Thai Journal of Mathematics : 213-221 Special Issue: Annual Meeting in Mathematics 2018

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

Some commutativity conditions for Γ -Generalized Boolean Semiring

Utsanee Leerawat † and Katthaleeya Daowsud ‡,1

[†]Department of Mathematics, Faculty of Science, Kasetsart University, Thailand 10900. e-mail : fsciutl@ku.ac.th

[‡]Department of Mathematics, Faculty of Science, Kasetsart University, Thailand 10900. e-mail : fscikyd@ku.ac.th

Abstract: In this paper, we investigate some properties of commutative Γ -ideals in Γ -generalized Boolean semiring. Also, we obtain commutativity of Γ -generalized Boolean semiring satisfying some suitable conditions. Furthermore, we investigate the commutativity of prime Γ -generalized Boolean semiring R possessing a nonidentity commuting automorphism and satisfying right distribution: $(b + c)\alpha a =$ $b\alpha a + c\alpha a$ for all $a, b, c \in R$ and $\alpha \in \Gamma$.

Keywords : Boolean semiring, semiring, ideal, commutative 2000 Mathematics Subject Classification : 16Y60, 15A27 (2000 MSC)

1 Introduction

In 1934, H.S. Vandiver [8] gave the first formal definition of a semiring and developed the theory of a special class of semirings. A semiring R is given as an algebraic structure $(R, +, \cdot)$ such that (R, +) and (R, \cdot) are both semigroups satisfying a(b + c) = ab + ac and (b + c)a = ba + ca for all $a, b, c \in R$. M.K. Rao [7] introduced Γ -semiring as a generalization of semiring. The ideals, prime ideals, semiprime ideals, k-ideals and h-ideals of a Γ -semiring were studied

Copyright 2019 by the Mathematical Association of Thailand. All rights reserved.

 $^{^0\}mathrm{This}$ research was supported by Department of Mathematics, Faculty of Science, Kasetsart University

¹Corresponding author email: fscikyd@ku.ac.th

and developed by S.K. Kyuno [3], T.K. Dutta and S.K. Sardar [2], R. Chinram [1] and S. Pianskool and P. Khachorncharoenkul [6].

In 2016, T. Makkala and U. Leerawat [4] established a Γ -generalized Boolean semiring (or simply Γ -GB-semiring), which was a generalization of Boolean semiring. Later, they introduced the notion of Γ -(f, g) derivations and Γ -(f, g) generalized derivations on Γ -generalized Boolean semirings, and investigated some related properties. Furthermore, they also investigated some commutativity results for Γ -generalized Boolean semiring involving Γ -(f, g) derivation and Γ -(f, g) generalized derivation (see [5]).

In this paper, we investigate some properties of commutative Γ -ideals in Γ generalized Boolean semiring. Moreover, we study the commutativity of prime Γ -generalized Boolean semiring containing commutative Γ -ideal. Additionally, we investigate the commutativity of prime Γ -generalized Boolean semiring R possessing a non-identity commuting automorphism and satisfying the right distribution: $(b + c)\alpha a = b\alpha a + c\alpha a$ for all a, b, c in R and $\alpha \in \Gamma$.

2 Preliminaries

We first recall some definitions, examples and lemmas (from T. Makkala and U. Leerawat [4], [5]) use in proving our main results.

Definition 2.1. A Γ -generalized Boolean semiring (or simply Γ -GB-semiring) is a triple $(R, +, \Gamma)$, where

(1) (R, +) is an abelian group.

(2) Γ is a nonempty finite set of binary operations satisfying the following properties:

(i) $a\alpha b \in R$ for all $a, b \in R$ and $\alpha \in \Gamma$,

(ii) $a\alpha(b+c) = a\alpha b + a\alpha c$ for all $a, b, c \in R$ and $\alpha \in \Gamma$,

(*iii*) $a\alpha(b\beta c) = (a\alpha b)\beta c = (b\alpha a)\beta c$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$,

(iv) $a\alpha(b\beta c) = a\beta(b\alpha c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.

A nonempty subset I of R is said to be a Γ -ideal of R if

(1) (I, +) is a subgroup of (R, +),

- (2) $r\alpha a \in I$ for all $r \in R$, $a \in I$, and $\alpha \in \Gamma$, (i.e. $R\Gamma I \subseteq I$),
- (3) $(r+a)\alpha s r\alpha s \in I$ for all $r, s \in R$, $a \in I$, and $\alpha \in \Gamma$.

Example 2.2. Let $R = \{0, a, b, c\}$ and let the addition + and the multiplication \cdot be defined as follows:

+	0	a	b	c		·	0	a	b	
0	0	a	b	c		0	0	a	b	
a	a	b	С	0		a	0	a	b	
b	b	c	0	a		b	0	a	b	
c	С	0	a	b	Γ	С	0	a	b	

Some commutativity conditions for $\Gamma\mbox{-}{\rm GB}\mbox{-}{\rm semiring}$

Then $(R, +, \Gamma)$ is a Γ -GB-semiring where Γ contains only the multiplication (·). If Γ is a singleton, then we denote $(R, +, \Gamma)$ by $(R, +, \cdot)$.

Example 2.3. Let $M_3(\mathbb{Z}) = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & b \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$. Let + be a usual matrix addition and $\Gamma = \{ \odot, \otimes \}$ where \odot is a Hadamard product (elementwise product) and \otimes is a usual matrix multiplication. Then $(M_3(\mathbb{Z}), +, \Gamma)$ is a Γ -GB-semirina.

Let
$$I = \left\{ \begin{bmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \middle| a \in \mathbb{Z} \right\}$$
. It is not hard to verify that I is a Γ -ideal of $M_3(\mathbb{Z})$.

Definition 2.4. A Γ -GB-semiring R is said to be zero-symmetric if $0\alpha a = 0$ for all $\alpha \in \Gamma$ and $a \in R$.

Notice that if R is a zero-symmetric $\Gamma\text{-}\mathrm{GB}\text{-semiring}$ and I is a $\Gamma\text{-}\mathrm{ideal}$ of R, then we obtain that

$$R\Gamma I \subseteq I$$
 and $I\Gamma R \subseteq I$.

Example 2.5. Let $(R, +, \cdot)$ be a zero-symmetric Γ -GB-semiring, $M_2(R) = \left\{ \begin{bmatrix} 0 & a \\ b & c \end{bmatrix} | a, b \in R \right\}$, and $\Gamma = \{ \odot, \otimes, *, \cdot \}$ a set of binary operations which are defined as follows: for any $\begin{bmatrix} 0 & a \\ b & c \end{bmatrix}, \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} \in M_2(R)$,

$$\begin{bmatrix} 0 & a \\ b & c \end{bmatrix} \odot \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & a \cdot x \\ b \cdot y & c \cdot z \end{bmatrix}$$
$$\begin{bmatrix} 0 & a \\ b & c \end{bmatrix} \otimes \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & a \cdot x \\ 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} 0 & a \\ b & c \end{bmatrix} * \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ b \cdot y & 0 \end{bmatrix},$$
$$\begin{bmatrix} 0 & a \\ b & c \end{bmatrix} \cdot \begin{bmatrix} 0 & x \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & c \cdot z \end{bmatrix}.$$

Then $(M_2(R), +, \Gamma)$ is a zero-symmetric Γ -GB-semiring.

Definition 2.6. Let R be a Γ -GB-semiring. Then

1. R is prime if $x\Gamma R\Gamma y = \{0\}$ for $x, y \in R$, then x = 0 or y = 0,

2. R is commutative if $a\alpha b = b\alpha a$ for all $a, b \in R$ and for all $\alpha \in \Gamma$.

For examples, $(R, +, \cdot)$ as mentioned in Example 2.2. is prime but it is not commutative, and $(M_3(\mathbb{Z}), +, \Gamma)$ as mentioned in Example 2.3. is commutative but it is not prime since

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Gamma M_3(\mathbb{Z}) \Gamma \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}.$$

Here, we will indicate some basic properties on Γ -GB-semiring appearing in [4]. For any $a, b, c \in R$ and $\alpha \in \Gamma$, we have

(i)
$$-(-a) = a$$
,
(ii) $a\alpha 0 = 0$,
(iii) $a\alpha (-b) = -(a\alpha b)$,
(iv) $a\alpha (b-c) = (a\alpha b) - (a\alpha c)$,
(v) $-(a+b) = -a-b$,
(vi) $-(a-b) = -a+b$,
(vii) $-(a\alpha (b+c)) = -(a\alpha b) - (a\alpha c)$,
(viii) $-(a\alpha (b-c)) = -(a\alpha b) + (a\alpha c)$.

For any $x, y \in R$ and $\alpha \in \Gamma$, the symbol $[x, y]_{\alpha}$ will represent the commutator $x\alpha y - y\alpha x$ and the symbol $(x \circ y)_{\alpha}$ stands for the skew-commutator $x\alpha y + y\alpha x$.

Next, the following are some basic properties of commutator and skew-commutator. The proofs of these properties are straightforward and hence omitted.

- (i) $[x\alpha y, z]_{\beta} = x\alpha[y, z]_{\beta} = y\alpha[x, z]_{\beta} + z\alpha[y, x]_{\beta},$ (ii) $[x, y\alpha z]_{\beta} = y\alpha[x, z]_{\beta} = z\alpha[x, y]_{\beta} + x\alpha[y, z]_{\beta},$
- (iii) $(x \circ y\alpha z)_{\beta} = y\alpha(x \circ z)_{\beta} = z\alpha(x \circ y)_{\beta} + x\alpha[y, z]_{\beta},$
- (iv) $(x\alpha y \circ z)_{\beta} = x\alpha(y \circ z)_{\beta} = y\alpha(x \circ z)_{\beta} + z\alpha[x, y]_{\beta}.$

The center of R, written Z(R), is defined to be the set

 $Z(R) = \{ a \in R \mid a\alpha b = b\alpha a \text{ for all } b \in R, \text{ and } \alpha \in \Gamma \}.$

Lemma 2.7. Let R be a Γ -GB-semiring. If $x \in Z(R)$ then $y\alpha x \in Z(R)$ and $x\alpha y \in Z(R)$ for all $y \in R$ and $\alpha \in \Gamma$.

3 Main Results

Theorem 3.1. Let R be a prime Γ -GB-semiring. Suppose that Z(R) is a nonempty subset of R and $Z(R) \neq \{0\}$. Then R is commutative.

Proof Let $x, y, t \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Since $Z(R) \neq \emptyset$ and $Z(R) \neq \{0\}$, there exists an element z in Z(R) such that $z \neq 0$. By Lemma 2.7, $z\beta(t\gamma x) \in Z(R)$. Hence

$$z\beta t\gamma [x,y]_{\alpha} = [z\beta t\gamma x,y]_{\alpha} = 0$$

This implies $z\gamma R\Gamma[x, y]_{\alpha} = \{0\}$. But $z \neq 0$. Thus, $[x, y]_{\alpha}$ must be zero. Therefore, R is commutative.

216

Some commutativity conditions for $\Gamma\mbox{-}GB\mbox{-}semiring$

Lemma 3.2. Let R be a prime and zero-symmetric Γ -GB-semiring. If I is a commutative Γ -ideal of R, then $I \subseteq Z(R)$.

Proof Let $a \in I$. We can that $[a, b]_{\alpha} = 0$ for all $b \in R$, and $\alpha \in \Gamma$. If a = 0, then $[a, b]_{\alpha} = 0$ for all $\alpha \in \Gamma$. Assume that $a \neq 0$. Let $b \in R$, and $\alpha \in \Gamma$. Then

$$a\alpha b = (0+a)\alpha b - 0\alpha b \in I.$$

Since I is commutative, $[a, a\alpha b]_{\beta} = 0$ for all $\beta \in \Gamma$. That is,

$$a\alpha[a,b]_{\beta} = [a,a\alpha b]_{\beta} = 0,$$

for all $\alpha, \beta \in \Gamma$.

Now, we will show that $a\Gamma R\Gamma[a,b]_{\alpha} = \{0\}$ for all $\alpha \in \Gamma$. Clearly, $\{0\} \subseteq a\Gamma R\Gamma[a,b]_{\alpha}$. Conversely, let $c \in R$ and $\beta, \gamma \in \Gamma$. Then

$$a\beta c\gamma[a,b]_{\alpha} = a\beta[a,c\gamma b]_{\alpha} = 0.$$

Hence, $a\Gamma R\Gamma[a,b]_{\alpha} = \{0\}$. Since R is prime, and $a \neq 0$, we have $[a,b]_{\alpha} = 0$. It follows that $a \in Z(R)$. Therefore, $I \subseteq Z(R)$.

Lemma 3.3. Let R be a prime Γ -GB-semiring. If $I \neq \{0\}$ is a Γ -ideal of R such that $I \subseteq Z(R)$, then R is commutative.

Proof Suppose that $I \neq \{0\}$ is a Γ -ideal of R with $I \subseteq Z(R)$. Let $x, y \in R$ and $\alpha \in \Gamma$. Since $I \neq \{0\}$, there exists an element a in I such that $a \neq 0$. We will show that $a\Gamma R\Gamma[x, y]_{\alpha} = \{0\}$. Let $r \in R$ and $\gamma, \beta \in \Gamma$. Then

$$\begin{aligned} a\beta r\gamma[x,y]_{\alpha} &= r\beta a\gamma[x,y]_{\alpha} \\ &= r\beta[a\gamma x,y]_{\alpha} = r\beta[x\gamma a,y]_{\alpha} = 0. \end{aligned}$$

That is, $a\Gamma R\Gamma[x, y]_{\alpha} \subseteq \{0\}$. Hence, $a\Gamma R\Gamma[x, y]_{\alpha} = \{0\}$. Since R is prime and $a \neq 0$, we have $[x, y]_{\alpha} = 0$. Therefore, R is commutative.

The proof of the following theorem follows from Lemma 3.2. and Lemma 3.3.

Theorem 3.4. Let R be a prime and zero-symmetric Γ -GB-semiring. If there exists a nonzero commutative Γ -ideal of R, then R is also commutative.

Lemma 3.5. Let R be a prime and zero-symmetric Γ -GB-semiring. Let $I \neq \{0\}$ be a Γ -ideal of R. If $(x \circ y)_{\alpha} = 0$ for all $x, y \in I$, and $\alpha \in \Gamma$, then I is commutative.

Proof Let $x, y \in I, t \in R$, and $\alpha, \beta, \gamma \in \Gamma$. There exists an element $z \neq 0$ in I. Then

$$\begin{aligned} z\alpha t\gamma[x,y]_{\beta} &= y\gamma((z\alpha t)\circ x)_{\beta} + z\alpha t\gamma[x,y]_{\beta} \\ &= ((z\alpha t)\circ (x\gamma y))_{\beta} = 0. \end{aligned}$$

It follows that $z\Gamma R\Gamma[x, y]_{\beta} = \{0\}$ for all $\beta \in \Gamma$. Since R is prime and $z \neq 0$, we obtain $[x, y]_{\beta} = 0$. This yields that I is commutative.

Corollary 3.6. Let R be a prime and zero-symmetric Γ -GB-semiring. Let $I \neq \{0\}$ be a Γ -ideal of R. If $(x \circ y)_{\alpha} = 0$ for all $x, y \in I$, and $\alpha \in \Gamma$, then R is commutative.

Theorem 3.7. Let R be a prime and zero-symmetric Γ -GB-semiring. Let $I \neq \{0\}$ be a Γ -ideal of R. If, for all $x, y \in I$ and $\alpha \in \Gamma$, either $[x, y]_{\alpha} \in Z(R)$ or $(x \circ y)_{\alpha} \in Z(R)$, then I is commutative.

Proof First, suppose that $[x,y]_{\alpha} \in Z(R)$ for all $x, y \in I$, and $\alpha \in \Gamma$. Let $x, y \in I, t \in R$, and $\alpha, \beta, \gamma \in \Gamma$. Then

$$\begin{split} [x,y]_{\alpha}\beta[x,y]_{\alpha} &= [x,y]_{\alpha}\beta(x\alpha y - y\alpha x) \\ &= [x,y]_{\alpha}\beta(x\alpha y) - [x,y]_{\alpha}\beta(y\alpha x) \\ &= [x,y]_{\alpha}\beta(x\alpha y) - (y\alpha x)\beta[x,y]_{\alpha} \\ &= [x,y]_{\alpha}\beta(x\alpha y) - (x\alpha y)\beta[x,y]_{\alpha} = 0. \end{split}$$

This implies

$$[x, y]_{\alpha}\gamma t\beta[x, y]_{\alpha} = t\gamma[x, y]_{\alpha}\beta[x, y]_{\alpha} = t\gamma 0 = 0$$

That is, $[x, y]_{\alpha} \Gamma R \Gamma[x, y]_{\alpha} = \{0\}$. Since R is prime, we obtain $[x, y]_{\alpha} = 0$ for all $\alpha \in \Gamma$. This yields that I is commutative.

Now, we suppose that $(x \circ y)_{\alpha} \in Z(R)$ for all $x, y \in I$, and $\alpha \in \Gamma$. Let $x, y \in I, t \in R$, and $\alpha, \beta, \gamma \in \Gamma$. Then

$$\begin{aligned} (x \circ y)_{\alpha}\beta[x,y]_{\alpha} &= [x,y]_{\alpha}\beta(x\alpha y - y\alpha x) \\ &= (x \circ y)_{\alpha}\beta(x\alpha y) - (x \circ y)_{\alpha}\beta(y\alpha x) \\ &= (x \circ y)_{\beta}(x\alpha y) - (y\alpha x)\beta(x \circ y)_{\alpha} \\ &= (x \circ y)_{\alpha}\beta(x\alpha y) - (x\alpha y)\beta(x \circ y)_{\alpha} = 0. \end{aligned}$$

By the same argument as above, we can show that $(x \circ y)_{\alpha} \Gamma R \Gamma[x, y]_{\alpha} = \{0\}$. But R is prime. That means either $(x \circ y)_{\alpha} = 0$ or $[x, y]_{\alpha} = 0$. If $(x \circ y)_{\alpha} = 0$ for all $\alpha \in \Gamma$, by Lemma 3.5., we have I is commutative. If $[x \circ y]_{\alpha} = 0$ for all $\alpha \in \Gamma$, as above $[x \circ y]_{\alpha} \in Z(R)$, we obtain the result.

Corollary 3.8. Let R be a prime and zero-symmetric Γ -GB-semiring. Let $I \neq \{0\}$ be a Γ -ideal of R. If either $[x, y]_{\alpha} \in Z(R)$ or $(x \circ y)_{\alpha} \in Z(R)$ for all $x, y \in I$, and $\alpha \in \Gamma$, then R is commutative.

Definition 3.9. Let R and R' be Γ -GB semirings. A homomorphism of R into R' is a function from $f : R \to R'$ if

- 1. f(a+b) = f(a) + f(b), and
- 2. $f(a\alpha b) = f(a)\alpha f(b),$

for all $a, b \in R$ and $\alpha \in \Gamma$.

A homomorphism from R on itself is called an endomorphism of R, and if it is bijective then it is called an automorphism.

An automorphism f of R is called a commuting automorphism if $[f(x), x]_{\alpha} = 0$ for all $x \in R$ and $\alpha \in \Gamma$. Some commutativity conditions for $\Gamma\mbox{-}{\rm GB}\mbox{-}{\rm semiring}$

Theorem 3.10. Let R be a prime and zero-symmetric Γ -GB-semiring. Let $I \neq \{0\}$ be a Γ -ideal of R. If f is an automorphism on R satisfying either $I\Gamma f[x, y]_{\alpha} = \{0\}$ or $I\Gamma f(x \circ y)_{\alpha} = \{0\}$ for all $x, y \in I$, and $\alpha \in \Gamma$, then R is commutative.

Proof Let $r \in R, x, y \in I$, and $\alpha \in \Gamma$ such that

$$I\Gamma f[x,y]_{\alpha} = \{0\}$$
 or $I\Gamma f(x \circ y)_{\alpha} = \{0\}.$

Case I: Suppose $I\Gamma f[x, y]_{\alpha} = \{0\}$. Since $I \neq \{0\}$, there exists a nonzero element z in I. Hence,

$$z\Gamma R\Gamma f[x,y]_{\alpha} \subseteq I\Gamma f[x,y]_{\alpha} = \{0\},\$$

and then,

$$z\Gamma R\Gamma f[x,y]_{\alpha} = \{0\}.$$

Since R is prime and $z \neq 0$, we obtain $f[x, y]_{\alpha} = 0$. Since f is injective, $[x, y]_{\alpha} = 0$. It follows that I is commutative and by Theorem 3.4., R is also commutative.

Case II: Suppose $I\Gamma f(x \circ y)_{\alpha} = \{0\}$. By the same argument in the proof of the case I, we have $(x \circ y)_{\alpha} = 0$ for all $x, y \in I$ and $\alpha \in \Gamma$. By Corollary 3.6., R is commutative.

Theorem 3.11. Let R be a prime Γ -GB-semiring satisfying $(b+c)\alpha a = b\alpha a + c\alpha a$ for all $a, b, c \in R$ and $\alpha \in \Gamma$. If f is a non-identity commuting automorphism, then R is commutative.

Proof Since f is a non-identity automorphism on R, there exists an element a in R such that $f(a) \neq a$. Since $[f(x), x]_{\alpha} = 0$ for all $x \in R$ and $\alpha \in \Gamma$, we have

$$[f(x), y]_{\alpha} = [x, f(y)]_{\alpha}$$

for all $x, y \in R$ and $\alpha \in \Gamma$. Let $x, y, t \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Since

$$[t\beta x, f(a\gamma z)]_{\alpha} = [f(t\beta x), a\gamma z]_{\alpha}$$

$$f(a)\gamma[t\beta x, f(z)]_{\alpha} = a\gamma[f(t\beta x), z]_{\alpha} = a\gamma[t\beta x, f(z)]_{\alpha},$$

and so,

$$\begin{aligned} (f(a)-a)\gamma[t\beta x,y]_{\alpha} &= 0\\ (f(a)-a)\gamma t\beta[x,y]_{\alpha} &= 0. \end{aligned}$$

It follows that

$$(f(a) - a)\Gamma R\Gamma[x, y]_{\alpha} = \{0\}$$

for all $x, y \in R$ and $\alpha \in \Gamma$. Since R is prime and $f(a) - a \neq 0$, $[x, y]_{\alpha} = 0$ for all $x, y \in R$ and $\alpha \in \Gamma$. Therefore, R is commutative.

219

Theorem 3.12. Let R be a prime Γ -GB-semiring. Let f be an endomorphism of R. If $f(R) \subseteq Z(R)$, then R is commutative or f vanishes.

Proof Suppose that f does not vanish and $f(R) \subseteq Z(R)$. There exists an element z in R such that $0 \neq f(z) \subseteq Z(R)$. Let $x, y \in R$, and $\alpha, \beta \in \Gamma$. Then

$$\begin{aligned} f(z)\beta[x,y]_{\alpha} &= [f(z)\beta x,y]_{\alpha} = [x\beta f(z),y]_{\alpha} \\ &= x\beta [f(z).y]_{\alpha} = 0. \end{aligned}$$

Hence, $f(z)\beta[x,y]_{\alpha} = 0$ for all $x, y \in R$, and $\alpha, \beta \in \Gamma$. This gives

$$f(z)\beta t\gamma[x,y]_{\alpha} = 0$$

for all $x, y, t \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Since R is prime and $f(z) \neq 0$, we have $[x, y]_{\alpha} = 0$ for all $x, y \in R$, and $\alpha \in \Gamma$. Therefore, R is commutative.

Acknowledgements: This research was supposed by Department of Mathematics and Faculty of Science, Kasetsart University.

References

- R. Chinram, A note on quasi-ideals in Γ-semiring, International Mathematical Forum, 3 (2008), 1253-1259.
- [2] T.K. Dutta, and S.K. Sardar, On the operator semirings of a Γ-semiring, SEA Bull. Math., 26 (2002), 203-213.
- [3] S. Kyuno, A gamma ring with minimum conditions, Tsukuba J. Math. 5(1) (1981), 47-65.
- [4] T. Makkala, and U. Leerawat, Structure of Γ-Generalized Boolean Semiring, Far East Journal of Mathematical Sciences(FJMS) Vol.101(2016) No.1, 39-53.
- [5] T. Makkala, and U. Leerawat, Commutativity of Γ-Generalized Boolean Semiring with derivations, Journal of Mathematics Research. Vol. 8 (2016) No. 4, 132-139.
- [6] S. Pianskool, and P. Khachorncharoen, Simple Γ-seminearings, Journal of Mathematics Research. Vol. 1 (2009), No. 2, 124-127.
- [7] M.K. Rao, Γ-semiring-1, Southeast Asian Bull. Math. 19 (1995), 49 54.
- [8] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934), 914 - 920.

(Received 23 August 2018) (Accepted 25 December 2018) Some commutativity conditions for $\Gamma\mbox{-}\mbox{GB-semiring}$

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J}.\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th