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Abstract : The Hestenes-Stiefel (HS) conjugate gradient (CG) method is gen-
erally regarded as one of the most efficient methods for large-scale unconstrained
optimization problems. In this paper, we extend a modified Hestenes-Stiefel con-
jugate gradient method based on the projection technique and present a new
projection method for solving nonlinear monotone equations with convex con-
straints. The search direction obtained satisfies the sufficient descent condition.
The method can be applied to solve nonsmooth monotone problems because it is
derivative free. Under appropriate assumptions, the method is shown to be glob-
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ally convergent. Preliminary numerical results show that the proposed method
works well and is very efficient.

Keywords : spectral gradient method; nonlinear monotone equations; projection
method; global convergence
2010 Mathematics Subject Classification : 90C30; 90C06; 90C56

1 Introduction

Nonlinear conjugate gradient (CG) algorithms are well suited for large scale
problems due to their low memory requirements as well as strong global conver-
gence properties. Let F : Ω ⊂ Rn → Rn be continuous, monotone and nonlinear
mapping, Ω is a nonempty closed and convex set and Rn is the n−dimensional Eu-
clidean space. Monotonicity means for any x, y ∈ Ω, we have ⟨F (x)−F (y), x−y⟩ ≥
0. In this paper, we use conjugate gradient methods to find a vector x∗ ∈ Ω for
which

F (x∗) = 0. (1.1)

This problem has many applications, such as the ballistic trajectory compu-
tation and power flow equation [16, 22]. It can also be applied to some varia-
tional inequality problems which can be converted into (1.1) by means of fixed
point maps or normal maps if the underlying function satisfies some coercive con-
ditions [28]. A lot of computational methods have been proposed to solve un-
constrained nonlinear monotone problem with Ω = Rn. Among these methods,
Newton’s method, the quasi-Newton methods, and their variants are very popu-
lar because of their respective local quadratic and local superlinear convergence
(see in [1, 4, 5, 7, 12, 23, 29]). However, these methods are not suitable for large
scale nonlinear monotone equations because they need to solve a linear system of
equations using the Jacobian matrix of F (x) or an approximation of the Jacobian
matrix at each iteration. Among the very popular methods for solving (1.1) is the
Levenberg-Marquardt type methods [20, 25] whose superlinear convergence rate
can be established under an error bound estimation instead of the nonsingularity
assumption.

Spectral gradient method is another efficient algorithm to solve large-scale
unconstrained optimization problems,

min f(x), x ∈ Rn, (1.2)

where f : Rn → R is a smooth nonlinear function, because of its simplicity and
low storage requirements. It was proposed by Barzilai and Borwein [3] and the
search direction is given as

dk = −λkg(xk), d0 = −g(x0),

where λk = ⟨sk−1, sk−1⟩/⟨yk−1, sk−1⟩, yk−1 = g(xk)− g(xk−1), sk−1 = xk − xk−1

and g(xk) is the gradient of f(xk). Thus some researchers have extended the
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spectral gradient methods to solve unconstrained nonlinear monotone equations
(see in [10, 11, 13, 15, 17, 27]). Yu et al. [26] used the spectral gradient method
together with the projection technique [18] to solve convex constrained nonlinear
monotone equations. The method was an extension of the work in [27]. The global
convergent of the method was discussed under some mild assumptions. Wang and
Wang [21] proposed a modified version of the method for solving variational in-
equalities [19]. Theoretical analysis of the modification guarantees that the current
iterate is closer to the solution set than the preceding iterate. Xiao and Zhu [24]
extended the very popular CG DESCENT method to solve monotone equations
with convex constraints based on the projection techniques. Preliminary numer-
ical results showed that the proposed method is promising. However, Liu and Li
[14] observed that the CG parameter in the search direction of [24] may approach
infinity if the number of iteration is sufficiently large enough. This observation
may affect the numerical performance of the method. Consequently, they pro-
posed some modifications which ensures that the CG parameter is well-defined
throughout the iteration process. The numerical results reported showed that the
modified method is more effective compared to CGD method in [24].

This inspired our idea to consider another modifications which we believed it
will improve the numerical performance.
In this paper, we are interested in combining the projection technique with the
modification of a Hestenes-Stiefel-like conjugate gradient method [2] to solve con-
vex constrained monotone equations (1.1). Our modification improves the numer-
ical performance and still retains the nice properties of the original method. The
choice of the CG parameter βk in addition to the spectral gradient parameter to
compute each iterate is what differentiate our method with the one in [14]. The
remaining part of this paper is organized as follows. In section 2, we described
the proposed algorithm. The global convergence is establish in section 3 and we
report numerical experiments to show the efficiency of our method in section 4.
Throughout this paper, ∥.∥ denotes the Euclidean norm unless otherwise stated.

2 Proposed Algorithm

In this section, we give detail of our algorithm step by step. We use a projection
operator PΩ(·) to describe our method. Let PΩ(·) be a mapping from Rn to Ω
defined as

PΩ(x) = argmin{∥x− y∥ : y ∈ Ω}, for all x ∈ Rn.

An impressive property of this operator PΩ(·) is that it is nonexpansive, namely,

∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn,

and as a result, we have

∥PΩ(x)− y∥ ≤ ∥x− y∥, ∀x, y ∈ Ω.
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In light of this, we now state the steps of the projection Hestenes-Stiefel (PHS)
algorithm and discuss its nice properties. For convenience, we denote F (xk) by
Fk.

Algorithm 1 (PHS)

Step 0. Select an initial point x0 ∈ Ω and choose the constants ρ ∈ (0, 1), σ, r, ξ > 0,
stopping tolerance ε ≥ 0. Set k = 0.
Step 1. Compute ∥Fk∥. If ∥Fk∥ ≤ ε, stop.
Step 2. Calculate the search direction dk by

dk =

{
−Fk, if k = 0,

−λkFk + βPHS
k dk−1, if k > 0,

(2.1)

where

βPHS
k = max

{
0,

⟨Fk, νk−1⟩
⟨wk−1, dk−1⟩

θk − 2

(
∥νk−1∥θk

⟨wk−1, dk−1⟩

)2

⟨Fk, dk−1⟩

}
, (2.2)

θk = 1− ⟨Fk, dk−1⟩2

∥Fk∥2∥dk−1∥2
, νk−1 = yk−1 + rsk−1, yk−1 = Fk − Fk−1, (2.3)

λk =
⟨sk−1, sk−1⟩
⟨νk−1, sk−1⟩

, wk−1 = νk−1+tk−1dk−1 and tk−1 = 1+max

{
0,−⟨dk−1, νk−1⟩

∥dk−1∥2

}
.

(2.4)
Step 3. Set zk = xk + αkdk where the step-size αk = max{ξρi : i = 0, 1, 2, · · · } such that

− ⟨F (xk + αkdk), dk⟩ ≥ σαk∥dk∥2. (2.5)

Step 4. If zk ∈ Ω and ∥F (zk)∥ ≤ ε, stop. Otherwise, compute the next iterate by

xk+1 = PΩ [xk − τkF (zk)] , where τk =
⟨F (zk), xk − zk⟩

∥F (zk)∥2
. (2.6)

Step 5. Set k := k + 1 and go to step 1.

In this article, we always assume the followings. The assumptions are very vital
in proving the global convergence of our methods.

Assumption (Ai) The mapping F : Ω → Rn is Lipschitz continuous, i.e., there
exists a positive constant L such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Ω. (2.7)
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Assumption (Aii) The solution set of (1.1) is nonempty and is denoted by Γ.

Remark (Ri) It was noted that the search direction dk defined in step 2 of Al-
gorithm 1 is different from those in [2, 14].

Remark (Rii) By the monotonicity of F and the definition of νk−1, we have

⟨νk−1, sk−1⟩ = ⟨yk−1, sk−1⟩+ r∥sk−1∥2 ≥ r∥sk−1∥2 > 0. (2.8)

On the other hand, since (2.8) holds, then by Lipschitz continuity of F it holds

⟨νk−1, sk−1⟩ = ⟨yk−1, sk−1⟩+ r∥sk−1∥2 ≤ (L+ r)∥sk−1∥2. (2.9)

Therefore, the λk defined in (2.4) is always positive for all k ≥ 0 and satisfies

a ≤ λk ≤ b, (2.10)

where a := 1/(L+ r) and b := 1/r.

Remark (Riii) By the Lipschitz continuity of F and the definitions νk−1, wk−1

and tk−1 in step 2 of Algorithm 1, the following inequalities hold

⟨wk−1, dk−1⟩ ≥ ⟨νk−1, dk−1⟩+ ∥dk−1∥2 − ⟨νk−1, dk−1⟩ = ∥dk−1∥2 > 0. (2.11)

∥νk−1∥ ≤ ∥Fk − Fk−1∥+ r∥sk−1∥2 ≤ (L+ r)αk−1∥dk−1∥. (2.12)

The last inequality holds from sk−1 = αk−1dk−1 = xk−xk−1. The equations (2.10)
and (2.11) show that the CG parameter βPHS

k is well-defined.

Remark (Riv) By Cauchy-Schwarz inequality, the θk defined in (2.3) satisfies
0 ≤ θk ≤ 1.

From the above remarks, we state the following Lemma.

Lemma 2.1. Let the sequence of search directions {dk} be generated by Algorithm
1, then for every k ≥ 0, there exists a positive constant c such that

⟨Fk, dk⟩ ≤ −c∥Fk∥2, where c = a− 1/8 and a > 1/8. (2.13)

Proof. If βPHS
k = 0, then it clearly hold that ⟨Fk, dk⟩ = −λk∥Fk∥2 ≤ −a∥Fk∥2,

for all k ≥ 0.
On the other hand, if βPHS

k ̸= 0, since (2.10) and (Riv) hold, then it follows from
Lemma 2.1 in [14] that ⟨Fk, dk⟩ ≤ −(a− 1

8 )∥Fk∥2, for all k ≥ 0 and a > 1/8.

3 Convergence Analysis

In this section, we establish the global convergence of our method.
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Lemma 3.1. Suppose that assumption (Ai) holds, there exists a step-size αk sat-
isfying the line search (2.5) for any k ≥ 0.

Proof. Suppose on the contrary that there exists a constant k0 ≥ 0 for which (2.5)
does not hold, i.e.,

−⟨F (xk0 + ξρidk0), dk0⟩ < σξρi∥dk0∥2, for any i = 0, 1, 2, · · · .

Allowing i → ∞, by Lipschitz continuity, we have

− ⟨F (xk0), dk0⟩ ≤ 0. (3.1)

It follows from (2.13) that

− ⟨F (xk0
), dk0

⟩ ≥ c∥F (xk0
)∥2 > 0. (3.2)

Hence (3.1) and (3.2) cannot hold at the same time and the proof is complete.

The above Lemma (3.1) indicates that Algorithm 1 is well-defined.

Lemma 3.2. [24] Suppose assumptions (Ai)-(Aii) hold. The sequences {xk} and
{zk} generated by Algorithm 1 are bounded. Furthermore, we have

lim
k→∞

∥xk − zk∥ = 0; (3.3)

lim
k→∞

∥xk+1 − xk∥ = 0. (3.4)

From the above Lemma (3.2), we can deduce the followings

• Since {xk} is bounded and F is Lipschitz continuous, then there exists a
positive constant γ such that

∥Fk∥ ≤ γ, ∀ k ≥ 0. (3.5)

• From the definition of zk and (3.3), it holds that

lim
k→∞

αk∥dk∥ = 0. (3.6)

The following theorem establish the global convergence of Algorithm 1.

Theorem 3.3. Suppose that assumptions (Ai)-(Aii) hold, and {xk} is the sequence
generated by Algorithm 1, then

lim
k→∞

inf ∥F (xk)∥ = 0. (3.7)
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Proof. If (3.7) does not hold, then there exists a positive constant ϵ for which

∥Fk∥ ≥ ϵ, ∀ k ≥ 0. (3.8)

From step 2 of Algorithm 1, and Remarks (Rii)-(Riv), we have

∥dk∥ =
∥∥−λkFk + βPHS

k dk−1

∥∥
≤ λk∥Fk∥+

∣∣βPHS
k

∣∣ ∥dk−1∥

≤ b∥Fk∥+

[
|⟨Fk, νk−1⟩|
⟨wk−1, dk−1⟩

θk + 2

(
∥νk−1∥θk

⟨wk−1, dk−1⟩

)2

|⟨Fk, dk−1⟩|

]
∥dk−1∥

≤ b∥Fk∥+
[
∥Fk∥∥νk−1∥
⟨wk−1, dk−1⟩

+
2∥νk−1∥2

⟨wk−1, dk−1⟩2
∥Fk∥∥dk−1∥

]
∥dk−1∥

≤ bγ +

[
(L+ r)αk−1γ∥dk−1∥

∥dk−1∥2
+

2(L+ r)2α2
k−1∥dk−1∥2

∥dk−1∥4
γ∥dk−1∥

]
∥dk−1∥

= bγ + (L+ r)αk−1γ + 2(L+ r)2α2
k−1γ

≤ bγ + (L+ r)ξγ + 2(L+ r)2ξ2γ.

The last inequality applies the definition of αk in step 3 of Algorithm 1. Let
M := bγ + (L+ r)ξγ + 2(L+ r)2ξ2γ, then we have

∥dk∥ ≤ M, ∀ k ≥ 0, (3.9)

which implies the search direction is bounded.
If αk ̸= ξ, then by the definition of αk, ρ

−1αk does not satisfy the line search (2.5),
i.e.,

−⟨F (xk + ρ−1αkdk), dk⟩ < σρ−1αk∥dk∥2.

Applying Cauchy-Schwarz inequality and using (2.7) and (2.13), we have

c∥Fk∥2 ≤ −⟨Fk, dk⟩
= ⟨F (xk + ρ−1αkdk)− Fk, dk⟩ − ⟨F (xk + ρ−1αkdk), dk⟩
≤ Lρ−1αk∥dk∥2 + σρ−1αk∥dk∥2.

This together with (3.8) and (3.9) imply

αk∥dk∥ ≥ cρ

(L+ σ)
· ∥Fk∥2

∥dk∥

≥ cρϵ2

(L+ σ)M
,

(3.10)

which contradicts (3.6). Thus, (3.7) holds and the proof is complete.
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4 Numerical Experiments

In this section, we report the results of some numerical experiments and com-
pare the performance of the PHS method with that of the PCG method in [14].
For our PHS algorithm, the parameters were set as follows σ = 0.0001, ρ = 0.55,
ξ = 1 and r = 0.01. The parameters in the PCG method come from [14]. All
algorithms terminate whenever ∥F (xk)∥∞ ≤ 10−6 or the number of iterations ex-
ceeds 1,000. A failure is reported and denoted by the symbol ′−′ if any of the
tested algorithms fails to satisfy the stopping criterion. All codes were written in
MATLAB R2017a and run on a PC with intel Core(TM) i5-8250u processor with
4GB of RAM and CPU 1.60GHZ. We solved 6 constrained test problems (See,
Appendix5.1) using 8 different initial starting points (ISP) (See, Table 1). The
numerical results are reported in Tables 2 − 7 for number of iterations (ITER),
number of function evaluation (FEVAL), CPU time (TIME) and the norm of the
residual function F at the approximate solution (NORM).
The performance of the two methods was evaluated using the Dolan and Moré

Table 1: The initial points used for the test problems

Initial Starting Point (ISP) Values

x1 (1, 1, 1, · · · , 1)T
x2 (0.1, 0.1, 0.1, · · · , 0.1)T
x3 (12 ,

1
22
, 1
23
, · · · , 1

2n )
T

x4 (1− 1
n , 2−

2
n , 2−

3
n , · · · , n− 1)T

x5 (0, 1
n ,

2
n , · · · ,

n−1
n )T

x6 (1, 12 ,
1
3 , · · · ,

1
n)

T

x7 (n−1
n , n−2

n , n−3
n , · · · , 0)T

x8 ( 1n ,
2
n ,

3
n , · · · , 1)

T

[6] performance profiles. That is, we plotted the fraction ρ(τ) of the test problems
for which each of the methods was within a factor τ of the best solver. Figures
1− 3 presented the performance profile referring to the number of iterations, the
CPU time and number of function evaluations respectively. It can be observed
from the Figures 1− 3 that our proposed PHS method wins higher percentage, of
the numerical experiment, than the PCG method.
Numerical results listed in Tables 2−7 show that the proposed method is efficient
for solving problems (1.1). Based on the information presented in the Tables 2−7,
it could be seen that our PHS method reached the solutions (or approximate so-
lutions) of all the test problems considered. The PCG method failed to reach to
the solution of problem 2 with all the given initial guess; as well as the problems
3 and 7 with some given initial guess. Though all the failures were as a result of
the number iterations exceeding 1,000. Therefore, in general, if we consider the
number of wins in terms of ITER, TIME and FEVAL, our proposed PHS method
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performed better than the PCG method.

Figure 1: Dolan and Moré performance profile with respect to
number of iterations

Figure 2: Dolan and Moré performance profile with respect to
CPU time
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Table 2: Experimental Results of PHS and PCG methods for problem 1

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 6 14 0.0045 7.42E-08 9 20 0.0056 1.9E-07
x2 5 12 0.0018 1.75E-08 8 18 0.0036 2.7E-07
x3 5 12 0.0060 5.97E-08 11 26 0.0134 1.83E-07
x4 5 12 0.0022 7.52E-07 23 62 0.0169 8.6E-07
x5 6 14 0.0061 1.29E-07 14 32 0.0075 6.13E-07
x6 6 14 0.0054 1.25E-08 11 26 0.0061 2.18E-07
x7 7 17 0.0087 5.28E-07 14 32 0.0041 6.13E-07
x8 7 17 0.0087 7.48E-07 14 32 0.0078 6.12E-07

10000

x1 6 14 0.0544 2.35E-07 9 20 0.0144 6E-07
x2 5 12 0.0234 5.52E-08 8 18 0.0101 8.52E-07
x3 5 12 0.0257 1.89E-07 11 26 0.0547 1.83E-07
x4 6 14 0.0255 2.35E-08 27 73 0.0842 9.15E-07
x5 6 14 0.0084 4.08E-07 15 34 0.0216 9.14E-07
x6 6 14 0.0276 3.95E-08 11 26 0.0304 2.17E-07
x7 8 19 0.0350 1.65E-08 15 34 0.0384 9.14E-07
x8 8 19 0.0400 2.34E-08 15 34 0.0267 9.14E-07

50000

x1 6 14 0.0627 5.25E-07 10 22 0.0682 1.44E-07
x2 5 12 0.0380 1.23E-07 9 20 0.0764 2.05E-07
x3 5 12 0.0606 4.22E-07 11 26 0.0909 1.83E-07
x4 6 14 0.0577 5.27E-08 27 77 0.2537 4.11E-07
x5 6 14 0.0699 9.12E-07 16 36 0.1353 3.82E-07
x6 6 14 0.0748 8.82E-08 11 26 0.1161 2.17E-07
x7 8 19 0.0902 3.7E-08 16 36 0.0794 3.82E-07
x8 8 19 0.0924 5.23E-08 16 36 0.1215 3.82E-07

100000

x1 6 14 0.1135 7.42E-07 10 22 0.2489 2.04E-07
x2 5 12 0.0783 1.75E-07 9 20 0.1466 2.9E-07
x3 5 12 0.0841 5.97E-07 11 26 0.1452 1.83E-07
x4 6 14 0.0766 7.45E-08 28 77 0.3792 5.62E-07
x5 7 16 0.1171 1.28E-08 16 36 0.2204 5.4E-07
x6 6 14 0.1024 1.25E-07 11 26 0.2028 2.17E-07
x7 8 19 0.1925 5.23E-08 16 36 0.1584 5.4E-07
x8 8 19 0.2452 7.4E-08 16 36 0.2110 5.4E-07
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Table 3: Experimental Results of PHS and PCG methods for problem 2

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 71 144 0.0569 9.71E-07 - - - -
x2 67 135 0.0874 9.78E-07 - - - -
x3 68 137 0.0458 9.88E-07 - - - -
x4 69 139 0.0440 9.95E-07 - - - -
x5 70 142 0.0989 9.74E-07 - - - -
x6 64 130 0.1001 9.83E-07 - - - -
x7 64 130 0.0837 9.99E-07 - - - -
x8 65 132 0.0492 9.77E-07 - - - -

10000

x1 115 232 0.3366 9.9E-07 - - - -
x2 111 223 0.3259 9.94E-07 - - - -
x3 113 227 0.3278 9.81E-07 - - - -
x4 114 229 0.3139 9.85E-07 - - - -
x5 114 230 0.3135 9.92E-07 - - - -
x6 108 218 0.2975 9.97E-07 - - - -
x7 109 220 0.2679 9.87E-07 - - - -
x8 109 220 0.2801 9.94E-07 - - - -

50000

x1 165 332 1.9240 9.93E-07 - - - -
x2 161 323 1.8299 9.95E-07 - - - -
x3 162 325 1.8498 9.99E-07 - - - -
x4 164 329 1.8878 9.89E-07 - - - -
x5 164 330 1.8161 9.94E-07 - - - -
x6 158 318 1.7401 9.97E-07 - - - -
x7 159 320 1.8226 9.9E-07 - - - -
x8 159 320 1.8222 9.95E-07 - - - -

100000

x1 193 388 4.4117 9.99E-07 - - - -
x2 190 381 4.3067 9.9E-07 - - - -
x3 191 383 4.3943 9.94E-07 - - - -
x4 192 385 4.2546 9.96E-07 - - - -
x5 193 388 4.3012 9.89E-07 - - - -
x6 187 376 4.2144 9.92E-07 - - - -
x7 187 376 4.1895 9.97E-07 - - - -
x8 188 378 4.2385 9.9E-07 - - - -
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Table 4: Experimental Results of PHS and PCG methods for problem 3

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 2 5 0.0024 0 9 19 0.0189 5.69E-07
x2 2 5 0.0030 0 7 15 0.0061 2.55E-07
x3 2 5 0.0032 0 11 23 0.0184 4.47E-07
x4 2 5 0.0019 0 215 431 0.0953 4.67E-07
x5 2 5 0.0027 0 14 29 0.0088 6.07E-07
x6 2 5 0.0035 0 12 25 0.0129 8.2E-07
x7 2 5 0.0040 0 14 29 0.0147 6.07E-07
x8 2 5 0.0035 0 14 29 0.0250 6.08E-07

10000

x1 2 5 0.0169 0 10 21 0.0457 1.82E-07
x2 2 5 0.0169 0 7 15 0.0557 7.55E-07
x3 2 5 0.0057 0 12 25 0.0561 2.18E-07
x4 2 5 0.0088 0 - - - -
x5 2 5 0.0085 0 15 31 0.0157 6.33E-07
x6 2 5 0.0154 0 12 25 0.0387 3.42E-07
x7 2 5 0.0155 0 15 31 0.0558 6.33E-07
x8 2 5 0.0133 0 15 31 0.0468 6.33E-07

50000

x1 2 5 0.0191 0 10 21 0.0953 4.04E-07
x2 2 5 0.0143 0 8 17 0.0429 1.8E-07
x3 2 5 0.0429 0 12 25 0.0860 2.77E-07
x4 2 5 0.0366 0 - - - -
x5 2 5 0.0418 0 16 33 0.0719 4.11E-07
x6 2 5 0.0138 0 12 25 0.1042 3.4E-07
x7 2 5 0.0147 0 16 33 0.1242 4.11E-07
x8 2 5 0.0281 0 16 33 0.0917 4.11E-07

100000

x1 2 5 0.0786 0 10 21 0.1751 5.71E-07
x2 2 5 0.0670 0 8 17 0.1099 2.55E-07
x3 2 5 0.0473 0 12 25 0.2114 2.84E-07
x4 2 5 0.0804 0 - - - -
x5 2 5 0.0736 0 16 33 0.1523 5.83E-07
x6 2 5 0.0797 0 12 25 0.1159 3.39E-07
x7 2 5 0.0393 0 16 33 0.2692 5.83E-07
x8 2 5 0.0336 0 16 33 0.1723 5.83E-07
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Table 5: Experimental Results of PHS and PCG methods for problem 4

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 5 12 0.0044 2.34E-07 12 28 0.0100 4.79E-07
x2 5 12 0.0050 3.56E-07 12 28 0.0053 5.04E-07
x3 5 12 0.0085 3.43E-07 11 25 0.0151 6.45E-07
x4 5 12 0.0040 3.02E-07 24 57 0.0166 6.41E-07
x5 5 12 0.0089 9.81E-08 12 28 0.0069 3.4E-07
x6 5 12 0.0117 2.98E-08 11 25 0.0244 3.21E-07
x7 5 12 0.0036 3.86E-08 12 28 0.0092 3.4E-07
x8 5 12 0.0023 1.07E-07 12 28 0.0196 3.4E-07

10000

x1 5 12 0.0241 7.43E-07 10 22 0.0245 9.35E-07
x2 6 14 0.0403 1.12E-08 11 25 0.0404 5.58E-07
x3 6 14 0.0255 1.08E-08 11 25 0.0582 5.13E-07
x4 5 12 0.0396 9.59E-07 26 61 0.0479 2.76E-07
x5 5 12 0.0377 3.11E-07 11 25 0.0635 3.02E-07
x6 5 12 0.0381 9.44E-08 11 25 0.0598 4.67E-07
x7 5 12 0.0332 1.22E-07 11 25 0.0206 3.02E-07
x8 5 12 0.0227 3.38E-07 11 25 0.0256 3.02E-07

50000

x1 6 14 0.1080 1.65E-08 10 22 0.0782 3.82E-07
x2 6 14 0.0519 2.51E-08 10 22 0.0796 5.81E-07
x3 6 14 0.1098 2.41E-08 10 22 0.0752 6.03E-07
x4 6 14 0.0642 2.12E-08 22 51 0.1677 2.55E-07
x5 5 12 0.0416 6.95E-07 10 22 0.1065 6.3E-07
x6 5 12 0.0928 2.11E-07 10 22 0.1246 6.02E-07
x7 5 12 0.0709 2.72E-07 10 22 0.0794 6.3E-07
x8 5 12 0.0798 7.56E-07 10 22 0.1093 6.3E-07

100000

x1 6 14 0.2056 2.33E-08 10 22 0.2702 5.37E-07
x2 6 14 0.2159 3.55E-08 10 22 0.2228 8.18E-07
x3 6 14 0.2181 3.41E-08 10 22 0.4043 8.5E-07
x4 6 14 0.1575 3E-08 27 63 0.6067 5.58E-07
x5 5 12 0.1756 9.82E-07 10 22 0.2583 7.13E-07
x6 5 12 0.1430 2.99E-07 10 22 0.2421 8.5E-07
x7 5 12 0.2185 3.85E-07 10 22 0.2182 7.13E-07
x8 6 14 0.1625 1.06E-08 10 22 0.2701 7.13E-07
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Table 6: Experimental Results of PHS and PCG methods for problem 5

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 6 14 0.0043 5.72E-08 8 18 0.0039 2.2E-07
x2 5 12 0.0036 2.57E-07 8 18 0.0024 2.07E-07
x3 6 14 0.0058 1.69E-08 11 26 0.0041 2.37E-07
x4 6 14 0.0033 2.34E-07 2 16 0.0117 0
x5 6 15 0.0021 2.13E-07 16 38 0.0058 5.89E-07
x6 8 20 0.0066 1.69E-07 12 30 0.0061 8.61E-07
x7 9 23 0.0059 3.33E-07 16 38 0.0038 5.89E-07
x8 8 21 0.0089 1.4E-07 16 38 0.0057 1.27E-07

10000

x1 6 14 0.0234 1.81E-07 8 18 0.0344 6.97E-07
x2 5 12 0.0129 8.14E-07 8 18 0.0127 6.55E-07
x3 6 14 0.0260 5.33E-08 11 26 0.0194 2.37E-07
x4 6 14 0.0085 7.4E-07 2 16 0.0574 0
x5 6 15 0.0301 6.75E-07 18 41 0.0193 6.89E-07
x6 8 20 0.0365 5.35E-07 12 30 0.0268 8.79E-07
x7 10 25 0.0424 1.04E-08 18 41 0.0469 6.89E-07
x8 8 21 0.0346 4.42E-07 18 41 0.0592 7E-07

50000

x1 6 14 0.0595 4.04E-07 9 20 0.0571 1.67E-07
x2 6 14 0.0428 1.8E-08 9 20 0.0487 1.57E-07
x3 6 14 0.0487 1.19E-07 11 26 0.0422 2.37E-07
x4 7 16 0.0733 1.64E-08 2 16 0.0942 0
x5 7 17 0.0463 1.49E-08 19 43 0.1266 5.36E-07
x6 9 22 0.0363 1.19E-08 12 30 0.0628 8.81E-07
x7 10 25 0.1080 2.33E-08 19 43 0.0781 5.36E-07
x8 8 21 0.0698 9.89E-07 19 43 0.1430 5.39E-07

100000

x1 6 14 0.1261 5.72E-07 9 20 0.1067 2.37E-07
x2 6 14 0.1055 2.55E-08 9 20 0.1295 2.23E-07
x3 6 14 0.1446 1.69E-07 11 26 0.0874 2.37E-07
x4 7 16 0.1476 2.32E-08 2 16 0.1907 0
x5 7 17 0.1085 2.11E-08 19 43 0.1562 7.71E-07
x6 9 22 0.1520 1.68E-08 12 30 0.1062 8.81E-07
x7 10 25 0.2142 3.3E-08 19 43 0.1507 7.71E-07
x8 9 23 0.1512 1.39E-08 19 43 0.2290 7.71E-07
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Table 7: Experimental Results of PHS and PCG methods for problem 6

PHS PCG

DIM ISP ITER FEVAL TIME NORM ITER FEVAL TIME NORM

1000

x1 3 19 0.0059 0 4 32 0.0093 0
x2 79 327 0.0301 7.71E-07 120 533 0.0604 8.08E-07
x3 81 324 0.0789 6.86E-07 55 262 0.0721 9.14E-07
x4 74 294 0.0833 8.04E-07 1 3 0.0021 0
x5 3 20 0.0100 0 119 552 0.1024 9.58E-07
x6 75 298 0.0884 8.39E-07 72 337 0.0600 9.31E-07
x7 85 340 0.0629 9.91E-07 119 552 0.1006 9.58E-07
x8 81 329 0.0971 8.43E-07 122 567 0.0975 8.14E-07

10000

x1 3 19 0.0506 0 3 19 0.0283 0
x2 81 331 0.2181 8.62E-07 118 527 0.2777 9.48E-07
x3 82 335 0.2285 7.88E-07 55 262 0.1737 9.14E-07
x4 81 327 0.2253 6.59E-07 1 3 0.0162 0
x5 3 20 0.0272 0 168 928 0.4777 8.34E-07
x6 109 445 0.4070 8.21E-07 72 337 0.1808 9.33E-07
x7 84 308 0.2183 8.2E-07 168 928 0.4956 8.34E-07
x8 88 369 0.2223 9.88E-07 163 882 0.4958 8.27E-07

50000

x1 3 19 0.0941 0 3 19 0.0929 0
x2 81 332 0.7562 9.73E-07 126 563 1.1681 8.73E-07
x3 86 353 0.8052 7.38E-07 55 262 0.6576 9.14E-07
x4 89 363 1.6590 7.64E-07 1 3 0.0183 0
x5 3 20 0.0980 0 - - - -
x6 4 23 0.0566 0 72 337 0.6821 9.33E-07
x7 60 183 0.5077 8.25E-07 - - - -
x8 4 24 0.0578 0 - - - -

100000

x1 3 19 0.1246 0 3 19 0.1046 0
x2 86 351 2.4291 8.89E-07 124 556 2.9668 9.34E-07
x3 78 313 1.7048 8.64E-07 55 262 1.4446 9.14E-07
x4 7 38 0.2504 0 1 3 0.0807 0
x5 3 20 0.1796 0 5 48 0.3172 0
x6 4 23 0.2120 0 72 337 1.7967 9.33E-07
x7 110 473 4.4783 7.25E-07 5 48 0.3004 0
x8 4 24 0.1521 0 6 50 0.3814 0
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Figure 3: Dolan and Moré performance profile with respect to
number of function evaluations
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5 Conclusions

We proposed a projection conjugate gradient method for solving nonlinear mono-
tone equations with convex constraints. The proposed method is suitable for
large-scale monotone equations due to its low memory requirements and the global
convergent was established under some suitable assumptions. The numerical re-
sults presented indicate that the proposed PHS methods effectively solved all the
test problems considered using all the given initial points. The new method is
competitive and performed better, than the PCG method [14] compared with, in
most cases.
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5.1 Appendix

In this section we list the test problems used for the numerical experiments. The
mapping F is taking as F (x) = (f1(x), f2(x), · · · , fn(x))T , and x = (x1, x2, · · · , xn)

T .
Problem 1 [8]

fi(x) = 2xi − sin |xi|,

where Ω = Rn
+.

Problem 2 [8]

fi(x) = min[min(|xi|, x2
i ),max(|xi|, x3

i )],

where Ω = Rn
+.

Problem 3[9]

fi(xi) = log(|xi|+ 1)− xi

n
,

where Ω = Rn
+.

Problem 4 [8]

f1(x) = x1 − ecos(h(x1+x2))

fi(x) = xi − ecos(h(xi−1+xi+xi+1))

fn(x) = xn − ecos(h(xn−1+xn)),

for i = 2, 3, · · · , n− 1, where h = 1
n+1 and Ω = Rn

+.
Problem 5 [30]

fi(x) = exi − 1,
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where Ω = Rn
+.

Problem 6
f1(x) = 2x1 + x2 + ex1 − 1

fi(x) = −xi−1 + 2xi − xi+1 + exi − 1

fn(x) = −xn−1 + 2xn + exn − 1,

for i = 2, 3, · · · , n− 1, where Ω = Rn
+.
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