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1 Introduction

Consider finding a point x ∈ Ω such that

F(x) = 0, (1.1)

where F : Ω → Rn is continuous, Ω ⊂ Rn is nonempty and convex. The corresponding
unconstrained problem when Ω =Rn have been discussed extensively, and many iterative
methods have been proposed by many researchers. Some examples are; Newton method,
quasi-Newton method, Gauss-Newton, Levenberg-Marquardt method and their variants
(see [2, 7, 8, 10, 12, 18–20, 22, 26, 28, 29, 33, 38, 39]). With a good initial guess, these
algorithms are very attractive as they have fast convergence rate. However, there are
relatively few work on constrained problem (1.1).

Constrained problem (1.1) has applications in chemical equilibrium systems and eco-
nomic equilibrium problems (see [11, 27]). Iterative methods for solving constrained
monotone nonlinear equations have recently received relatively high attention. For exam-
ple, in [43] a multivariate spectral projected gradient method (MSGP) was proposed. The
method is an extension of the multivariate gradient method in [17] to bound constrained
optimization. Numerical comparison of the method with the classical spectral gradient
(SPG) method shows the efficiency of the method. Xiao and Zhu [41] proposed a pro-
jected conjugate gradient (CGD) to solve constrained problem of the form (1.1). This
method can be viewed as an extension of the CG−Descent method for solving convex
constrained problems. An extension of the conjugate gradient that belongs to the two
unified frameworks to solve the constrained monotone equations was presented in [25].
Numerical experiments were also given to test the efficiency of the methods. Also in [34],
three derivative-free projection methods for solving nonlinear equations with convex con-
straints were presented. These methods can be regarded as a combination of some recently
developed conjugate gradient methods and the well-known projection technique. How-
ever, Sun and Liu [35] proposed a new hybrid conjugate gradient projection method for
convex constrained equations. The method was based on the two famous Hestenes-Stiefel
and Dai-Yuan conjugate gradient methods. Two new supermemory gradient methods for
solving nonlinear monotone equations with convex constraints were proposed by Ou and
Liu in [30]. Furthermore, Liu and Li [24] presented a projection method to solve mono-
tone nonlinear equations with convex constraints. This method is a modification of the
method in [41].

Motivated by these methods, we propose a descent Dai-Liao conjugate gradient pro-
jection method for constrained nonlinear monotone equations, which is an extension of
the method in [1]. The global convergence was established under suitable conditions.
Numerical examples were also presented to show the efficiency of the method proposed.

The remaining part of the paper is organized as follows. Section 2 will summarize
some basic concepts and related properties which will be used in subsequent sections.
Section 3 provides the proposed method and its algorithm. The global convergence of
the algorithm is established in Section 4 and the last section will present some numerical
results to show its practical performance, and apply it to solve the sparse signal recon-
struction in compressive sensing.
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2 Preliminaries
Let Ω be a nonempty, closed and convex subset of Rn. Then for any x ∈ Rn, its pro-

jection onto Ω is defined as
PΩ(x) = argmin{∥x− y∥ : y ∈ Ω}.

The map PΩ : Rn → Ω is called a projection operator and has the nonexpansive property,
that is, for all x,y ∈ Rn,

∥PΩ(x)−PΩ(y)∥ ≤ ∥x− y∥, ∀x,y ∈ Rn. (2.1)

The following propositions [42, 44] give some basic properties of the projection operator
PΩ.

Proposition 2.1. Let Ω ⊂ Rn be nonempty, closed and convex. Then for all x ∈ Rn and
y ∈ Ω,

(PΩ(x)− x)T (y−PΩ(x))≥ 0.

Proposition 2.2. Let Ω ⊂Rn be nonempty, closed and convex. Then for all x,d ∈Rn and
α ≥ 0, define x(α) := PΩ(x−αd). Then dT (x(α)− x) is nonincreasing with respect to
α ≥ 0.

The following assumptions are helpful throughout this paper.

Assumption A
(i) The solution set of problem (1.1) is nonempty.

(ii) The function F is Lipschitz continuous, that is there exists a positive constant L such
that

∥F(x)−F(y)∥ ≤ L∥x− y∥, (2.2)

for all x,y ∈ Rn.

(iii) F is uniformly monotone, that is,

⟨F(x)−F(y),x− y⟩ ≥ c∥x− y∥2, c > 0, (2.3)

for all x,y ∈ Rn.

3 Proposed Algorithm
Let x0 be an initial point. An iterative scheme for solving (1.1) has the general form

xk+1 = xk + sk, k = 0,1,2, · · · , (3.1)
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where sk = αkdk, αk is the step length obtained via some suitable line search and dk is the
search direction.

In this section, we propose an extension of the descent Dai-Liao type method in [1] to
solve convex constrained nonlinear equations of the form (1.1). The direction is defined
as

dk =

{
−F(xk), if k = 0,
−F(xk)+βkdk−1, if k ≥ 1,

(3.2)

where βk is the descent Dai-Liao conjugate gradient parameter given as

βk =
F(xk)

T yk−1
yT

k−1dk−1
− tk

F(xk)
T sk−1

yT
k−1dk−1

, tk = p ∥yk−1∥2

sT
k−1yk−1

−q
sT
k−1yk−1
∥sk−1∥2 , p ≥ 1

4 , q ≤ 0,

yk = F(xk+1)−F(xk), sk = zk − xk = αkdk.

Notice that the CG parameter in (3.2) is a generalization of the two well known CG
parameters for solving nonlinear equations. If p=2, q=0, then βk will reduce to that of
Hager and Zhang [15]. Also if p=1, q=0, βk reduce to that of Dai and Kou [9].

Now all is set to describe our proposed algorithm, which is an extension of the method
in [1] to solve convex constrained problems.

Algorithm 3.1. Descent Dai-Liao projection method (DLP)

Step 0. Given x0 ∈ Ω, ρ, σ ∈ (0,1), stopping tolerance ε > 0, Set k = 0.

Step 1. Compute F(xk). If ∥F(xk)∥ ≤ ε stop, else go to Step 2.
Step 2. Compute dk by (3.2). Stop if dk = 0.
Step 3. Compute zk = xk +αkdk, where αk = ρmk with mk being the smallest nonneg-

ative integer m such that

−F(xk +ρmdk)
T dk ≥ σρm∥F(xk +ρmdk)∥∥dk∥2. (3.3)

Step 4. If zk ∈ Ω and ∥F(zk)∥ ≤ ε , stop. Else compute the next iterate

xk+1 = PΩ[xk −ζkF(zk)]

where

ζk =
F(zk)

T (xk − zk)

∥F(zk)∥2 .

Step 5. Let k = k+1 and go to Step 1.



132 Thai J. Math. (Special Issue, 2019)/ A.B. Abubakar et al.

4 Global convergence analysis
To prove the global convergence of Algorithm 3.1, the following preliminaries are

needed.

Lemma 4.1. [3] Let dk be defined by (3.2), then

F(xk)
T dk =−λk∥F(xk)∥2, λk > 0, ∀k ∈ N. (4.1)

Lemma 4.2. Let {xk} be generated by Algorithm 3.1, then

lim
k→∞

αk∥dk∥= 0.

Proof. We start by showing that the sequences {xk} and {zk} are bounded. Let x∗ be an
arbitrary solution of (1.1), then by monotonicity of F , we get

⟨F(zk),xk − x∗⟩ ≥ ⟨F(zk),xk − zk⟩. (4.2)

Also by definition of zk and the line search (3.3), we have

⟨F(zk),xk − zk⟩ ≥ σαk∥F(zk)∥∥dk∥2 ≥ 0. (4.3)

So, we have

∥xk+1 − x∗∥2 = ∥PΩ[xk −ζkF(zk)]−PΩ(x∗)∥2

≤ ∥xk −ζkF(zk)− x∗∥2

≤ ∥xk − x∗∥2 −2ζk⟨F(zk),xk − zk⟩+∥ζkF(zk)∥2

= ∥xk − x∗∥2 − ⟨F(zk),xk − zk⟩2

∥F(zk)∥2 .

(4.4)

Thus the sequence {∥xk − x∗∥} is non increasing and convergent, and hence {xk} is
bounded.
From (4.4), we get

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥.

Using the above inequality recursively, we have

∥xk − x∗∥ ≤ ∥x0 − x∗∥, ∀k ≥ 0.

Therefore by (2.2)

∥F(xk)∥= ∥F(xk)−F(x∗)∥ ≤ L∥xk − x∗∥ ≤ L∥x0 − x∗∥.
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Letting τ = L∥x0 − x∗∥, then

∥F(xk)∥ ≤ τ ∀k ≥ 0. (4.5)

Also from the definition of zk, monotonicity of F and the Cauchy-Schwatz inequality, we
obtain

σ∥xk − zk∥=
σ∥αkdk∥2

∥xk − zk∥
≤ ⟨F(zk),xk − zk⟩

∥xk − zk∥
≤ ⟨F(xk),xk − zk⟩

∥xk − zk∥
≤ ∥F(xk)∥. (4.6)

The boundedness of the sequences {xk} and {F(xk)} together with equation (4.6), implies
the sequence {zk} is bounded.

From the boundedness of {zk}, for any x∗ ∈ Ω′
, where Ω′

is the solution set of (1.1),
the sequence {zk −x∗} is also bounded, that is, there exists a positive constant ν > 0 such
that

∥zk − x∗∥ ≤ ν .

This together with the Lipschitz continuity of F , we have

∥F(zk)∥= ∥F(zk)−F(x̄)∥ ≤ L∥zk − x̄∥ ≤ Lν .

Therefore, using equation (4.4), we have

σ2

(Lν)2

∞

∑
k=0

∥xk − zk∥4 ≤
∞

∑
k=0

(∥xk − x̄∥2 −∥xk+1 − x̄∥2)≤ ∥X0 − x̄∥< ∞. (4.7)

Equation (4.7) implies
lim
k→∞

∥xk − zk∥= 0. (4.8)

However, equation (2.1), the definition of ζk and the Cauchy-Schwatz inequality, we have

∥xk+1 − xk∥= ∥PΩ[xk −ζkF(zk)]− xk∥

≤ ∥xk −ζkF(zk)− xk∥

= ∥ζkF(zk)∥

= ∥xk − zk∥,

(4.9)

which yields
lim
k→∞

∥xk+1 − xk∥= 0.

Thus, by equation (4.8) and definition of zk, then

lim
k→∞

αk∥dk∥= 0. (4.10)
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Lemma 4.3. [1] Suppose Assumption A (ii) hold and the sequence {xk} be generated by
Algorithm 3.1 is bounded. Then there exist M > 0 such that ∥dk∥ ≤ M, ∀k.

The following theorem establish the global convergence of Algorithm 3.1.

Theorem 4.4. Let {xk} and {zk} be sequences generated by Algorithm 3.1. Then

liminf
k→∞

∥F(xk)∥= 0. (4.11)

Proof. The proof will be divided into two cases;

Case I
If liminf

k→∞
∥dk∥= 0, we have

liminf
k→∞

∥F(xk)∥= 0.

By continuity of F , the sequence {xk} has some accumulation point x̃ such that F(x̃) = 0.
Since {∥xk − x̃∥} converges and x̃ is an accumulation point of {xk}, it follows that {xk}
converges to x̃.
Case II
If liminf

k→∞
∥dk∥> 0, we have

liminf
k→∞

∥F(xk)∥> 0.

By (4.10), it holds that
lim
k→∞

αk = 0.

Using the line search (3.3),

−F(xk +ρmk−1dk)
T dk < σρmk−1∥F(xk +ρmk−1dk)∥∥dk∥2,

and the boundedness of {xk},{dk}, we can choose a subsequence such that allowing k to
go to infinity in the above inequality results

−⟨F(x̃), d̃⟩ ≤ 0. (4.12)

On the other hand, from (4.1) we have

−⟨F(x̃), d̃⟩= λk∥F(x̃)∥2 > 0. (4.13)

(4.12) and (4.13) indicates a contradiction. Therefore, liminf
k→∞

∥F(xk)∥ > 0 does not hold

and the proof is complete.

5 Numerical Experiment
In this section, for convenience sake, we denote Algorithm 3.1 by DLP method. We

also divided this section into two. First we compare DLP method with PCG method [24]
by solving some monotone nonlinear equations with convex constraints using different
initial points and several dimensions. Secondly, the DLP method is applied to solve the
ℓ1−regularization problem that arises from compressive sensing. All codes were written
in MATLAB R2017a and run on a PC with intel COREi5 processor with 4GB of RAM
and CPU 2.3GHZ.
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5.1 Experiment on some convex constrained nonlinear monotone equa-
tions

DLP and PCG methods have different line search implementation. The specific parame-
ters for each method are as follows:

DLP method: ρ = 0.6, σ = 0.01, p = 0.8 and q =−0.1

PCG method: ρ = 0.55, r = 0.1, σ = 0.0001.

All runs were stopped whenever

∥F(xk)∥< 10−5.

We test problems 1 to 6 with dimensions of n= 1000, 5000, 10000, 50000, 100000
and different initial points: x1 = (1,1, · · · ,1)T , x2 = (2,2, · · · ,2)T , x3 = (3,3, · · · ,3)T ,
x4 = (5,5, · · · ,5)T , x5 = (8,8, · · · ,8)T , x6 = (0.5,0.5, · · · ,0.5)T , x7 = (0.1,0.1, · · · ,0.1)T ,
x8 = (10,10, · · · ,10)T . The results of experiment reported in Tables 1-6, which contain
the number of iterations (ITER), number of function evaluations (FVAL), CPU time in
seconds (TIME) and the norm at the approximate solution (NORM). The symbol ’−’ is
used to indicate that the number of iterations exceeds 1000 and/or the number of function
evaluations exceeds 2000.

The tested problems F(x) = ( f1(x), f2(x), · · · , fn(x))T , where x = (x1,x2, · · · ,xn)
T , are

listed as follows:

Problem 1 Logarithmic Function

Fi(x) = ln(|xi|+1)− xi

n
, for i = 1,2, · · · ,n and Ω = Rn

+.

Problem 2 [45]

Fi(x) = 2xi − sin |xi|, i = 1,2, · · · ,n and Ω = Rn
+.

Problem 3 Strictly convex function [37]

Fi(x) = exi −1, for i = 1,2, · · · ,n and Ω = Rn
+.

Problem 4 [23]

Fi(x) = min
(
min(|xi|,x2

i ),max(|xi|,x3
i )
)
, for i = 1,2, · · · ,n and Ω = Rn

+.

Problem 5 Linear monotone problem

F1(x) = 2.5x1 + x2 −1
Fi(x) = xi−1 +2.5xi + xi+1 −1, for i = 2,3, · · · ,n−1
Fn(x) = xn−1 +2.5xn −1

and Ω = Rn
+.
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Problem 6 Tridiagonal Exponential Problem [5]

F1(x) = x1 − ecos(h(x1+x2))

Fi(x) = xi − ecos(h(xi−1+xi+xi+1)) for i = 2,3, · · · ,n−1

Fn(x) = xn − ecos(h(xn−1+xn))

where h =
1

n+1
,

and Ω = Rn
+.

The results of the numerical performance in Table 1-6 indicate that the DLP method is
more efficient and promising than the PCG method for the given test problems as it solves
more problems with less itration than PCG method. It is worth mentioning that the PCG
method fails to solve problem 3 completely while DLP was able to solve the problem.
Thus, DLP method is an effective tool for solving large-scale nonlinear monotone equa-
tions with convex constraints.
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Table 1: Numerical Results for DLP and PCG for Problem 1 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 8 17 1.89492 2.97E-06 8 17 0.128661 5.25E-06
x2 9 19 0.041418 3.28E-06 9 19 0.007323 6.33E-06
x3 10 21 0.016162 2.03E-06 10 21 0.01382 4.22E-06
x4 11 23 0.010309 3.87E-06 11 23 0.007542 8.41E-06
x5 13 27 0.04376 1.46E-06 13 27 0.009152 3.41E-06
x6 7 15 0.008146 4.73E-06 7 15 0.005303 7.63E-06
x7 6 13 0.005442 1.62E-06 6 13 0.004304 2.35E-06
x8 14 29 0.015187 1.24E-06 14 29 0.01053 2.94E-06

5000

x1 8 17 0.134513 6.33E-06 9 19 0.040941 1.2E-06
x2 9 19 0.027834 6.96E-06 10 21 0.031976 1.45E-06
x3 10 21 0.022161 4.29E-06 10 21 0.019165 8.92E-06
x4 11 23 0.034782 8.12E-06 12 25 0.020538 1.91E-06
x5 13 27 0.03063 3.03E-06 13 27 0.025987 7.1E-06
x6 8 17 0.022179 1.01E-06 8 17 0.017705 1.76E-06
x7 6 13 0.015895 3.44E-06 6 13 0.011297 5E-06
x8 14 29 0.040785 2.55E-06 14 29 0.025084 6.06E-06

10000

x1 8 17 0.048993 8.89E-06 9 19 0.034986 1.69E-06
x2 9 19 0.046191 9.78E-06 10 21 0.041433 2.03E-06
x3 10 21 0.090236 6.02E-06 11 23 0.037036 1.35E-06
x4 12 25 0.052695 1.14E-06 12 25 0.056032 2.67E-06
x5 13 27 0.094989 4.24E-06 13 27 0.043289 9.95E-06
x6 8 17 0.037663 1.42E-06 8 17 0.028787 2.47E-06
x7 6 13 0.026615 4.83E-06 6 13 0.026157 7.02E-06
x8 14 29 0.075396 3.57E-06 14 29 0.056002 8.49E-06

50000

x1 9 19 0.16338 1.98E-06 9 19 0.138459 3.76E-06
x2 10 21 0.164065 2.18E-06 10 21 0.140902 4.52E-06
x3 11 23 0.196741 1.34E-06 11 23 0.148143 2.99E-06
x4 12 25 0.202617 2.53E-06 12 25 0.161228 5.94E-06
x5 13 27 0.245118 9.41E-06 14 29 0.224978 2.37E-06
x6 8 17 0.135402 3.16E-06 8 17 0.124476 5.49E-06
x7 7 15 0.143212 1.07E-06 7 15 0.094523 1.68E-06
x8 14 29 0.236847 7.93E-06 15 31 0.200173 2.02E-06

100000

x1 9 19 0.325882 2.8E-06 9 19 0.307435 5.32E-06
x2 10 21 0.385329 3.07E-06 10 21 0.268732 6.39E-06
x3 11 23 0.353255 1.89E-06 11 23 0.287227 4.23E-06
x4 12 25 0.402676 3.58E-06 12 25 0.329961 8.39E-06
x5 14 29 0.500612 1.33E-06 14 29 0.374643 3.35E-06
x6 8 17 0.304638 4.47E-06 8 17 0.220025 7.76E-06
x7 7 15 0.225243 1.52E-06 7 15 0.179665 2.37E-06
x8 15 31 0.509863 1.12E-06 15 31 0.401959 2.86E-06
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Table 2: Numerical Results for DLP and PCG for Problem 2 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 16 0.168292 2.3E-06 8 18 0.147909 1.77E-06
x2 6 15 0.005954 6.94E-06 8 18 0.009771 1.44E-06
x3 4 12 0.004452 8.01E-06 9 22 0.009044 1.95E-06
x4 7 19 0.012324 9.9E-06 9 22 0.00969 1.84E-06
x5 7 18 0.007935 8.47E-06 10 26 0.011794 1.88E-06
x6 7 16 0.005343 2.61E-06 8 18 0.006838 1.2E-06
x7 6 14 0.00599 6.28E-06 7 16 0.005667 2.51E-06
x8 7 20 0.00654 7.09E-06 10 26 0.011761 1.86E-06

5000

x1 7 16 0.022532 5.13E-06 8 18 0.014723 3.95E-06
x2 7 17 0.018983 1.55E-06 8 18 0.024142 3.22E-06
x3 5 14 0.035157 1.79E-06 9 22 0.026478 4.37E-06
x4 8 21 0.026948 2.21E-06 9 22 0.027124 4.12E-06
x5 8 20 0.017493 1.89E-06 10 26 0.021357 4.2E-06
x6 7 16 0.016511 5.84E-06 8 18 0.016335 2.69E-06
x7 7 16 0.015694 1.4E-06 7 16 0.03198 5.61E-06
x8 8 22 0.021744 1.59E-06 10 26 0.03207 4.16E-06

10000

x1 7 16 0.026521 7.26E-06 8 18 0.023789 5.59E-06
x2 7 17 0.033793 2.19E-06 8 18 0.040595 4.55E-06
x3 5 14 0.039069 2.53E-06 9 22 0.048168 6.17E-06
x4 8 21 0.041747 3.13E-06 9 22 0.041176 5.83E-06
x5 8 20 0.03451 2.68E-06 10 26 0.055611 5.95E-06
x6 7 16 0.032251 8.27E-06 8 18 0.061043 3.81E-06
x7 7 16 0.029218 1.99E-06 7 16 0.048982 7.94E-06
x8 8 22 0.038164 2.24E-06 10 26 0.03201 5.89E-06

50000

x1 8 18 0.132832 1.62E-06 9 20 0.130505 1.34E-06
x2 7 17 0.114783 4.9E-06 9 20 0.12844 1.09E-06
x3 5 14 0.082067 5.67E-06 10 24 0.146792 1.48E-06
x4 8 21 0.144584 7E-06 10 24 0.129886 1.4E-06
x5 8 20 0.142008 5.99E-06 11 28 0.146793 1.43E-06
x6 8 18 0.111679 1.85E-06 8 18 0.105336 8.52E-06
x7 7 16 0.095846 4.44E-06 8 18 0.084007 1.91E-06
x8 8 22 0.14324 5.02E-06 11 28 0.145255 1.41E-06

100000

x1 8 18 0.232209 2.3E-06 9 20 0.19899 1.9E-06
x2 7 17 0.223408 6.94E-06 9 20 0.220281 1.55E-06
x3 5 14 0.18994 8.01E-06 10 24 0.239587 2.1E-06
x4 8 21 0.265192 9.9E-06 10 24 0.247644 1.98E-06
x5 8 20 0.275303 8.47E-06 11 28 0.293617 2.02E-06
x6 8 18 0.218477 2.61E-06 9 20 0.229052 1.29E-06
x7 7 16 0.197266 6.28E-06 8 18 0.199297 2.7E-06
x8 8 22 0.28692 7.09E-06 11 28 0.271278 2E-06
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Table 3: Numerical Results for DLP and PCG for Problem 3 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 1 3 0.169863 0 - - - -
x2 1 3 0.001969 0 - - - -
x3 1 3 0.003447 0 - - - -
x4 1 3 0.002714 0 - - - -
x5 1 3 0.002207 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 1 3 0.001646 0 - - - -

5000

x1 1 3 0.004619 0 - - - -
x2 1 3 0.004941 0 - - - -
x3 1 3 0.005255 0 - - - -
x4 1 3 0.010039 0 - - - -
x5 1 3 0.005467 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 1 3 0.005478 0 - - - -

10000

x1 1 3 0.009167 0 - - - -
x2 1 3 0.007543 0 - - - -
x3 1 3 0.010398 0 - - - -
x4 1 3 0.011695 0 - - - -
x5 1 3 0.013835 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 1 3 0.008795 0 - - - -

50000

x1 1 3 0.028816 0 - - - -
x2 1 3 0.044788 0 - - - -
x3 1 3 0.040274 0 - - - -
x4 1 3 0.058309 0 - - - -
x5 1 3 0.041435 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 1 3 0.035683 0 - - - -

100000

x1 1 3 0.058245 0 - - - -
x2 1 3 0.074857 0 - - - -
x3 1 3 0.075574 0 - - - -
x4 1 3 0.096167 0 - - - -
x5 1 3 0.072731 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 1 3 0.065024 0 - - - -
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Table 4: Numerical Results for DLP and PCG for Problem 4 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 18 0.011634 1.62E-06 7 16 0.120907 2.05E-06
x2 8 24 0.009923 1.17E-06 7 17 0.006656 2.34E-06
x3 8 27 0.008514 1.06E-06 8 22 0.004618 1.42E-06
x4 1 14 0.005969 0 8 24 0.007953 1.84E-06
x5 1 14 0.004946 0 8 28 0.005406 2.73E-06
x6 7 17 0.008406 1.59E-06 7 16 0.00529 3.12E-06
x7 6 14 0.005229 4.62E-06 7 16 0.008888 1.93E-06
x8 1 14 0.003984 0 1 14 0.00308 0

5000

x1 7 18 0.014825 3.61E-06 7 16 0.01506 4.59E-06
x2 8 24 0.016148 2.62E-06 7 17 0.016877 5.22E-06
x3 8 27 0.045933 2.37E-06 8 22 0.022512 3.17E-06
x4 1 14 0.013368 0 8 24 0.017731 4.12E-06
x5 1 14 0.011936 0 8 28 0.019307 6.11E-06
x6 7 17 0.014228 3.55E-06 7 16 0.010712 6.99E-06
x7 7 16 0.018813 1.03E-06 7 16 0.011305 4.31E-06
x8 1 14 0.013579 0 1 14 0.007806 0

10000

x1 7 18 0.025476 5.11E-06 7 16 0.020382 6.49E-06
x2 8 24 0.040854 3.7E-06 7 17 0.024809 7.38E-06
x3 8 27 0.040338 3.35E-06 8 22 0.025178 4.48E-06
x4 1 14 0.019809 0 8 24 0.028127 5.82E-06
x5 1 14 0.020869 0 8 28 0.029626 8.64E-06
x6 7 17 0.024477 5.02E-06 7 16 0.019614 9.88E-06
x7 7 16 0.031616 1.46E-06 7 16 0.021254 6.1E-06
x8 1 14 0.016972 0 1 14 0.011905 0

50000

x1 8 20 0.118336 1.14E-06 8 18 0.084597 1.56E-06
x2 8 24 0.126378 8.28E-06 8 19 0.085577 1.77E-06
x3 8 27 0.128701 7.49E-06 9 24 0.105039 1.08E-06
x4 1 14 0.086889 0 9 26 0.107482 1.4E-06
x5 1 14 0.065903 0 9 30 0.110678 2.08E-06
x6 8 19 0.090905 1.12E-06 8 18 0.082901 2.37E-06
x7 7 16 0.07588 3.27E-06 8 18 0.073976 1.47E-06
x8 1 14 0.058512 0 1 14 0.039872 0

100000

x1 8 20 0.199397 1.62E-06 8 18 0.150982 2.2E-06
x2 9 26 0.249709 1.17E-06 8 19 0.149197 2.51E-06
x3 9 29 0.266483 1.06E-06 9 24 0.188938 1.52E-06
x4 1 14 0.140324 0 9 26 0.237588 1.98E-06
x5 1 14 0.107957 0 9 30 0.205939 2.93E-06
x6 8 19 0.192051 1.59E-06 8 18 0.141674 3.36E-06
x7 7 16 0.144332 4.62E-06 8 18 0.141241 2.07E-06
x8 1 14 0.112528 0 1 14 0.068503 0
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Table 5: Numerical Results for DLP and PCG for Problem 5 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 14 127 0.105925 5.57E-06 63 290 0.118814 8.48E-06
x2 15 136 0.026983 3.82E-06 52 241 0.036904 8.28E-06
x3 15 136 0.067848 4.2E-06 67 308 0.040847 8.16E-06
x4 15 136 0.054061 6.62E-06 75 344 0.041852 9.58E-06
x5 15 136 0.075227 9E-06 82 375 0.046013 9.96E-06
x6 15 139 0.073398 8.87E-06 69 316 0.038412 9.78E-06
x7 15 133 0.027191 6.25E-06 75 342 0.043601 8.82E-06
x8 16 145 0.038284 4.88E-06 86 393 0.045662 8.73E-06

5000

x1 14 127 0.089164 7.38E-06 62 286 0.113742 8.19E-06
x2 14 127 0.105737 8.54E-06 49 228 0.102778 9.94E-06
x3 15 136 0.092498 4.77E-06 64 295 0.150502 9.67E-06
x4 15 136 0.085904 7.25E-06 74 340 0.133203 9.18E-06
x5 16 145 0.085381 4.29E-06 81 371 0.161908 9.59E-06
x6 13 118 0.079126 9.9E-06 68 312 0.14433 9.42E-06
x7 17 154 0.101356 4.55E-06 74 338 0.152105 8.47E-06
x8 16 145 0.146068 5.28E-06 85 389 0.161277 8.4E-06

10000

x1 14 127 0.180379 7.53E-06 60 277 0.242601 9.78E-06
x2 14 127 0.163077 9.11E-06 49 228 0.200631 9.7E-06
x3 15 136 0.174075 5.07E-06 64 295 0.252515 9.57E-06
x4 15 136 0.170753 7.82E-06 74 340 0.29364 8.93E-06
x5 15 136 0.174473 9.91E-06 80 367 0.318742 9.39E-06
x6 14 127 0.169452 4.51E-06 68 312 0.273804 9.15E-06
x7 17 155 0.201102 7.8E-06 73 334 0.297999 8.45E-06
x8 16 145 0.179844 5.5E-06 84 385 0.331882 8.26E-06

50000

x1 14 127 0.652822 7.22E-06 59 273 0.986398 9.44E-06
x2 15 136 0.679862 4.67E-06 48 224 0.797601 9.22E-06
x3 15 136 0.689531 6.22E-06 62 287 1.034818 9.23E-06
x4 15 136 0.686255 8.28E-06 73 336 1.211206 8.58E-06
x5 16 145 0.80502 5.27E-06 79 363 1.308637 9.03E-06
x6 14 127 0.668592 5.04E-06 67 308 1.130524 8.82E-06
x7 16 143 0.747463 4.23E-06 70 321 1.14032 9.99E-06
x8 16 145 0.75258 5.72E-06 81 372 1.393427 9.76E-06

100000

x1 14 127 1.472278 7.76E-06 59 273 2.176673 9.33E-06
x2 15 136 1.514384 5.14E-06 47 220 1.751684 8.99E-06
x3 15 136 1.54378 6.18E-06 62 287 2.309171 8.95E-06
x4 15 136 1.573957 7.89E-06 72 332 2.732557 8.55E-06
x5 16 145 1.649696 4.71E-06 79 363 2.944461 8.9E-06
x6 14 127 1.45179 4.76E-06 67 308 2.503094 8.71E-06
x7 17 151 1.768302 6.89E-06 70 321 2.65583 9.7E-06
x8 16 145 1.680112 5.63E-06 81 372 3.043041 9.59E-06
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Table 6: Numerical Results for DLP and PCG for Problem 6 with given initial
points and dimensions

DIMENSION INITIAL POINT DLP PCG

ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 12 27 0.140661 7.91E-06 9 21 0.088999 7.74E-06
x2 12 27 0.014993 3.76E-06 9 21 0.007196 3.54E-06
x3 10 22 0.010194 9.48E-06 9 21 0.009945 1.51E-06
x4 13 29 0.01804 1.69E-06 10 23 0.007655 5.3E-06
x5 13 29 0.017393 5.4E-06 11 26 0.008004 8.57E-06
x6 12 27 0.015558 9.51E-06 9 21 0.010214 9.54E-06
x7 13 29 0.017285 1.05E-06 10 23 0.008567 1.79E-06
x8 13 29 0.031666 9.1E-06 12 28 0.012799 2.19E-06

5000

x1 8 18 0.032769 6.16E-06 9 20 0.028147 4.33E-06
x2 8 18 0.038725 2.99E-06 8 18 0.029038 4.87E-06
x3 7 16 0.028004 4.23E-06 8 18 0.030951 1.95E-06
x4 10 22 0.051045 6.07E-06 9 20 0.026379 7.94E-06
x5 12 26 0.043347 9.28E-06 10 23 0.022638 9.43E-06
x6 8 18 0.034827 7.34E-06 9 20 0.028056 5.33E-06
x7 8 18 0.03225 8.08E-06 9 20 0.027591 6.05E-06
x8 15 33 0.073159 2.03E-06 11 25 0.024584 2.21E-06

10000

x1 8 18 0.057972 3.72E-06 9 20 0.047859 1.9E-06
x2 8 18 0.055588 1.6E-06 8 18 0.043765 6.18E-06
x3 7 16 0.046981 5.65E-06 8 18 0.041857 2.42E-06
x4 8 18 0.051349 5.62E-06 9 20 0.047152 2.87E-06
x5 9 20 0.064618 8.93E-06 9 20 0.048928 7.34E-06
x6 8 18 0.053097 4.74E-06 9 20 0.043221 2.41E-06
x7 8 18 0.05044 5.54E-06 9 20 0.043262 2.81E-06
x8 10 22 0.060508 9.28E-06 10 22 0.049545 7.42E-06

50000

x1 8 18 0.209071 7.68E-06 9 20 0.179764 3.54E-06
x2 8 18 0.193629 3.21E-06 9 20 0.200668 1.48E-06
x3 8 18 0.19544 1.26E-06 8 18 0.152417 5.4E-06
x4 9 20 0.217707 1.03E-06 9 20 0.173361 4.7E-06
x5 9 20 0.218818 2.39E-06 10 22 0.189286 1.18E-06
x6 8 18 0.213434 9.92E-06 9 20 0.178929 4.56E-06
x7 9 20 0.221013 1.17E-06 9 20 0.172644 5.39E-06
x8 9 20 0.226795 3.31E-06 10 22 0.190464 1.64E-06

100000

x1 9 20 0.469107 1.09E-06 9 20 0.35486 5E-06
x2 8 18 0.400465 4.54E-06 9 20 0.373785 2.09E-06
x3 8 18 0.401195 1.78E-06 8 18 0.332346 7.63E-06
x4 9 20 0.446933 1.44E-06 9 20 0.360027 6.64E-06
x5 9 20 0.456224 3.34E-06 10 22 0.402609 1.65E-06
x6 9 20 0.51475 1.4E-06 9 20 0.360589 6.45E-06
x7 9 20 0.450645 1.66E-06 9 20 0.357489 7.62E-06
x8 9 20 0.467588 4.61E-06 10 22 0.402096 2.28E-06
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5.2 Application in compressive sensing
Many problems in signal processing that involves finding sparse solutions to ill-conditioned
linear systems of equations. One of the popular approach is to minimize an objective
function containing quadratic (ℓ2) error term and a sparse ℓ1−regularization term, i.e.,

min
x

ω∥x∥1 +
1
2
∥y−Ax∥2

2, (5.1)

where x ∈ Rn, y ∈ Rk is an observation, A ∈ Rk×n (k << n) is a linear operator, ω > 0,
∥x∥2 denotes the Euclidean norm of x and ∥x∥1 = ∑n

i=1 |xi| is the ℓ1−norm of x. It is not
difficult to observe that problem (5.1) is a convex unconstrained minimization problem.
The fact that if the original signal is sparse or approximately sparse in some orthogonal
basis, problem (5.1) usually appears in compressive sensing, and hence an exact recovery
can be produced by solving (5.1).

Many iterative methods for solving (5.1) have been been proposed in several litera-
tures, (see [4, 6, 13, 14, 16, 21, 31, 36]). gradient based methods happens to be the most
popular and the earliest gradient projection method for sparse reconstruction (GPRS) was
proposed by Figueiredo et al. [14]. Step one of the GPRS method is to express (5.1) as a
quadratic problem using the following approach. Let x∈Rn, by splitting x into its positive
and negative parts. Then it can be formulated as

x = u− v, u ≥ 0, v ≥ 0,

where ui = (xi)+, vi = (−xi)+ for all i = 1,2, · · · ,n, and (·)+ = max{0, ·}. By definition
of ℓ1-norm, we have ∥x∥1 = eT

n u+eT
n v, where en = (1,1, · · · ,1)T ∈Rn. Now (5.1) can be

written as

min
u,v

1
2
∥y−A(u− v)∥2

2 +ωeT
n u+ωeT

n v, u ≥ 0, v ≥ 0, (5.2)

which is a bound-constrained quadratic program. Furthermore, from [14], equation (5.2)
can be written in standard form as

min
z

1
2

zT Hz+ cT z, such that z ≥ 0, (5.3)

where z =
(

u
v

)
, c = ωe2n +

(
−b
b

)
, b = AT y, H =

(
AT A −AT A
−AT A AT A

)
.

Clearly, H is a positive semidefinite matrix, which implies that equation (5.3) is a convex
quadratic problem.

Xiao et al. [41] explains that problem (5.3) is equivalent to a linear complementarity
problem. Furthermore, they pointed out that z is a solution of the linear complementarity
problem if and only if it is a solution of the nonlinear equation:

F(z) = min{z,Hz+ c}= 0. (5.4)

In [32,40], it was proved that F(z) is monotone and continuous . Therefore problem (5.1)
can be translated into problem (1.1) and thus DLP method can be applied to solve (5.1).
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In this experiment, we consider a simple compressive sensing possible situation,
where our goal is to reconstruct a sparse signal of length n from k observations. The
quality of restoration is assessed by mean of squared error (MSE) to the original signal x̃,

MSE = 1
n∥x̃− x∗∥2,

where x∗ is the recovered or restored signal. The signal size is choosen as n = 212, k = 210

and the original signal contains 27 randomly nonzero elements. A is the Gaussian matrix
generated by the command rand(m,n) in MATLAB. In addition, the measurement y is
distributed with noise, that is, y = Ax̃+µ , where µ is the Gaussian noise distributed nor-
mally with mean 0 and variance 10−4 (N(0,10−4)).

The performance of the DLP method in compressive sensing was shown in com-
parison with the PCG method. The parameters in choosen in DLP method are ρ = 10,
σ = 10−4 and that of PCG method are chosen as ρ = 10, σ = 10−4 and r = 0.5. The
merit function used is f (x) = 1

2∥y−Ax∥2
2 +ω∥x∥1. To achieve fairness in comparison,

each code was run from same initial point, same continuation technique on the parameter
ω , and observed only the behaviour of the convergence of each method to have a similar
accurate solution. The experiment is initialized by x0 = AT y and terminates when

∥ fk− fk−1∥
∥ fk−1∥

< 10−5, where fk is the function evaluation at xk.

In Fig. 1, DLP and PCG methods recovered the disturbed signal almost exactly.
In order to show visually the performance of both methods, four figures were plotted to
demonstrate their convergence behaviour based on MSE, objective function values, num-
ber of iterations and CPU time, see Fig. 2-5. Furthermore, the experiment was repeated
for 10 different noise samples and the average was also computed, see Table 7. From
the Table, it can be observed that the DLP and PCG methods are having same number of
iteration but DLP is relatively having less CPU time. This shows that the DLP method is
competing with recent methods for solving signal recovery problems.
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Figure 1: From top to bottom: the original image, the measurement, and the
recovered signals by DLP and PCG methods.
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Table 7: Ten experiment results together with average result of ℓ1−norm regular-
ization problem for DLP and PCG methods

DLP PCG

MSE ITER CPU(s) MSE ITER CPU(s)
1.74E-05 155 4.39 1.74E-05 155 6.02
2.55E-05 115 3.34 2.55E-05 115 3.73
1.23E-05 143 3.88 1.23E-05 143 3.91
5.52E-05 128 3.41 5.52E-05 128 3.41
1.26E-05 125 3.50 1.26E-05 125 3.58
3.86E-05 130 3.69 3.86E-05 130 3.70
2.13E-05 161 4.56 2.13E-05 161 4.59
1.43E-05 115 3.25 1.43E-05 115 3.39
1.87E-05 139 3.89 1.87E-05 139 4.19
1.58E-05 136 3.66 1.58E-05 136 3.75

Average 2.32E-05 134.7 3.757 2.32E-05 134.7 4.027

6 Conclusions
In this article, a descent Dai-Liao conjugate gradient method for solving nonlinear con-
vex constraints monotone equations was proposed. The proposed method is suitable for
for solving nonsmooth equations as it does not require Jacobian information of the non-
linear equations. The global convergence of the proposed method was established under
appropriate conditions.

We can view the the proposed method as an extension of the method in [1] to solve
convex constrained problems. Numerical results show that the proposed method is more
efficient than the PCG method for the given constrained problems. Furthermore, the
proposed method can be applied to solve ℓ1−norm regularization problem in compressive
sensing.
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