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1 Introduction

Equilibrium problem plays an important role in nonlinear analysis because it
provides a unified model of several important problems in optimization as well as in
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mathematical economics and physics, such as variational inequality, fixed points,
saddle points, Nash equilibrium, and complementarity problems. Motivated by the
pioneering work of Giannessi [8] which extended classical variational inequality to
the case of vector-valued mapping, many researchers have extended the scalar
equilibrium problem to the vector case in several difference ways. For further
details, we refer the reader to [4, 9, 5, 18, 1, 25] and the references therein.

The theory of existence of solutions to vector equilibrium problems and more
general settings has been extensively studied by many researchers; see, e.g., [14, 6,
7, 15, 16, 18, 4]. A relatively new but rapidly developing topic is the stability and
sensitivity analysis concerning (semi)continuity properties in the sense of Hausdorff
and Berge of solution mappings to such problems (see [2, 3, 11, 10, 26, 19, 28]
and the references therein). It is worth noting that to obtain the upper semi-
continuity of solution mapping, hypotheses regarding the same property may be
imposed on the data of the problem. Unfortunately, this is not the case of the
lower semicontinuity, some relatively strict and/or unnatural assumptions need
to be attached. Gong [10] established the continuity of the solution mapping to
the mixed parametric monotone weak vector equilibrium problems in topological
vector spaces. To improve the results in [10], Li and Fang [19] proposed a re-
laxed assumption which related to monotonicity properties, and employed it to
study the lower semicontinuity of the weak vector solutions and global vector so-
lutions to parametric generalized Ky Fan inequalities. However, the monotonicity
assumption on the objective mapping may cause the fact that solution set is a
singleton. By this observation, Zhang et al. [28] introduced Hölder-related as-
sumptions to establish the lower semicontinuity of the efficient and weak solution
mappings for parametric vector equilibrium problems without using the assump-
tions related to monotonicity. However, this assumption is unnatural and hard to
apply in practical situations because it require to know the information concerning
solution set of the reference problem. In order to overcome these drawbacks, the
linear/nonlinear scalarization method has been employed by many authors; see,
for instance, [12, 19, 21, 27, 23, 22] and the references therein. Nevertheless, this
approach is effective only for handling weak vector equilibrium problems, not for
strong ones.

Motivated and inspired by above observations, we investigate the stability
properties, such as upper semicontinuity, lower semicontinuity and continuity of
the solution mappings to parametric strong vector equilibrium problems under
some new conditions with neither monotonicity properties nor any information of
the solution mappings. The linear scalarization method is not, of course, employed
in our study. The obtained results in this paper are new and improve the existing
ones in the literature, for instance, [5, 11]. Furthermore, we also discuss dual strong
vector equilibrium problems. As far as we know, there is no work with contribution
to the stability of solution mappings to dual strong vector equilibrium problems.

The rest of this paper is organized as follows. Section 2 is devoted to some
preliminary facts, and statements of parametric strong vector equilibrium problem
and its dual problem. The main results on upper semicontinuity, lower semiconti-
nuity and continuity of the solution mappings of these problems are respectively
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discussed in Section 3. Some examples to illustrate that the obtained results im-
prove the existing ones in the recent literature are also given. The last section,
Section 4, contains some particular cases as illustrative examples, where we derive
consequences of the main results.

2 Preliminaries

Throughout this paper, unless otherwise specified, letX,Y and Z be Hausdorff
topological vector spaces, C ⊂ Y be a pointed closed convex cone with nonempty
topological interior and Λ be a nonempty subset of Z. We consider the parametric
strong vector equilibrium problem under perturbations in terms of perturbing the
constraint set K and the objective mapping f by a parameter λ varying on Λ.

(VEPλ) finding x̄ ∈ K(λ) such that f(λ, x̄, y) ∈ C, ∀y ∈ K(λ),

where f : Λ × X × X → Y is a vector-valued trifunction and K : Λ ⇒ X is a
constraint mapping. The dual problem of the strong vector equilibrium problem
is under question of

(DVEPλ) finding x̄ ∈ K(λ) such that f(λ, y, x̄) ∈ −C, ∀y ∈ K(λ).

In what follows, instead of writing {(VEPλ) | λ ∈ Λ} and {(DVEPλ) | λ ∈ Λ} for
the families of such problems, one simply writes (VEP) and (DVEP), respectively.
For each λ ∈ Λ, the solution sets of (VEP) and (DVEP) corresponding to λ are
respectively denoted by S(λ) and T (λ). In this paper, we focus on the continuity
of solution mappings S and T , hence we always assume that S(λ) and T (λ) are
nonempty for each λ in a neighborhood of the reference point. The existence
results for such problems can be found in [5, 4, 18].

We first recall some notions and well-known results needed in the sequel.

Definition 2.1. Let X, Y be two topological vector spaces and F be a set-valued
mapping from X to Y .

(a) F is said to be lower semicontinuous (l.s.c.) at x0 if for any open subset U of
Y with F (x0) ∩ U ̸= ∅, there exits a neighborhood N of x0 such that for all
x ∈ N,F (x) ∩ U ̸= ∅.

(b) F is said to be upper semicontinuous (u.s.c.) at x0 if for any open superset
U of F (x0), there exists a neighborhood N of x0 such that F (x) ⊂ U for all
x ∈ N .

(c) F is said to be continuous at x0 if it is both u.s.c. and l.s.c. at x0.

In the sequel, we say that a mapping satisfies a certain property on a subset
A ⊂ X if so does it at every point of A. When A = X, we omit “on X” in the
statement.
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Lemma 2.2. (See e.g. [13, Proposition 2.5.6 and Proposition 2.5.9]) Let F : X ⇒
Y be a set-valued mapping. The following statements hold true.

(a) F is l.s.c. at x̄ if and only if, for every sequence {xn} in X with xn → x̄ and
ȳ ∈ F (x̄), there exists a sequence {yn} of F (xn) such that yn → ȳ.

(b) If F (x̄) is compact, then F is u.s.c. at x̄ if and only if for any sequence {xn}
in X with xn → x̄ and yn ∈ F (xn), there is a subsequence {ynk

} that converges
to some ȳ ∈ F (x̄).

We next recall the concepts and properties of cone upper and lower semiconti-
nuity for vector-valued mappings, which are generalizations of ordinary upper and
lower semicontinuity on real-valued functions.

Definition 2.3. (See [24]) Let X,Y be topological vector spaces and C be a
pointed solid convex cone in Y . A mapping g : X → Y is said to be:

(a) C-lower semicontinuous (C-lsc) at x̄ if, for any neighborhood V of the origin
in Y , there exists a neighborhood U of x̄ such that

g(x) ∈ g(x̄) + V + C, ∀x ∈ U ;

(b) C-upper semicontinuous (C-usc) at x̄ if, −g is C-lower semicontinuous at x̄;

(c) C-continuous at x̄ if it is both C-usc and C-lsc at x̄.

The abbreviation lsc (usc) for cone lower semicontinuity (upper semicontinu-
ity) of vector-valued mappings is utilized to stress the difference between lower
semicontinuity (upper semicontinuity) of a vector-valued mapping and lower semi-
continuity (upper semicontinuity) of a set-valued mapping.

Proposition 2.4. (See [24]) For X,Y,C and g defined as in Definition 2.3, the
following assertions are equivalent:

(i) g is C-lsc;

(ii) For each x̄ ∈ X and c ∈ intC, there is an neighborhood U of x̄ such that
g(x) ∈ g(x̄)− c+ intC, for all x ∈ U ;

(iii) For each x̄ ∈ X and a ∈ Y , g−1(a+ intC) is open.

Similarly, we have an analogous result for the C-upper semicontinuity property
of a vector-valued mapping.

Proposition 2.5. For X,Y,C and g defined as in Definition 2.3, the following
assertions are equivalent:

(i) g is C-usc;

(ii) For each x̄ ∈ X and c ∈ intC, there is an neighborhood U of x̄ such that
g(x) ∈ g(x̄) + c− intC, for all x ∈ U ;
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(iii) For each x̄ ∈ X and a ∈ Y , g−1(a− intC) is open.

Proposition 2.6. (See [24]) Let X,Y,C be as in Definition 2.3, f and g be two
mapping from X into Y . The following assertions hold true.

(i) αf is C-usc (resp., C-lsc) for each α > 0, if so is f.

(ii) f + g is C-usc (resp., C-lsc), if so are f and g.

Definition 2.7. (See [20, Definition 6.1]) Let X and Y be vector spaces, C be
a solid convex pointed cone in Y , and K be a nonempty convex subset of X. A
vector-valued mapping g : K → Y is said to be:

(a) C-convex on K if for any x1, x2 ∈ K and t ∈ [0, 1],

g(tx1 + (1− t)x2) ∈ tg(x1) + (1− t)g(x2)− C;

(b) C-strictly convex on K if for any x1, x2 ∈ K, x1 ̸= x2 and t ∈ (0, 1),

g(tx1 + (1− t)x2) ∈ tg(x1) + (1− t)g(x2)− intC;

(c) C-quasiconvex on K if for y ∈ Y, x1, x2 ∈ K, t ∈ [0, 1],

g(x1) ∈ y − C, g(x2) ∈ y − C imply g(tx1 + (1− t)x2) ∈ y − C;

(d) strictly C-quasiconvex on K if for y ∈ Y, x1, x2 ∈ K,x1 ̸= x2, t ∈ (0, 1),

g(x1) ∈ y − C, g(x2) ∈ y − C imply g(tx1 + (1− t)x2) ∈ y − intC.

The mapping g is said to be C-concave (respectively, strictly C-concave, C-
quasiconcave, strictly C-quasiconcave) if −g is C-convex (respectively, strictly
C-convex, C-quasiconvex, strictly C-quasiconvex).

In a particular case where Y = R, C = R+, we obtain the ordinary definition
of (quasi)convex and strictly (quasi) convex functions.

3 The main results

In this section, we discuss the upper semicontinuity and lower semicontinuity
of the solution mappings for (VEP) and (DVEP) under relaxed conditions.

Theorem 3.1. Assume that K is continuous and compact-valued at λ̄. Then, the
following assertions hold:

(a) S is u.s.c. and compact-valued at λ̄, if f is C-usc.

(b) T is u.s.c. and compact-valued at λ̄, if f is C-lsc.
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Proof. We present only the proof for (b); the other one is treated similarly. We
first show that T is u.s.c. at λ̄. Suppose to the contrary that there exist an open
set U containing T (λ̄) along with a sequence {λn} tending to λ̄ such that there
are xn ∈ T (λn) \ U for all n. Because K is u.s.c and compact-valued at λ̄, one
can assume that {xn} converges to some point x̄ in K(λ̄). If x̄ /∈ T (λ̄), there is
ȳ ∈ K(λ̄) such that f(λ̄, ȳ, x̄) /∈ −C, and hence, there exists a neighborhood B of
the origin in Y such that

f(λ̄, ȳ, x̄) +B ⊂ Y \ (−C). (3.1)

The lower semicontinuity of K at λ̄ in turn shows the existence of a sequence of
points yn ∈ K(λn) converging to ȳ. Since xn ∈ T (λn) for each n,

f(λn, yn, xn) ∈ −C. (3.2)

Taking into account the C-lower semicontinuity of f at (λ̄, ȳ, x̄), we have

f(λn, yn, xn) ∈ f(λ̄, ȳ, x̄) +B + C, for n sufficiently large.

Combining this with inclusion (3.1), we obtain

f(λn, yn, xn) ⊂ Y \ (−C) + C ⊂ Y \ (−C),

which contradicts (3.2). Thus, x̄ ∈ T (λ̄), which is another contradiction as xn /∈ U ,
for all n. Therefore, T is u.s.c. at λ̄. The proof of the compact-valuedness of T at
λ̄ is similar.

We next establish sufficient conditions for the lower semicontinuity of solution
mapping S to (VEP).

Theorem 3.2. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) f is C-lsc on {λ̄} ×K(λ̄)×K(λ̄);

(iii) f(λ̄, ·, y) is strictly C-quasiconcave on K(λ̄) for all y ∈ K(λ);

(iv) (VEPλ̄) has at least two solutions.

Then, S is l.s.c. at λ̄.

Proof. Suppose to the contrary that there exist x0 ∈ S(λ̄) and a neighborhood W0

of the origin in X such that for any neighborhood U of λ̄, there is λ ∈ U satisfying

S(λ) ∩ (x0 +W0) = ∅.

Thus, there exists a sequence {λn} converging to λ̄ such that

S(λn) ∩ (x0 +W0) = ∅,∀n ∈ N. (3.3)
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Since S(λ̄) is not a singleton, we can choose x̄ ∈ S(λ̄) with x̄ ̸= x0. Thus, for any
y ∈ K(λ̄), we have

f(λ̄, x0, y) ∈ C and f(λ̄, x̄, y) ∈ C. (3.4)

By the strict C-quasiconcavity of f(λ̄, ·, y) on K(λ̄), for all t ∈ (0, 1),

f(λ̄, tx̄+ (1− t)x0, y) ∈ intC. (3.5)

Because of the convexity of K(λ̄), x(t) := tx̄ + (1 − t)x0 belongs to K(λ̄). It is
worth noting that for the chosen W0, there are a neighborhood W1 of the origin
in X and t0 ∈ (0, 1) such that W1+W1 ⊂ W0 and x(t0) ∈ x0+W1. Consequently,

x(t0) +W1 ⊂ x0 +W1 +W1 ⊂ x0 +W0.

Since x(t0) ∈ K(λ̄) and K is l.s.c. at λ̄, there are x̂n(t0) ∈ K(λn) such that x̂n(t0)
tend to x(t0). Hence, x̂n(t0) ∈ x(t0) + W1 ⊂ x0 + W0, for n sufficiently large.
Combining this with (3.3), one has x̂n(t0) /∈ S(λn), for all n. Thus, there exists
ŷn ∈ K(λn) such that

f(λn, x̂n(t0), ŷn) ∈ Y \ C. (3.6)

Since K is u.s.c. and compact-valued at λ̄, one can assume that {ŷn} converges to
some point ŷ ∈ K(λ̄) (taking a subsequence if necessary). For each neighborhood
B of the origin in Y , there exists a balanced neighborhood B1 of the origin in Y
(i.e., −B1 = B1) satisfying B1 ⊂ B. The C-lower semicontinuity of f implies that

f(λn, x̂n(t0), ŷn) ∈ f(λ̄, x(t0), ŷ) +B1 + C.

This together with the balance of B1 leads to

f(λ̄, x(t0), ŷ) ∈ f(λn, x̂n(t0), ŷn) +B1 − C,

and hence, by (3.6),

f(λ̄, x(t0), ŷ) ∈ Y \ C +B1 − C ⊂ B + Y \ C ⊂ B + cl(Y \ C).

Since B is arbitrarily chosen and cl(Y \ C) is closed,

f(λ̄, x(t0), ŷ) ∈ cl(Y \ C),

which contradicts (3.5). This brings the proof to its end.

Remark 3.3. The lower semicontinuity of the solution mapping S cannot be
guaranteed by only imposed continuity assumption on f , even in particular case
where f is a scalar function and K is a constant mapping. Therefore, one has
to impose additionally some stronger conditions, for instance, S is a singleton or
conditions (iii) and (iv) is satisfied. We give here an example to illustrate this
statement.
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Example 3.4. Let X = R2, Y = Z = R,Λ = [0, 1], λ̄ = 0 and C = R+. Let
K : Λ ⇒ X and f : Λ×X ×X → R be defined, respectively, by

K(λ) = {(x1, x2) ∈ R2
+ | x1 + x2 = 1} =: A,∀λ ∈ Λ,

and

f(λ, x, y) = (1− λ)(x1 − y1) + x2 − y2.

It is obvious that f is continuous and K is constant. However, f(λ̄, ·, y) is not
strictly C-quasiconcave on K. Indeed, for any y ∈ K(λ̄), let x̂ = (0.25, 0.75) and
x̄ = (0, 1) belong to K(λ̄) and t ∈ (0, 1). Then, we have f(λ̄, x̂, y) = f(λ̄, x̄, y) = 0
but f(λ̄, tx̂+ (1− t)x̄, y) = 0 /∈ intR+. By direct computations one has

S(λ) =

{
A, if λ = 0,

{(0, 1)}, if λ ∈ (0, 1].

Therefore, S is not l.s.c. at 0.

Remark 3.5. In [5, Chapter 9], the Authors established the lower semicontinuity
of the solution mapping for (VEP) under C-pseudocontinuity assumption imposed
on the objective mapping f . We recall that a vector-valued mapping g : X → Y
is said to be C-pseudocontinuous at x ∈ X, if for each k ∈ C \ {0}, there exists a
neighborhood U ⊂ X of x such that g(u) ∈ g(x)−k+C for all u ∈ U. Theorem 3.2
strictly improves Theorem 9.49 in [5]. Namely, the C-pseudocontinuity assumption
on the objective mapping f is now relaxed to the C-lower semicontinuity. The
following example shows a simple case where Theorem 3.2 is applicable while
Theorem 9.49 in [5] is not.

Example 3.6. Let X = Z = R, Y = R2,Λ = [1, 2], and C = R2
+. Let K : Λ ⇒

X and f : Λ × X × X → Y be defined, respectively, as K(λ) = [−λ, λ], and
f(λ, x, y) = (x + 1, y + 1) for any λ ∈ Λ. This is evident that all assumptions
of Theorem 3.2 are satisfied. Direct calculation gives S(λ) = [−1, 1], which is
l.s.c.. However, Theorem 9.49 in [5] is not applicable in this case because f is
not C-pseudocontinuous. Indeed, for each λ ∈ Λ, we show that f(λ, ·, ·) is not
C-pseudocontinuous at (1, 0). Suppose to the contrary that for all (k, l) ∈ C \{0},
there exists a neighborhood U of (1, 0) such that for any (u, v) ∈ U we have

(u+ 1, v + 1) ∈ (2, 1)− (k, l) + C. (3.7)

Without loss of generality, the neighborhood U can be taken as the form (1−ε, 1+
ε) × (−ε, ε) for some ε > 0. Now let (k, l) = (1, 0). The inclusion in (3.7) yields
that (u, v) ∈ C for all (u, v) ∈ U. This is impossible when we take v < 0.

Passing to (DVEP), we state a similar result concerning the lower semicontinu-
ity of solution mapping. The proof is analogous to that for Theorem 3.2, therefore
we omit it with some suitable modifications.
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Theorem 3.7. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) f is C-usc on {λ̄} ×K(λ̄)×K(λ̄);

(iii) f(λ̄, y, ·) is strictly C-quasiconvex on K(λ̄) for all y ∈ K(λ);

(iv) (DVEPλ̄) has at least two solutions.

Then, T is l.s.c. at λ̄.

By combining results from the lower semicontinuity and upper semicontinuity
cases of solution mappings to (VEP) and (DVEP), we obtain the following results
concerning the continuity of the solution mappings to such problems.

Theorem 3.8. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) f is C-continuous on {λ̄} ×K(λ̄)×K(λ̄);

(iii) f(λ̄, y, ·) is strictly C-quasiconvex on K(λ̄) for each y ∈ K(λ).

Then, T is continuous at λ̄.

Proof. According to Theorem 3.1(b), T is u.s.c. at λ̄. Now two situations must be
considered. If (DVEPλ̄) has a unique solution, then T is continuous at λ̄ because of
its upper semicontinuity. If (DVEPλ̄) has at least two solutions, then by Theorem
3.7, T is l.s.c. at λ̄. Therefore, T is continuous at λ̄. The proof is complete.

By the same argument as that in the proof of Theorem 3.8, we obtain the
following result.

Theorem 3.9. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) f is C-continuous on {λ̄} ×K(λ̄)×K(λ̄);

(iii) f(λ̄, ·, y) is strictly C-quasiconcave on K(λ̄) for each y ∈ K(λ).

Then, S is continuous at λ̄.

4 Applications

Because vector equilibrium problem setting encompasses several problems in opti-
mization, such as including vector optimization problem, vector Nash equilibrium
problem, vector variational inequality, etc, we can apply the obtained results in
Section 3 to such problems. In this section, we only provide some discussions
on vector optimization problem and vector variational inequality as illustrative
examples.
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4.1 Vector optimization

Let X,Y, Z,C,Λ and K be as in Section 2. Let φ : Λ×X → Y be a vector-valued
mapping. For each λ ∈ Λ, we consider the following vector optimization problem:

(VOPλ) C-minφ(x) such that x ∈ K(λ).

A point x̄ is called absolute solution of (VOPλ) if φ(λ, y) − φ(λ, x) ∈ C for all
y ∈ K(λ) (see, e.g., [20, 17]). By Ω(λ) we denote the set of absolute solutions
to (VOPλ). Similarly as for (VEP), the family of vector optimization problems is
simply written by (VOP). Based on the results obtained in Section 3, we can give
sufficient conditions for the continuity of Ω.

Corollary 4.1. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) φ is C-continuous on {λ̄} ×K(λ̄);

(iii) φ(λ̄, ·) is strictly C-quasiconvex on K(λ̄).

Then, Ω is continuous at λ̄.

Proof. Consider the mapping f : Λ × X × X → Y be defined by f(λ, x, y) =
φ(λ, y)−φ(λ, x). Then, the conclusion immediately follows from Theorem 3.9.

4.2 Vector variational inequalities

Let X,Y, Z,C,Λ and K be as in Section 2. Let µ : Λ × X → L(X,Y ) be an
operator, where L(X, y) stands for the set of all linear and continuous operators
from X into Y . For a given λ ∈ Λ, the strong vector variational inequality of
Stampacchia type consists in

(SVVIλ) finding x̄ ∈ K(λ) such that ⟨µ(λ, x̄), y − x̄⟩ ∈ C, ∀y ∈ K(λ),

and Minty type is of

(MVVIλ) finding x̄ ∈ K(λ) such that ⟨µ(λ, y), x̄− y⟩ ∈ −C, ∀y ∈ K(λ).

It is worth noting that, if we take f : Λ × X × X → Y defined as f(λ, x, y) =
⟨µ(λ, x), y − x⟩ (respectively, f(λ, x, y) = ⟨µ(λ, y), x− y⟩), then the strong vector
variational inequality of Stampacchia (respectively, Minty) type becomes the vec-
tor equilibrium problem. For λ ∈ Λ, the solution set of (SVVI) and (MVVI) are
denoted by Ψ(λ) and Υ(λ), respectively. In conclusion, the following results hold
true.

Corollary 4.2. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;
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(ii) The mapping (λ, x, y) 7→ ⟨µ(λ, x), y − x⟩ is C-continuous on {λ̄} × K(λ̄) ×
K(λ̄);

(iii) For all λ ∈ Λ and y ∈ K(λ̄), the mapping x 7→ ⟨µ(λ, x), y − x⟩ is strictly
C-quasiconcave on K(λ̄).

Then, Ψ is continuous at λ̄.

Proof. Consider the mapping f : Λ×X ×X → Y defined as

f(λ, x, y) = ⟨µ(λ, x), y − x⟩.

It is obvious that we can apply Theorem 3.9, and hence the conclusion follows.

Corollary 4.3. Suppose that the following conditions hold:

(i) K is continuous and compact-convex-valued at λ̄;

(ii) The mapping (λ, x, y) 7→ ⟨µ(λ, x), y − x⟩ is C-continuous on {λ̄} × K(λ̄) ×
K(λ̄);

(iii) For all λ ∈ Λ and x ∈ K(λ̄), the mapping y 7→ ⟨µ(λ, y), x − y⟩ is strictly
C-quasiconvex on K(λ̄).

Then, Υ is continuous at λ̄.

Proof. Consider the mapping f : Λ×X ×X → Y defined as

f(λ, x, y) = ⟨µ(λ, y), x− y⟩.

Then, the conclusion follows from Theorem 3.8.
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