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Abstract : In this paper, we use the invariant subspace method to solve the
space-fractional telegraph equation, in which fractional derivative is considered
in the Caputo sense. We classify invariant subspaces for the space-fractional
telegraph equation. By choosing an appropriate invariant subspace, the space-
fractional telegraph equation is reduced to a system of fractional ordinary differ-
ential equations. Finally, finding the solutions of the system yields the solution of
space-fractional telegraph equation.
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1 Introduction

A fractional partial differential equation is a general form of a partial dif-
ferential equation by replacing the integer order derivatives with the fractional
order. Due to the extensive application of fractional differential equations in vari-
ous fields of engineering and science, many researchers have paid attention to find
the solutions of them.

1Corresponding author email 5910220097@email.psu.ac.th (S. Meas)

Copyright c⃝ 2019 by the Mathematical Association of Thailand. All
rights reserved.



154 Thai J. Math. (Special Issue, 2019)/ S. Meas and P. Kittipoom

Fractional telegraph equation is a simple example of fractional partial differen-
tial equation. Many analytical and approximate techniques have been developed
to derive their solutions. For example, Momani [1] derived the analytical and ap-
proximate solutions to the space and time fractional telegraph equations by using
Adomian decomposition method. Chen et al. [2] used the method of separation of
variable to solve time fractional telegraph equation with certain nonhomogeneous
boundary conditions. Srivastava et al. [3] derived the approximate solutions of
time fractional telegraph equation by using the reduced differential transforma-
tion method. Recently, Kumar [4]employed the homotopy analysis method and
Laplace transform to approximate the solutions of the space fractional telegraph
equation.

In recent decades, the invariant subspace method, initially developed by Galak-
tionov and Svirshchevskii [5] has been used as an effective and practical method for
constructing exact solutions to nonlinear partial differential equations. Later on,
it has been extended to fractional partial differential equations by many authors
in [6, 7, 8, 9].

In this paper, we apply the invariant subspace method to obtain exact so-
lutions for space-fractional telegraph equations. We classify invariant subspaces
for the space-fractional telegraph equation. By choosing an appropriate invariant
subspace, the space-fractional telegraph equation can be reduced to a system of
fractional ordinary differential equations subject to the boundary conditions. The
obtained reduced system of fractional ordinary differential equations can be solved
by using the Laplace transform method.

The organization of the article is as follows: in section 2, we recall some basic
definitions of fractional integrals and derivatives and show the idea of the invariant
subspace method. In section 3, we explain how the invariant subspace method can
be extended to find a solution of space-fractional telegraph equation. Finally, in
section 4, we apply the invariant subspace method to solve some examples.

2 Preliminaries

In this section, we introduce some definitions and present properties that are
used in the paper.

2.1 Fractional integral and derivatives

Definition 2.1. Suppose that α and t are positive real numbers. Then the Riemann-
Liouville fractional integral is defined by

Jα
t f(t) =

1

Γ(α)

∫ t

0

f(x)

(t− x)1−α
dx,

where

Γ(α) =

∫ +∞

0

tα−1e−tdt,
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is the Gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of
the function f is given by

Dα
t f(t) =

{
dn

dtn J
n−α
t f(t), n− 1 < α < n, n ∈ N,

dn

dtn f(t), α = n, n ∈ N.

Definition 2.3. The Caputo fractional derivative of order α > 0 of the function
f is given by

dαf

dtα
=

{
Jn−α
t

dn

dtn f(t), n− 1 < α < n, n ∈ N,
dn

dtn f(t), α = n, n ∈ N.

In particular, we denote by
∂α

∂xα
, the Caputo fraction partial derivative with respect

to x of order α.

Definition 2.4. [9, 10] Two-parameter function of Mittag-Leffler type is defined
as

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, α > 0, β > 0, (2.1)

e.g. E1,1(z) = ez, E2,1(z
2) = cosh(z), E2,1(−z2) = cos(z), E2,2(z

2) = sinh(z)
z ,

E2,2(−z2) = sin z
z , and z2E2,3(z

2) = E2,1(z
2)− 1.

Proposition 2.1. [10] Let n − 1 < α ≤ n, n ∈ N. The Laplace transform of the
Caputo derivative of order α is defined as

L
{
dαf(x)

dxα
; s

}
= sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0),

where F (s) is the Laplace transform of f(x).
Let α, β, λ ∈ R, α, β > 0. Then the Laplace transform of the two-parameter func-
tion of Mittag-Leffler type (2.1) is given by

L{zβ−1Eα,β(±λzα); s} =
sα−β

sα ∓ λ
, Re(s) > |λ|1/α. (2.2)

2.2 Invariant subspace method

Consider the evolution of partial differential equation of the form

ut = F [u], u = u(x, t), (2.3)
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where F is a nonlinear differential operator of order k, that is,

F [u] = F (x, u, ux, ..., ∂
k
xu), ∂k

xu =
∂ku

∂xk
.

Let Wn be a finite dimensional linear space spanned by linearly independent func-
tions f1(x), f2(x), ..., fn(x), that is,

Wn = L
{
f1(x), ..., fn(x)

}
=

{ n∑
i=1

cifi(x)| ci = constants, i = 1, 2, ..., n

}
.

Definition 2.5. A finite dimensional linear space Wn is said to be invariant with
respect to a differential operator F if F [Wn] ⊆ Wn, that is, F [u] ∈ Wn, for all
u ∈ Wn.

In order to solve the equation (2.3), we suppose that Wn is an invariant sub-
space with respect to a given operator F if F [Wn] ⊆ Wn and then operator F is
said to preserve or admit Wn, which means:

F [u] = F

[ n∑
i=1

ci(t)fi(x)

]
=

n∑
i=1

Ψi

(
c1(t), c2(t), ..., cn(t)

)
fi(x), (2.4)

where
{
Ψi

}
are the expansion coefficients of F [u] ∈ Wn on the basis

{
fi
}
.

We assume the solution of (2.3) by

u(x, t) =

n∑
i=1

ci(t)fi(x), (2.5)

where fi(x) ∈ Wn, i = 1, ..., n.
Since Wn is an invariant subspace under F, we obtain equation (2.4).
By substituting (2.4) and (2.5) into (2.3), we get

n∑
i=1

c′i(t)fi(x) =

n∑
i=1

Ψi(c1(t), c2(t), ..., cn(t))fi(x),

and
n∑

i=1

[
c′i(t)−Ψi(c1(t), c2(t), ..., cn(t)

]
fi(x) = 0.

Since f1(x), f2(x), ..., fn(x) are linearly independent functions, we obtain a system
of ODEs

c′i(t) = Ψi(c1(t), c2(t), ..., cn(t)), i = 1, 2, ..., n.

Finally, by solving this system, we obtain the desired solution (2.5).
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3 Explicit solution of space-fractional telegraph
equations

In this section, we will apply the invariant subspace method to classify some
invariant subspaces for the space-fractional telegraph equation and finally find a
solution of this equation.

Consider the space-fractional telegraph equation

∂αu

∂xα
=

∂2u

∂t2
+

∂u

∂t
+ u, 1 < α ≤ 2, (3.1)

where ∂α

∂xα is a space-fractional partial derivative in the Caputo sense. Now, we
denote the left side of equation (3.1) by

F [u] =
∂2u

∂t2
+

∂u

∂t
+ u. (3.2)

The following theorem shows an exact solution to the space-fractional telegraph
equation (3.1) by using the invariant subspace method.

Theorem 3.1. The space-fractional telegraph equation (3.1) admits a solution of
the form

u(x, t) = c1(x) + c2(x)t+ · · ·+ cn+1(x)t
n,

where ci(x) are solutions of the following system of fractional ODEs for i =
1, 2, · · · , n+ 1. 

dαc1(x)
dxα = 2c3(x) + c2(x) + c1(x),

dαc2(x)
dxα = 6c4(x) + 2c3(x) + c2(x),

...
dαcn+1(x)

dxα = cn+1(x).

(3.3)

Proof. The operator F [.] defined by (3.2) is invariant under Wn = L{1, t, · · · , tn}
because

F (c1 + c2t+ c3t
2 + · · ·+ cn+1t

n) = (2c3 + c2 + c1) + (6c4 + 2c3 + c2)t

+ · · ·+ cn+1t
n ∈ Wn.

Assume the solution u(x, t) as a linear combination of the elements in the invariant
subspace, that is,

u(x, t) = c1(x) + c2(x)t+ · · ·+ cn+1(x)t
n. (3.4)

Then we have

F [u(x, t)] = [2c3(x) + c2(x) + c1(x)] + [6c4(x) + 2c3(x) + c2(x)]t+ · · ·+ cn+1(x)t
n.

(3.5)
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Taking the fractional derivative of order α to both sides of equation (3.4), we
obtain

dαu(x, t)

dxα
=

dαc1(x)

dxα
+

dαc2(x)

dxα
t+ · · ·+ dαcn+1(x)

dxα
tn. (3.6)

Substituting (3.6) and (3.5) in (3.1), we get

dαc1(x)

dxα
+

dαc2(x)

dxα
t+ · · ·+ dαcn+1(x)

dxα
tn

=
[
2c3(x) + c2(x) + c1(x)

]
+

[
6c4(x) + 2c3(x) + c2(x)

]
t+ · · ·+ cn+1(x)t

n.

Since 1, t, · · · , tn are linearly independent, we obtain a system of fractional ordi-
nary differential equations (3.3).

Remark 3.1. Under the operator (3.2), there are several invariant subspaces
which can be proved in a similar way. In below, we classify some invariant sub-
spaces with respect to the operator (3.2).

1. The subspace W2 = L{1, eat}, a ̸= 0 is invariant under F because

F
[
c1 + c2e

at
]
= c1 + (a2c2 + ac2 + c2)e

at ∈ W2.

2. The subspace W 1
3 = L{1, sin(at), cos(at)}, a ̸= 0 is invariant under F be-

cause

F
[
c1 + c2 sin(at) + c3 cos(at)

]
= c1 + [c2 − ac3 − a2c2] sin(at)

+ [c3 + ac2 − a2c3] cos(at) ∈ W 1
3 .

3. The subspace W 2
3 = L{1, sinh(at), cosh(at)}, a ̸= 0 is invariant under F

because

F
[
c1 + c2 sinh(at) + c3 cosh(at)

]
= c1 + [c2 + ac3 + a2c2] sinh(at)

+ [c3 + ac2 + a2c3] cosh(at) ∈ W 2
3 .

4. The subspace W 3
3 = L{1, eat, teat}, a ̸= 0 is invariant under F because

F
[
c1 + c2e

at + c3te
at
]
= c1 + [(1 + a+ a2)c2 + (1 + 2a)c3]e

at

+ c3(1 + a+ a2)teat ∈ W 3
3 .

5. The subspace W 4
3 = L{1, eat cos bt, eat sin bt}, a, b ̸= 0 is invariant under F

because

F
[
c1 + c2e

at cos bt+ c3e
at sin bt

]
= c1 + [c2 + (ac2 + bc3) + (a2c2 + b2c2)]e

at cos bt

+ [c3 + (ac3 − bc2)− (abc2 + b2c3)

+ (a2c3 − abc2)]e
at sin bt ∈ W 4

3 .

The advantage of these different invariant subspaces is that, by choosing an
appropriate invariant subspace, we can solve the space fractional telegraph equation
subject to different boundary conditions.
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4 Illustrative Examples

In this section, we will apply the invariant subspace method to solve some
examples in [1], in which the author used the Adomian decomposition method in
deriving the exact solutions to the fractional Telegraph equations.

Example 4.1. Consider the space-fractional telegraph equation with 1 < α ≤ 2

∂αu

∂xα
=

∂2u

∂t2
+

∂u

∂t
+ u, x > 0, t > 0, (4.1)

subject to the boundary conditions u(0, t) = e−t, ∂u(0,t)
∂x = e−t.

Under the operator

F [u] =
∂2u

∂t2
+

∂u

∂t
+ u,

we choose the invariant subspace

W2 = L{1, e−t}.

Assume the solution u(x, t) as a linear combination of the elements in the invariant
subspace, that is,

u(x, t) = a(x) + b(x)e−t.

It follows from the boundary conditions that

a(0) = 0, b(0) = 1, a′(0) = 0, b′(0) = 1.

Substituting u(x, t) into the equation (4.1)

dαa(x)

dxα
+ e−t d

αb(x)

dxα
= a(x) + b(x)e−t,

and using the facts that 1 and e−t are linearly independent, we obtain the system
of space-fractional ODEs and the corresponding boundary conditions

dα

dxα
a(x) = a(x), a(0) = 0, a′(0) = 0, (4.2)

dα

dxα
b(x) = b(x), b(0) = 1, b′(0) = 1. (4.3)

In order to solve the above space-fraction ODEs, we use the Laplace transform
technique as shown in Proposition 2.1 when n = 2, which turns the space-fraction
ODE (4.2) into

sαA(s)− sα−1a(0)− sα−2a′(0) = A(s)

A(s) = 0.
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Taking the inverse Laplace transform, we get a(x) = 0.
Applying the Laplace transform to both sides of (4.3) yields

sαB(s)− sα−1b(0)− sα−2b′(0) = B(s)

B(s) =
sα−1

sα − 1
+

sα−2

sα − 1

= L{Eα,1(x
α); s}+ L{xEα,2(x

α); s}.

Taking the inverse Laplace transform gives

b(x) = Eα,1(x
α) + xEα,2(x

α).

Therefore, the exact solution of equation (4.1) is

u(x, t) = e−t
[
Eα,1(x

α) + xEα,2(x
α)
]
,

which is the same solution obtained by the Adomian decomposition method by
Momani [1]. In particular, if α = 2, the solution of (4.1) is

u(x, t) = e−t
[
E2,1(x

2) + xE2,2(x
2)
]
= e−t

[
coshx+ sinhx

]
= ex−t,

which is the same as the exact solution of the classical telegraph equation.

Example 4.2. Consider the nonhomogeneous space-fractional telegraph equation

∂αu

∂xα
=

∂2u

∂t2
+

∂u

∂t
+ u− x2 − t+ 1, x > 0, t > 0, (4.4)

subject to the boundary conditions u(0, t) = t, ∂u(0,t)
∂x = 0.

In this case, we choose the invariant subspace

W ′
2 = L{1, t}

and search for a solution of the form

u(x, t) = a(x) + b(x)t.

By substituting u(x, t) into the equation (4.4), we obtain the system of space-
fractional equation with the corresponding boundary conditions:

dαa(x)

dxα
= a(x) + b(x)− x2 + 1, a(0) = a′(0) = 0, (4.5)

dαb(x)

dxα
= b(x) + 1, b(0) = 1, b′(0) = 0. (4.6)

Applying the Laplace transform to (4.6), we get

sαB(s)− sα−1b(0)− sα−2b′(0) = B(s)− 1

s
,
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which implies

B(s) =
sα−1

sα − 1
− 1

s(sα − 1)

=
sα−1

sα − 1
−
[
sα−1

sα − 1
− 1

s

]
=

1

s
.

Taking the inverse Laplace transform gives b(x) = 1. Now applying the Laplace
transform technique to (4.5), we get

A(s) =
2

s(sα − 1)
− 2

s3(sα − 1)

= 2

[
sα−1

sα − 1
− 1

s
− sα−3

sα − 1
+

1

s3

]
= 2L{Eα,1(x

α); s} − 2L{1} − 2L{x2Eα,3(x
α); s}+ L{x2}.

Taking the inverse Laplace transform, we obtain

a(x) = 2Eα,1(x
α)− 2− 2x2Eα,3(x

α) + x2.

Then the exact solution of the space-fractional nonhomogeneous telegraph equation
(4.4) is given by

u(x, t) = 2Eα,1(x
α)− 2− 2x2Eα,3(x

α) + x2 + t.

This is the same result as discussed in [1] but simply to solve. For α = 2, we
obtain the solution of a traditional nonhomogeneous telegraph equation

u(x, t) = 2E2,1(x
2)− 2− 2

[
E2,1(x

2)− 1
]
+ x2 + t = x2 + t.

5 Conclusions

In this paper, we employ the invariant subspace method to obtain exact so-
lutions of the space-fractional telegraph equations. According to the linearity of
telegraph equations, they admit several invariant subspaces. However, by choosing
an appropriate invariant subspace, the fractional telegraph equation can easily be
reduced to a system of space-fractional ordinary differential equations, subject to
certain boundary conditions. Then, the Laplace transform method is applied to
solve this reduced system of fractional differential equations. Finally, the obtained
solutions are represented in terms of the Mittag-Leffer functions and approach the
solutions of traditional telegraph equations with integer order.
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