.
Notice that the retained energy approaches 1 very quickly when k is very small. As
a result, using small γ, e.g. γ = 0.5, 0.6, 0.8, gives almost the same k for all cases
of m′. This is equivalent to the comparison when the dimension k is fixed, which
will be investigated later in this section. Therefore, we will use γ close to 1 so that
we get different dimension k for different amount of m′.
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Figure 8: [Numerical test II] All nonzero singular values for each number of snapshot m′ =
200, 250, 300, 400.

m′ ∆t′ γ = 0.99999 γ = 0.9999999 γ = 0.9999999999

200 0.05 k = 18 k = 29 k = 43
250 0.04 k = 19 k = 31 k = 46
300 0.033 k = 19 k = 32 k = 50
400 0.025 k = 20 k = 35 k = 55

Table 3: [Numerical test II] The POD reduced dimensions corresponding to the ratio of captured
information using γ = 0.99999, 0.9999999, 0.9999999999.

Particularly, the three specific choices of γ = 0.99999, 0.9999999, 0.9999999999 are
used in this numerical test. The POD reduced dimensions are chosen corresponding
to these choices for each number of snapshots as shown in Table 3. The resulting
POD reduced-order models are used to approximate the solutions at each time
j∆t = j(0.02) for j = 2, 3, . . . , 500 and then compared with the full-order solution.
The results in Table 4 demonstrate the effect of the number of snapshots on the
accuracy of the reduced-order model. Notice that, for each γ close to 1 in Table
4, there is no significant difference in accuracy when using different m′. As γ gets
closer to 1, the errors significantly decrease for all cases of m′. Notice also that, for
a fixed values of γ, as the number of m′ increases, the dimension k slightly increases
and therefore it will have a little more numerical complexity. In the case of fixed
k = k∗ = 85, all cases of m′ have the same order of accuracy, which implies that
there is almost no effect of the number of snapshots on the approximation of the
POD reduced system.
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Figure 9: [Numerical test II] The retained energy defined in (4.7) for each number of snapshots
m′ = 200, 300, 400.

Figure 10: [Numerical test II] All nonzero singular values for each number of nonlinear snapshots
m′ = 200, 250, 300, 400.
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For nonlinear snapshots, all nonzero singular values are plotted for different number
of nonlinear snapshots m′ in Figure 10. We notice that the decreasing of singular
values stops at l = 95 for every case of m′. We therefore fixed l = l∗ = 95 for
the DEIM reduced dimension in this analysis. The retained energy for nonlinear
snapshots is computed as shown in Figure 11. The same three choices of the ratio
of information captured identify the reduced dimensions for DEIM as illustrated in
Table 5. The fixed POD reduced dimension k = k∗ = 85 is used in conjunction

Figure 11: [Numerical test II] The retained energy defined in (4.7) for each number of nonlinear
snapshots m′ = 200, 300, 400.

with these DEIM reduced dimensions. The results of the POD-DEIM reduced-
order model are demonstrated for each case in Table 6. The accuracy improvement
of the POD-DEIM approximation increasingly grows up for larger value of ratio
of information captured on nonlinear snapshots. In the case when l = l∗ = 95,
the maximum absolute error and the error in Frobenius norm become smaller than
the order O(10−9) and O(10−7), respectively for all cases of m′. That is, there is
no significant difference in accuracy of the POD-DEIM reduced systems construct
from various number of snapshots obtained from full-order systems with different
step size ∆t′. In addition, we use certain small dimensions for POD and DEIM to
further reduce the CPU time when solving the POD-DEIM approximation for all
cases ofm′. Both POD and DEIM reduced dimensions are set to be the same, which
are equal to 5, 10, 15, 20. The POD-DEIM approximation from the case of smallest
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number of snapshots m′ = 200 are demonstrated in Figure 12. As illustrated in
Table 7, when using k = 20 and l = 20, the maximum absolute error and the error
in Frobenius norm become the order O(10−4) and O(10−2), respectively for every
case of m′. These reduced-order model can give reasonable accurate approximation,
while using very low memory storage and small simulation time. As a result, in
practice, to efficiently reduce the simulation time and memory storage, it is possible
to use small dimensions of POD and DEIM (e.g. k = l = 20) with certain acceptable
trade off on accuracy.

|Ufull −Upod|m Epod

m′ ∆t′ γ = 0.99999 defined in defined in
(4.6) (4.4)

200 0.05 k = 18 7.3666× 10−4 7.0872× 10−2

250 0.04 k = 19 7.3749× 10−4 7.1085× 10−2

300 0.033 k = 19 8.3870× 10−4 9.0115× 10−2

400 0.025 k = 20 5.0956× 10−4 5.2898× 10−2

|Ufull −Upod|m Epod

m′ ∆t′ γ = 0.9999999 defined in defined in
(4.6) (4.4)

200 0.05 k = 29 2.1145× 10−4 1.2768× 10−2

250 0.04 k = 31 1.6986× 10−4 6.9289× 10−3

300 0.033 k = 32 1.1377× 10−4 4.2463× 10−3

400 0.025 k = 35 3.9855× 10−5 1.4465× 10−3

|Ufull −Upod|m Epod

m′ ∆t′ γ = 0.9999999999 defined in defined in
(4.6) (4.4)

200 0.05 k = 43 1.5398× 10−6 6.6238× 10−5

250 0.04 k = 46 1.2912× 10−6 5.1901× 10−5

300 0.033 k = 50 1.4166× 10−6 5.9415× 10−5

400 0.025 k = 55 7.3285× 10−7 2.9622× 10−5

|Ufull −Upod|m Epod

m′ ∆t′ Fixed k = k∗ defined in defined in
(4.6) (4.4)

200 0.05

k = 85

1.8069× 10−10 9.9349× 10−8

250 0.04 3.3215× 10−10 2.3069× 10−8

300 0.033 1.8854× 10−10 1.2474× 10−8

400 0.025 1.1379× 10−10 1.0195× 10−8

Table 4: [Numerical test II] Errors of approximate solutions from the POD reduced-order systems
using different POD reduced dimensions follow from Table 3 and fixed k = k∗ = 85 compared
with the full-order system.

m′ ∆t′ γ = 0.99999 γ = 0.9999999 γ = 0.9999999999

200 0.05 l = 21 l = 31 l = 46
250 0.04 l = 22 l = 34 l = 50
300 0.033 l = 23 l = 35 l = 53
400 0.025 l = 24 l = 39 l = 59

Table 5: [Numerical test II] The DEIM reduced dimensions corresponding to the ratio of captured
information using γ = 0.99999, 0.9999999, 0.9999999999.

4.3 Numerical test III

In this numerical test, we consider a parametrized sine-Gordon equation (3.1) in
the form

utt = c2uxx − p sin(u), (x, t) ∈ [0, L]× [0, T ]. (4.8)
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|Ufull −Upoddeim|m Epoddeim

m′ ∆t′ Fixed k = k∗ γ = 0.99999 defined in defined in
(4.6) (4.5)

200 0.05

k = 85

l = 21 3.8947× 10−4 1.8872× 10−2

250 0.04 l = 22 3.3339× 10−4 1.3124× 10−2

300 0.033 l = 23 6.3457× 10−5 5.5081× 10−3

400 0.025 l = 24 2.6867× 10−5 2.6684× 10−3

|Ufull −Upoddeim|m Epoddeim

m′ ∆t′ Fixed k = k∗ γ = 0.9999999 defined in defined in
(4.6) (4.5)

200 0.05

k = 85

l = 31 9.0562× 10−6 7.0288× 10−2

250 0.04 l = 34 3.5661× 10−6 3.3561× 10−4

300 0.033 l = 35 1.5482× 10−6 1.5579× 10−4

400 0.025 l = 39 5.9167× 10−7 4.8216× 10−5

|Ufull −Upoddeim|m Epoddeim

m′ ∆t′ Fixed k = k∗ γ = 0.9999999999 defined in defined in
(4.6) (4.5)

200 0.05

k = 85

l = 46 1.5001× 10−7 1.2439× 10−5

250 0.04 l = 50 6.0529× 10−8 5.8603× 10−6

300 0.033 l = 53 7.3806× 10−8 8.5310× 10−6

400 0.025 l = 59 1.4729× 10−9 1.5620× 10−6

|Ufull −Upoddeim|m Epoddeim

m′ ∆t′ Fixed k = k∗ Fixed l = l∗ defined in defined in
(4.6) (4.5)

200 0.05

k = 85 l = 95

1.8505× 10−9 1.0831× 10−7

250 0.04 3.3079× 10−10 1.9978× 10−8

300 0.033 1.8871× 10−10 2.4256× 10−8

400 0.025 1.1968× 10−10 1.3826× 10−8

Table 6: [Numerical test II] Errors of the approximate solutions from the POD-DEIM reduced-
order systems for fixed POD reduced dimension k = k∗ = 85 using different DEIM reduced
dimensions and fixed l = l∗ = 95 compared with the full-order system.

|Ufull −Upoddeim|m Epoddeim

m′ ∆t′ k l CPU time usage defined in defined in
(4.6) (4.5)

200 0.05

5 5 0.0277420770 5.2688× 10−2 6.2648
10 10 0.0512592750 1.9741× 10−2 2.1134
15 15 0.0649844400 3.2032× 10−3 2.6594× 10−1

20 20 0.0679326750 4.1554× 10−4 4.0110× 10−2

250 0.04

5 5 0.0272968550 4.9916× 10−2 6.6039
10 10 0.0594821610 1.4759× 10−2 1.5825
15 15 0.0684177780 3.1629× 10−3 3.0072× 10−1

20 20 0.0681456620 4.7816× 10−4 5.2400× 10−2

300 0.033

5 5 0.0280498630 3.6468× 10−2 4.1214
10 10 0.0595894640 1.1449× 10−2 1.1365
15 15 0.0624165550 3.4840× 10−3 3.7836× 10−1

20 20 0.0614848950 6.9379× 10−4 7.1401× 10−2

400 0.025

5 5 0.0280621210 3.4785× 10−2 3.6695
10 10 0.0546708950 4.1025× 10−3 4.3670× 10−1

15 15 0.0589778150 1.8105× 10−3 2.0304× 10 − 1
20 20 0.0643772950 5.3837× 10−4 6.1373× 10−2

Table 7: [Numerical test II] Errors of the approximate solutions from the POD-DEIM reduced-
order systems constructed from each number of snapshots m′ = 200, 250, 300, 400 compared with
the full-order system and the corresponding simulation time.
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Figure 12: [Numerical test II] The POD-DEIM approximation in the case of m′ = 200 using POD
and DEIM reduced dimensions k = l = 5, 10, 15, 20 and the corresponding absolute error for every
component compared with the full-order solution.
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It is obvious that if c2 = 1 and p = 0, the above equation (4.8) becomes a simple
hyperbolic partial differential equation. When c2 = 1 and p = 1, it is just the same
as the sine-Gordon equation (3.1). Rosales [38] in 2001 derived the sine-Gordon
equation for torsion coupled pendulums using the continuum modelling techniques

and then obtained the equation (4.8) for the continuum limit, where c =
√

K
ρL2 is

a wave propagation speed, p = ω2 =
√

K
L is the pendulum angular frequency, K is

a constant depending on axle material, L is the distance of attached mass of center
of mass and ρ is the mass density along the rod.

In this numerical test, we fix c2 = 1 and vary the value of p. Here, we con-
struct a reduced-order model using the POD basis sets from solution snapshots
and nonlinear snapshots of the full-order model with p = 1, which is the full-order
model given in (3.2). Then, these POD basis sets will be used to construct the
POD-DEIM reduced models with different parameter p. In this section, we use the
following initial conditions and the boundary conditions

u(x, 0) = 1− e−t, ut(x, 0) = 0, (4.9)

u(0, t) = 0, u(L, t) = 0, (4.10)

which are defined on spatial domain [0, L], where L = 10 with dimension of spatial
grid points n = 499 and time interval [0, T ], where T = 4 with number of time
steps m = 200, that is, ∆x = L

n+1 = 10
500 = 0.02 and ∆t = T

m = 4
200 = 0.02. The

full-order solution (3.2) is computed and used as snapshots for constructing the
POD basis as shown below.

Figure 13: [Numerical test III] The full-order solution of the full-order system (3.2).

For this analysis, we use six specific examples of parameter p, which are p =
0.1, 0.5, 0.7, 1.3, 1.5, 1.9. The full-order solutions of (4.1) corresponding to these
parameter values p = 0.1, 0.7, 1.3, 1.9 are shown in Figure 14 and Figure 15. The
resulting solution of the parametrized full-order system will be used to compare
with its corresponding reduced-order system later.
The SVD of snapshots which are obtained from (3.2) is computed. Figure 16 shows
that the first 75 left singular vectors can be represented the dominant characteristic
of the whole set of snapshots. The values k = 20, 50, 60, 70 are then chosen as the
POD reduced dimension. The resulting solution from each parametrized reduced-
order system is compared with its corresponding full-order solution. Table 8 and
Table 9 illustrate the maximum absolute error and the error in Frobenius norm.
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Figure 14: [Numerical test III] The full-order solution of the parametrized full-order system or
each parameter p = 0.1, 0.7

Figure 15: [Numerical test III] The full-order solution of the parametrized full-order system for
each parameter p = 1.3, 1.9.

Figure 16: [Numerical test III] Singular values of 200 snapshots.



246 Thai J. Math. (Special Issue, 2019)/ N. Sukuntee and S. Chaturantabut

The parametrized reduced-order system can provide accurate approximation when
we use enough number of left singular vectors as the POD basis.

|Ufull −Upod|m Epod

p k defined defined in
(4.6) (4.4)

0.1

20 1.6772× 10−3 2.1544× 10−2

50 9.9885× 10−10 1.5503× 10−8

60 1.2537× 10−10 1.6502× 10−9

70 4.3969× 10−11 5.7988× 10−10

0.5

20 1.6772× 10−3 2.0996× 10−2

50 4.7358× 10−10 9.7834× 10−9

60 6.1561× 10−11 8.1805× 10−10

70 2.0103× 10−11 2.8529× 10−10

0.7

20 1.6772× 10−3 2.0828× 10−2

50 3.0355× 10−10 8.1335× 10−9

60 3.3438× 10−11 4.6578× 10−10

70 1.0919× 10−11 1.6428× 10−10

|Ufull −Upod|m Epod

p Fixed k = k∗ defined defined in
(4.6) (4.4)

0.1
k = 75

3.9278× 10−11 4.9578× 10−10

0.5 1.9679× 10−11 2.4886× 10−10

0.7 1.0817× 10−11 1.4552× 10−10

Table 8: [Numerical test III] Errors of the approximate solutions from the parametrized POD
reduced-order systems using different POD reduced dimensions k = 20, 50, 60, 70 and fixed k =
k∗ = 75 compared with the parametrized full-order system for each parameter p = 0.1, 0.5, 0.7.

Table 8, Table 9, and Figure 17 show that the approximated solution becomes less
accurate if a parameter p is farther away from 1. This may result from the fact
that the POD basis is generated from the full-order system with p = 1.

To further reduce complexity on the nonlinear term, the POD approach with
fixed reduced dimension k = k∗ = 75 is used with the DEIM procedure.
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|Ufull −Upod|m Epod

p k defined defined in
(4.6) (4.4)

1.3

20 1.6772× 10−3 2.0584× 10−2

50 3.0346× 10−10 8.1984× 10−9

60 2.6227× 10−11 4.0344× 10−10

70 1.2059× 10−11 1.4292× 10−10

1.5

20 1.6772× 10−3 2.0570× 10−2

50 4.1014× 10−10 9.4245× 10−9

60 4.1155× 10−11 6.4479× 10−10

70 2.0227× 10−11 2.2767× 10−10

1.9

20 1.6772× 10−3 2.0561× 10−2

50 6.8939× 10−10 1.2542× 10−8

60 7.9749× 10−11 1.0841× 10−9

70 3.6191× 10−11 3.8701× 10−10

|Ufull −Upod|m Epod

p Fixed k = k∗ defined defined in
(4.6) (4.4)

1.3
k = 75

8.5359× 10−12 1.2388× 10−10

1.5 1.3180× 10−11 1.9464× 10−10

1.9 2.6785× 10−11 3.2308× 10−10

Table 9: [Numerical test III] Errors of the approximate solutions from the parametrized POD
reduced-order systems using different POD reduced dimensions k = 20, 50, 60, 70 and fixed k =
k∗ = 75 compared with the parametrized full-order system for each parameter p = 1.3, 1.5, 1.9.

Figure 17: [Numerical test III] The number of left singular vectors used as the POD basis of
snapshots is plotted against Epod defined in (4.4) for each parameter p = 0.1, 0.5, 0.7 (top) and
p = 1.3, 1.5, 1.9 (bottom) for all k = 1, 2, . . . , 20.
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Figure 18: [Numerical test III] Singular values of 200 nonlinear snapshots.

For nonlinear snapshots, the decreasing of singular values reached a plateau for all
l ≥ 90, so that l = 10, 20, 50, 70, 80 are chosen as the DEIM reduced dimension
in the numerical test shown next. In Table 10, we use small dimensions for POD

|Ufull −Upoddeim|m Epoddeim

p k l defined in defined in
(4.6) (4.5)

0.1
10 10 3.1191× 10−2 5.8325× 10−1

20 20 1.6772× 10−3 2.1547× 10−2

0.5
10 10 3.1184× 10−2 5.4698× 10−1

20 20 1.6772× 10−3 2.1004× 10−2

0.7
10 10 3.1180× 10−2 5.3615× 10−1

20 20 1.6772× 10−3 2.0837× 10−2

1.3
10 10 3.1170× 10−2 5.2474× 10−1

20 20 1.6772× 10−3 2.0594× 10−2

1.5
10 10 3.1166× 10−2 5.2609× 10−1

20 20 1.6772× 10−3 2.0570× 10−2

1.9
10 10 3.1159× 10−2 5.3405× 10−1

20 20 1.6772× 10−3 2.0575× 10−2

Table 10: [Numerical test III] Errors of the approximate solutions from the parametrized POD-
DEIM reduced-order systems using both POD and DEIM reduced dimensions k = l = 10, 20
compared with the parametrized full-order system for each parameter p = 0.1, 0.5, 0.7, 1.3, 1.5, 1.9.

and DEIM. Notice that, for each dimensions k and l, the errors are in the same
order for all cases of p. The results show that the maximum absolute error and the
error in Frobenius norm become in the order O(10−3) and O(10−2), respectively
when using both POD and DEIM reduced dimension equal to 20. Similarly, Table
11 demonstrates the accuracy of the POD-DEIM reduced system with a fixed di-
mension of POD k = k∗ = 75 (from the plot of singular values in Figure 15) with
different DEIM dimensions l = 20, 50, 70, 80. As expected, the errors given in Table
11 is smaller than the ones given in Table 10, since the dimensions for both POD
and DEIM are larger.
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|Ufull −Upoddeim|m Epoddeim

p Fixed k = k∗ l defined in defined in
(4.6) (4.5)

0.1 k = 75

20 3.7245× 10−7 2.1164× 10−5

50 6.7328× 10−10 6.8051× 10−9

70 1.3239× 10−10 1.5352× 10−9

80 6.9482× 10−11 8.5743× 10−10

0.5 k = 75

20 1.8359× 10−6 1.0305× 10−4

50 1.8565× 10−9 1.6664× 10−8

70 2.8564× 10−10 3.4155× 10−9

80 1.3916× 10−10 1.6287× 10−9

0.7 k = 75

20 2.5451× 10−6 1.4245× 10−4

50 1.5334× 10−9 1.3196× 10−8

70 2.1592× 10−10 2.6537× 10−9

80 1.0879× 10−10 1.2600× 10−9

1.3 k = 75

20 4.5516× 10−6 2.5526× 10−4

50 2.5708× 10−9 2.0578× 10−8

70 3.7011× 10−10 3.9943× 10−9

80 1.5772× 10−10 1.8632× 10−9

1.5 k = 75

20 5.1754× 10−6 2.9131× 10−4

50 4.6997× 10−9 3.7305× 10−8

70 7.1751× 10−10 7.2036× 10−9

80 2.7675× 10−10 3.3289× 10−9

1.9 k = 75

20 6.3879× 10−6 3.6158× 10−4

50 9.4859× 10−9 7.5372× 10−8

70 1.6018× 10−10 1.4524× 10−9

80 5.3135× 10−10 6.5688× 10−9

Table 11: [Numerical test III] Errors of the approximate solutions from the parametrized POD-
DEIM reduced-order systems for fixed k = k∗ = 75 using different DEIM reduced dimen-
sions l = 20, 50, 70, 80 compared with the parametrized full-order system for each parameter
p = 0.1, 0.5, 0.7, 1.3, 1.5, 1.9.
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Figure 19: [Numerical test III] The number of left singular vectors used as the POD basis of non-
linear snapshots is plotted against Epoddeim defined in (4.5) for each parameter p = 0.1, 0.5, 0.7.
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Figure 20: [Numerical test III] The number of left singular vectors used as the POD basis of non-
linear snapshots is plotted against Epoddeim defined in (4.5) for each parameter p = 1.3, 1.5, 1.9.

Notice that, the parametrized POD-DEIM reduced-order model give almost the
same order of accuracy for all parameter values p as demonstrated in Table 11,
Figure 19 and Figure 20. The numerical results in this section demonstrate that
the POD-DEIM approach can be used for accurately approximating the solutions of
many parametrized dynamic systems with various parameter values by using only
one low-dimensional basis for each POD and DEIM. That is, we can construct a
POD-DEIM reduced system for a given parameter value without actually solving
the original full-order system using this same parameter value. Therefore, this can
significantly save the simulation time and memory storage when approximating the
solutions of dynamical systems with varying parameter.

5 CONCLUSION

This work applies model order reduction techniques known as proper orthogo-
nal decomposition (POD) and discrete empirical interpolation method (DEIM) on
a nonlinear dynamical system arising from the discretized sine-Gordon equation.
POD is used to extract the dominant features of the trajectories or snapshots into a
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low-dimensional representation called POD basis, which is optimal in the sense that
a certain approximation error involving snapshots is minimized. The POD basis is
used together with the Galerkin projection on the discretized system of the sine-
Gordon equation to obtain a reduced-order system with much smaller dimension.
DEIM is then employed for constructing a selected interpolation spatial indices to
provide a nearly optimal subspace approximation to avoid computing the nonlinear
term with the full-order complexity.

The numerical experiments in this work investigate efficiency of the reduced-
order model in three test cases. First, we studied efficiency of the POD-DEIM
procedure on reproducing the numerical solutions of the sine-Gordon equation. It
can transform the original model into a reduced-order model with much smaller
dimension with less computational time and less memory storage while providing
accurate approximation when compared with the full-order system. Next, we inves-
tigate the accuracy of the reduced-order model constructed from different amount
of snapshots. These snapshots are the numerical solutions solved from the full-order
system with different time step sizes, which are larger than the step size used in the
reduced system. That is, we can approximate the solution at the time steps, which
are not available or previously computed from the full-order system. In this nu-
merical test, for fixed small dimensions of POD and DEIM, there is no significant
difference in accuracy of the approximation when different amount of snapshots
are used. When the ratio of the retained energy defined in term of singular val-
ues is used to select the POD and DEIM dimensions, the approximation becomes
more accurate as this ratio approaching 1 for every case of the amount of snap-
shots. Finally, we studied an ability of POD-DEIM approach for approximating
the parametrized full-order system. This numerical experiment illustrates that the
POD-DEIM approach can approximate the solutions of parametrized dynamical
systems with various parameter values without previously solving for the solutions
of the original full-order systems with those parameter values. The POD-DEIM
approach is therefore efficient for accurately predicting the numerical solutions for
the sine-Gordon equation. Similar applicability of the POD-DEIM concept can be
readily extended to various classes of nonlinear dynamical systems.
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