Thai Journal of Mathematics : 60-74
 Special Issue: Annual Meeting in Mathematics 2018

http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

The S-Intermixed Iterative Method for Equilibrium Problems

Sarawut Suwannaut ${ }^{\dagger}{ }^{\text {, }}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Lampang Rajabhat University
e-mail : sarawut-suwan@hotmail.co.th

Abstract

Inspired by the work of Yao [[T2], the S-intermixed iteration for equilibrium problems is proposed. Under some control conditions, a strong convergence theorem for approximating a common solution of two finite familes of equilibrium problems is proved. Finally, a numerical example for a main theorem is given to support the result.

Keywords : equilibrium problem, fixed point, intermixed iteration. 2000 Mathematics Subject Classification : 47H09, 47H10, 90 C 33.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F: C \times C \rightarrow \mathbb{R}$ be bifunction. The equilibrium problem for F is to determine its equilibrium point, i.e., the set

$$
\begin{equation*}
E P(F)=\{x \in C: F(x, y) \geq 0, \forall y \in C\} . \tag{1.1}
\end{equation*}
$$

Equilibrium problems were introduced by [3] in 1994 where such problems have had a significant impact and influence in the development of several branches of pure and applied sciences. Various problems in physics, optimization, and economics are related to seeking some elements of $E P(F)$, see [3, [7]. Many authors have been investigated iterative algorithms for the equilibrium problems, see, for example, [[7 , []].

[^0]In 2013, Suwannaut and Kangtunyakarn [II] introduced the combination of equilibrium problem which is to find $u \in C$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} a_{i} F_{i}(x, y) \geq 0, \forall y \in C \tag{1.2}
\end{equation*}
$$

where $F_{i}: C \times C \rightarrow \mathbb{R}$ be bifunctions and $a_{i} \in(0,1)$ with $\sum_{i=1}^{N} a_{i}=1$, for every $i=1,2, \ldots, N$. The set of solution (\mathbb{L}) is denoted by

$$
E P\left(\sum_{i=1}^{N} a_{i} F_{i}\right)=\bigcap_{i=1}^{N} E P\left(F_{i}\right)
$$

If $F_{i}=F, \forall i=1,2, \ldots, N$, then the combination of equilibrium problem ([.2) reduces to the equilibrium problem (■.\|).

The fixed point problem for the mapping $T: C \rightarrow C$ is to find $x \in C$ such that $x=T x$. We denote the fixed point set of a mapping T by $\operatorname{Fix}(T)$.

Definition 1.1. Let $T: C \rightarrow C$ be a mapping. Then
(i) a mapping T is called contractive if there exists $\alpha \in(0,1)$ such that

$$
\|T x-T y\| \leq \alpha\|x-y\|, \forall x, y \in C
$$

(ii) a mapping T is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \forall x, y \in C
$$

(iii) T is said to be κ-strictly pseudo-contractive if there exists a constant $\kappa \in$ $[0,1)$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\kappa\|(I-T) x-(I-T) y\|^{2}, \forall x, y \in C
$$

Note that the class of κ-strictly pseudo-contractions strictly includes the class of nonexpansive mappings, that is, a nonexpansive mapping is a 0 -strictly pseudocontractive mapping.

For the last decades, many researcher have studied fixed point theorems associated with various types of nonlinear mappings, see, for instance, $[\mathbf{B}, \underline{\square}, \mathbb{I D}]$.

Over the past decades, many others have constructed various types of iterative methods to approximate fixed points. The first one is the Mann iteration introduced by Mann [T] in 1953 and is defined as follows:

$$
\left\{\begin{array}{l}
x_{0} \in H \text { arbitrary chosen } \tag{1.3}\\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \forall n \geq 0
\end{array}\right.
$$

where C is a nonempty closed convex subset of a normed space, $T: C \rightarrow C$ is a mapping and the sequence $\left\{\alpha_{n}\right\}$ is in the interval $(0,1)$. But this algorithm has
only weak convergence. Thus, many mathematicians have been trying to modify Mann's iteration ($\mathbb{K} .3)$ and construct new iterative method to obtain the strong convergence theorem.

By modification of Mann's iteration ($\mathbb{L} \cdot 3)$, the next iteration process is referred to as Ishikawa's iteration process [2] which is defined recursively as follows:

$$
\left\{\begin{array}{l}
x_{0} \in H \text { arbitrary chosen, } \tag{1.4}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n}, \\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T y_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are real sequences in $[0,1]$. He also obtain the strong convergence theorem for the iterative method (L[.4) converging to a fixed point of mapping T. Observe that if $\beta_{n}=1$, then the Ishikawa's iteration ((L.4) reduces to the Mann's iteration ($\mathbb{\boxed { W }} \mathbf{3}$).

In 2000, Moudafi [4] introduced the viscosity approximation method for nonexpansive mapping S as follows:
Let C be a closed convex subset of a real Hilbert space H and let $S: C \rightarrow C$ be a nonexpansive mapping such that $\operatorname{Fix}(S)$ is nonempty. Let $f: C \rightarrow C$ be a contraction, that is, there exists $\alpha \in(0,1)$ such that $\|f x-f y\| \leq \alpha\|x-y\|, \forall x, y \in C$, and let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{array}{l}
x_{1} \in C \text { arbitrary chosen, } \tag{1.5}\\
x_{n+1}=\frac{1}{1+\epsilon_{n}} S x_{n}+\frac{\epsilon_{n}}{1+\epsilon_{n}} f\left(x_{n}\right), \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\varepsilon_{n}\right\} \subset(0,1)$ satisfies certain conditions. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $z \in \operatorname{Fix}(S)$, where $z=P_{F i x(S)} f(z)$ and $P_{F i x(S)}$ is the metric projection of H onto $\operatorname{Fix}(S)$.

Recently, in 2015, Yao et al. [[2] proposed the intermixed algorithm for two strict pseudocontractions S and T as follows:
Algorithm 1.2. For arbitrarily given $x_{0} \in C, y_{0} \in C$, let the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be generated iteratively by

$$
\begin{align*}
& x_{n+1}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} P_{C}\left[\alpha_{n} f\left(y_{n}\right)+\left(1-k-\alpha_{n}\right) x_{n}+k T x_{n}\right], n \geq 0, \\
& y_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} P_{C}\left[\alpha_{n} g\left(x_{n}\right)+\left(1-k-\alpha_{n}\right) y_{n}+k S y_{n}\right], n \geq 0, \tag{1.6}
\end{align*}
$$

where $T: C \rightarrow C$ is a λ-strictly pseudo-contraction, $f: C \rightarrow H$ is a ρ_{1}-contraction and $g: C \rightarrow H$ is a ρ_{2}-contraction, $k \in(0,1-\lambda)$ is a constant and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are two real number sequences in $(0,1)$.

Furthermore, under some control conditions, they proved that the iterative sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ defined by (■.6) converges independently to $P_{F i x(T)} f\left(y^{*}\right)$ and $P_{F i x(S)} g\left(x^{*}\right)$, respectively, where $x^{*} \in \operatorname{Fix}(T)$ and $y^{*} \in \operatorname{Fix}(S)$.

Motivated by Yao et al. [[2]], we introduce the new iterative method called the S-intermixed iteration for two finite families of nonlinear mappings as in the following algorithm:

Algorithm 1.3. Starting with $x_{1}, y_{1}, z_{1} \in C$, let the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be defined by

$$
\begin{aligned}
x_{n+1} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(\alpha_{n} f_{1}\left(y_{n}\right)+\left(1-\alpha_{n}\right) S x_{n}\right) \\
y_{n+1} & =\left(1-\beta_{n}\right) y_{n}+\beta_{n}\left(\alpha_{n} f_{2}\left(x_{n}\right)+\left(1-\alpha_{n}\right) T y_{n}\right), n \geq 1
\end{aligned}
$$

where $S, T: C \rightarrow C$, is a nonlinear mapping with $\operatorname{Fix}(S) \cap \operatorname{Fix}(T) \neq \emptyset, f_{i}: C \rightarrow$ C is a contractive mapping with coefficients $\alpha_{i} ; i=1,2$ and $\left\{\beta_{n}\right\},\left\{\alpha_{n}\right\}$ are real sequences in $(0,1), \forall n \geq 1$.

Inspired by the previous research, we introduce the S-intermixed iteration for equilibrium problems without considering the constant k. Under appropriate conditions, we prove a strong convergence theorem for finding a common solution of two finite families of equilibrium problems. Finally, we give a numerical example for the main theorem in a space of real numbers.

2 Preliminaries

In this section, some well-known definitions and Lemmas are recalled. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote weak convergence and strong convergence by notations " ${ }^{\prime \prime}$ " and " \rightarrow ", respectively. For every $x \in H$, there is a unique nearest point $P_{C} x$ in C such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|, \forall y \in C
$$

Such an operator P_{C} is called the metric projection of H onto C.
Lemma 2.1 ([5]). For a given $z \in H$ and $u \in C$,

$$
u=P_{C} z \Leftrightarrow\langle u-z, v-u\rangle \geq 0, \forall v \in C .
$$

Furthermore, P_{C} is a firmly nonexpansive mapping of H onto C and satisfies

$$
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle, \forall x, y \in H
$$

Lemma 2.2 ([G]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\delta_{n}, \forall n \geq 0
$$

where α_{n} is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(2) $\limsup _{n \rightarrow \infty} \frac{\delta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then, $\lim _{n \rightarrow \infty} s_{n}=0$.

For solving the equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbb{R}$, let us assume that F and C satisfy the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for all $x, y \in C$;
(A3) For each $x, y, z \in C$,

$$
\lim _{t \rightarrow 0^{+}} F(t z+(1-t) x, y) \leq F(x, y) ;
$$

(A4) For each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
Lemma 2.3 ([IT]). Let C be a nonempty closed convex subset of a real Hilbert space H. For $i=1,2, \ldots, N$, let $F_{i}: C \times C \rightarrow \mathbb{R}$ be bifunctions satisfying (A1) - (A4) with $\bigcap_{i=1}^{N} E P\left(F_{i}\right) \neq \emptyset$. Then,

$$
E P\left(\sum_{i=1}^{N} a_{i} F_{i}\right)=\bigcap_{i=1}^{N} E P\left(F_{i}\right),
$$

where $a_{i} \in(0,1)$ for every $i=1,2, \ldots, N$ and $\sum_{i=1}^{N} a_{i}=1$.
Lemma 2.4 ([3]). Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C
$$

Lemma 2.5 ([]]). Assume that $F: C \times C \rightarrow \mathbb{R}$ satisfies (A1) - (A4). For $r>0$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(i) T_{r} is single-valued;
(ii) T_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T_{r}(x)-T_{r}(y)\right\|^{2} \leq\left\langle T_{r}(x)-T_{r}(y), x-y\right\rangle ;
$$

(iii) $\operatorname{Fix}\left(T_{r}\right)=E P(F)$;
(iv) $E P(F)$ is closed and convex.

Remark 2.6 ([IT]). Since $\sum_{i=1}^{N} a_{i} F_{i}$ satisfies (A1)-(A4), by Lemma 2.3 and Lemma [2.5, we obtain

$$
\operatorname{Fix}\left(T_{r}\right)=E P\left(\sum_{i=1}^{N} a_{i} F_{i}\right)=\bigcap_{i=1}^{N} E P\left(F_{i}\right)
$$

where $a_{i} \in(0,1)$, for each $i=1,2, \ldots, N$, and $\sum_{i=1}^{N} a_{i}=1$.

3 Strong convergence theorem

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. For $i=1,2, \ldots, N$, let $F_{i}, G_{i}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying (A1) - (A4). Let $f, g: C \rightarrow C$ be a contractive mapping with coefficients α_{1} and α_{2}, respectively, with $\alpha=\max _{i \in\{1,2\}} \alpha_{i}$. Assume that $\Omega_{1}:=\bigcap_{i=1}^{N} E P\left(F_{i}\right) \neq \emptyset$ and $\Omega_{2}:=\bigcap_{i=1}^{N} E P\left(G_{i}\right) \neq \emptyset$. Let the sequences $\left\{x_{n}\right\}$, $\left\{y_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be generated by $x_{1}, y_{1} \in C$ and

$$
\left\{\begin{array}{l}
\sum_{i=1}^{N} a_{i} F_{i}\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall y \in C \\
\sum_{i=1}^{N} b_{i} G_{i}\left(v_{n}, y\right)+\frac{1}{s_{n}}\left\langle y-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \forall y \in C \\
x_{n+1}=\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(\alpha_{n} f\left(y_{n}\right)+\left(1-\alpha_{n}\right) u_{n}\right) \\
y_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n}\left(\alpha_{n} g\left(x_{n}\right)+\left(1-\alpha_{n}\right) v_{n}\right), \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{r_{n}\right\},\left\{s_{n}\right\} \subseteq(0,1)$ and $0 \leq a_{i}, b_{i} \leq 1$ for every $i=1,2, \ldots, N$, satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\tau \leq \beta_{n} \leq v<1$, for some $\tau, v>0$;
(iii) $0<\epsilon \leq r_{n} \leq \eta<\infty$, for some $\epsilon, \eta>0$;
(iv) $0<\delta \leq s_{n} \leq \mu<\infty$, for some $\delta, \mu>0$;
(v) $\sum_{i=1}^{N} a_{i}=1$ and $\sum_{i=1}^{N} b_{i}=1$;

Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to $\tilde{x}=P_{\Omega_{1}} f(\tilde{y})$ and $\tilde{y}=$ $P_{\Omega_{2}} g(\tilde{x})$, respectively.

Proof. Since $\sum_{i=1}^{N} a_{i} F_{i}$ and $\sum_{i=1}^{N} b_{i} G_{i}$ satisfy (A1)-(A4) and (B. D), by Lemma 2.5 and Remark [2.6, we have $u_{n}=T_{r_{n}}^{1} x_{n}, v_{n}=T_{s_{n}}^{2} y_{n}$, Fix $\left(T_{r_{n}}^{1}\right)=\bigcap_{i=1}^{N} E P\left(F_{i}\right)$ and $\operatorname{Fix}\left(T_{s_{n}}^{2}\right)=\bigcap_{i=1}^{N} E P\left(G_{i}\right)$.
Step 1 We show that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded.

Let $x^{*} \in \Omega_{1}$ and $y^{*} \in \Omega_{2}$. Then we derive

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|= & \left\|\left(1-\beta_{n}\right)\left(x_{n}-x^{*}\right)+\beta_{n}\left(\alpha_{n}\left(f\left(y_{n}\right)-x^{*}\right)+\left(1-\alpha_{n}\right)\left(u_{n}-x^{*}\right)\right)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left[\alpha_{n}\left\|f\left(y_{n}\right)-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|\right] \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left[\alpha_{n}\left\|f\left(y_{n}\right)-f\left(y^{*}\right)\right\|+\alpha_{n}\left\|f\left(y^{*}\right)-x^{*}\right\|\right. \\
& \left.+\left(1-\alpha_{n}\right)\left\|T_{r_{n}}^{1} x_{n}-x^{*}\right\|\right] \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left[\alpha_{n} \alpha_{1}\left\|y_{n}-y^{*}\right\|+\alpha_{n}\left\|f\left(y^{*}\right)-x^{*}\right\|\right. \\
& \left.+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|\right] \\
= & \left(1-\alpha_{n} \beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n} \alpha_{n} \alpha\left\|y_{n}-y^{*}\right\|+\beta_{n} \alpha_{n}\left\|f\left(y^{*}\right)-x^{*}\right\| . \tag{3.1}
\end{align*}
$$

Using the same argument as (3.-1), we also obtain

$$
\begin{equation*}
\left\|y_{n+1}-y^{*}\right\| \leq\left(1-\alpha_{n} \beta_{n}\right)\left\|y_{n}-y^{*}\right\|+\beta_{n} \alpha_{n} \alpha\left\|x_{n}-x^{*}\right\|+\beta_{n} \alpha_{n}\left\|g\left(x^{*}\right)-y^{*}\right\| . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we have

$$
\begin{aligned}
& \quad\left\|x_{n+1}-x^{*}\right\|+\left\|y_{n+1}-y^{*}\right\| \\
& \leq\left(1-\alpha_{n} \beta_{n}(1-\alpha)\right)\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\right) \\
& \quad+\alpha_{n} \beta_{n}\left(\left\|f\left(y^{*}\right)-x^{*}\right\|+\left\|g\left(x^{*}\right)-y^{*}\right\|\right) \\
& \leq \max \left\{\left\|x_{1}-x^{*}\right\|+\left\|y_{1}-y^{*}\right\|, \frac{\left\|f\left(y^{*}\right)-x^{*}\right\|+\left\|g\left(x^{*}\right)-y^{*}\right\|}{1-\alpha}\right\} .
\end{aligned}
$$

By induction, we get

$$
\begin{aligned}
& \left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\| \\
& \leq \max \left\{\left\|x_{1}-x^{*}\right\|+\left\|y_{1}-y^{*}\right\|, \frac{\left\|f\left(y^{*}\right)-x^{*}\right\|+\left\|g\left(x^{*}\right)-y^{*}\right\|}{1-\alpha}\right\} .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. So are $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$.
Step 2. Derive that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ and $\left\|y_{n+1}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Using the same method as in [[IT], we get

$$
\begin{equation*}
\left\|u_{n}-u_{n-1}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+\frac{1}{\epsilon}\left|r_{n}-r_{n-1}\right|\left\|u_{n}-x_{n}\right\| . \tag{3.3}
\end{equation*}
$$

Take $p_{n}=\alpha_{n} f\left(y_{n}\right)+\left(1-\alpha_{n}\right) u_{n}$ and $q_{n}=\alpha_{n} g\left(x_{n}\right)+\left(1-\alpha_{n}\right) v_{n}$. Then, by ([33),
we obtain

$$
\begin{align*}
& \left\|p_{n}-p_{n-1}\right\| \\
& \leq \alpha_{n}\left\|f\left(y_{n}\right)-f\left(y_{n-1}\right)\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(y_{n-1}\right)\right\|+\left(1-\alpha_{n}\right)\left\|u_{n}-u_{n-1}\right\| \\
& \quad+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u_{n-1}\right\| \\
& \leq \alpha_{n} \alpha\left\|y_{n}-y_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(y_{n-1}\right)\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\| \\
& \quad+\frac{1}{\epsilon}\left|r_{n}-r_{n-1}\right|\left\|u_{n}-x_{n}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u_{n-1}\right\| \tag{3.4}
\end{align*}
$$

From (3.4), we have

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leq & \left(1-\beta_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|x_{n-1}\right\|+\beta_{n}\left\|p_{n}-p_{n-1}\right\| \\
& +\left|\beta_{n}-\beta_{n-1}\right|\left\|p_{n-1}\right\| \\
\leq & \left(1-\alpha_{n} \beta_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\alpha_{n} \beta_{n} \alpha\left\|y_{n}-y_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left(\left\|f\left(y_{n-1}\right)\right\|+\left\|u_{n-1}\right\|\right)+\frac{1}{\epsilon}\left|r_{n}-r_{n-1}\right|\left\|u_{n}-x_{n}\right\| \\
& +\left|\beta_{n}-\beta_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|p_{n-1}\right\|\right) . \tag{3.5}
\end{align*}
$$

Applying the same proof as (3.5), we get

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\| \leq & \left(1-\alpha_{n} \beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\alpha_{n} \beta_{n} \alpha\left\|x_{n}-x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left(\left\|g\left(x_{n-1}\right)\right\|+\left\|v_{n-1}\right\|\right)+\frac{1}{\delta}\left|s_{n}-s_{n-1}\right|\left\|v_{n}-y_{n}\right\| \\
& +\left|\beta_{n}-\beta_{n-1}\right|\left(\left\|y_{n-1}\right\|+\left\|q_{n-1}\right\|\right) . \tag{3.6}
\end{align*}
$$

By (3.5) and (3.6), we derive

$$
\begin{aligned}
& \left\|x_{n+1}-x_{n}\right\|+\left\|y_{n+1}-y_{n}\right\| \\
\leq & \left(1-\alpha_{n} \beta_{n}(1-\alpha)\right)\left(\left\|x_{n}-x_{n-1}\right\|+\left\|y_{n}-y_{n-1}\right\|\right)+\frac{1}{\epsilon}\left|r_{n}-r_{n-1}\right|\left\|u_{n}-x_{n}\right\| \\
& +\frac{1}{\delta}\left|s_{n}-s_{n-1}\right|\left\|v_{n}-y_{n}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left(\left\|f\left(y_{n-1}\right)\right\|+\left\|g\left(x_{n-1}\right)\right\|+\left\|u_{n-1}\right\|\right. \\
& \left.+\left\|v_{n-1}\right\|\right)+\left|\beta_{n}-\beta_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|y_{n-1}\right\|+\left\|p_{n-1}\right\|+\left\|q_{n-1}\right\|\right) .
\end{aligned}
$$

By Lemma 2.2 and the conditions (iil), (iiil), (园), we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \rightarrow 0 \text { as } \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

Step 3. Prove that $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|v_{n}-y_{n}\right\|=0$.
Observe that

$$
\begin{equation*}
x_{n+1}-x_{n}=\beta_{n}\left[\alpha_{n}\left(f\left(y_{n}\right)-x_{n}\right)+\left(1-\alpha_{n}\right)\left(u_{n}-x_{n}\right)\right] \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n+1}-y_{n}=\beta_{n}\left[\alpha_{n}\left(g\left(x_{n}\right)-y_{n}\right)+\left(1-\alpha_{n}\right)\left(v_{n}-y_{n}\right)\right] \tag{3.10}
\end{equation*}
$$

It follows by (5.7) that

$$
\beta_{n}\left(1-\alpha_{n}\right)\left\|u_{n}-x_{n}\right\| \leq \alpha_{n} \beta_{n}\left\|f\left(y_{n}\right)-x_{n}\right\|+\left\|x_{n+1}-x_{n}\right\|
$$

From the condition (iii), (园) and (3.7), we have

$$
\begin{equation*}
\left\|u_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

Shortly, from (3.10), we also obtain

$$
\begin{equation*}
\left\|v_{n}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.12}
\end{equation*}
$$

Step 4 Claim that $\lim \sup _{n \rightarrow \infty}\left\langle f(\tilde{y})-\tilde{x}, x_{n}-\tilde{x}\right\rangle \leq 0$, where $\tilde{x}=P_{\Omega_{1}} f(\tilde{y})$ and $\limsup _{n \rightarrow \infty}\left\langle g(\tilde{x})-\tilde{y}, y_{n}-\tilde{y}\right\rangle \leq 0$, where $\tilde{y}=P_{\Omega_{2}} g(\tilde{x})$.
Without of generality, we can assume that $x_{n_{k}} \rightharpoonup \omega_{1}$ as $k \rightarrow \infty$. From ([.]), it follows that $u_{n_{k}} \rightharpoonup \omega_{1}$ as $k \rightarrow \infty$. Continuiing the same method as in Step 4 of [II], we get

$$
\begin{equation*}
\omega_{1} \in \Omega_{1} \tag{3.13}
\end{equation*}
$$

By ([.].3) and $x_{n_{k}} \rightharpoonup \omega_{1}$ as $k \rightarrow \infty$, we derive that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(\tilde{y})-\tilde{x}, x_{n}-\tilde{x}\right\rangle=\lim _{k \rightarrow \infty}\left\langle f(\tilde{y})-\tilde{x}, x_{n_{k}}-\tilde{x}\right\rangle=\left\langle f(\tilde{y})-\tilde{x}, \omega_{1}-\tilde{x}\right\rangle \leq 0 \tag{3.14}
\end{equation*}
$$

Similarly, we can assume that $y_{n_{k}} \rightharpoonup \omega_{2}$ as $k \rightarrow \infty$ and we have that $v_{n_{k}} \rightharpoonup \omega_{2}$ as $k \rightarrow \infty$. This implies that $\omega_{2} \in \Omega_{2}$. Thus, we also obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle g(\tilde{x})-\tilde{y}, y_{n}-\tilde{y}\right\rangle=\lim _{k \rightarrow \infty}\left\langle g(\tilde{x})-\tilde{y}, y_{n_{k}}-\tilde{y}\right\rangle=\left\langle g(\tilde{x})-\tilde{y}, \omega_{2}-\tilde{y}\right\rangle \leq 0 \tag{3.15}
\end{equation*}
$$

Step 5 Show that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to $\tilde{x}=P_{\Omega_{1}} f(\tilde{y})$ and $\tilde{y}=$ $P_{\Omega_{2}} g(\tilde{x})$, respectively.
Hence, we derive

$$
\begin{aligned}
& \left\|x_{n+1}-\tilde{x}\right\|^{2} \\
= & \left\|\left(1-\beta_{n}\right)\left(x_{n}-\tilde{x}\right)+\beta_{n}\left(\alpha_{n}\left(f\left(y_{n}\right)-\tilde{x}\right)+\left(1-\alpha_{n}\right)\left(u_{n}-\tilde{x}\right)\right)\right\|^{2} \\
\leq & \left.\left\|\left(1-\beta_{n}\right)\left(x_{n}-\tilde{x}\right)+\beta_{n}\left(1-\alpha_{n}\right)\left(u_{n}-\tilde{x}\right)\right\|^{2}+2 \alpha_{n} \beta_{n}\left\langle f\left(y_{n}\right)-\tilde{x}\right), x_{n+1}-\tilde{x}\right\rangle \\
\leq & {\left[\left(1-\beta_{n}\right)\left\|x_{n}-\tilde{x}\right\|+\beta_{n}\left(1-\alpha_{n}\right)\left\|u_{n}-\tilde{x}\right\|\right]^{2}+2 \alpha_{n} \beta_{n}\left\|f\left(y_{n}\right)-f(\tilde{y})\right\|\left\|x_{n+1}-\tilde{x}\right\| } \\
& \left.+2 \alpha_{n} \beta_{n}\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle \\
\leq & \left(1-\alpha_{n} \beta_{n}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+2 \alpha_{n} \beta_{n} \alpha\left\|y_{n}-\tilde{y}\right\|\left\|x_{n+1}-\tilde{x}\right\| \\
& \left.+2 \alpha_{n} \beta_{n}\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle \\
\leq & \left(1-\alpha_{n} \beta_{n}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n} \beta_{n} \alpha\left[\left\|y_{n}-\tilde{y}\right\|^{2}+\left\|x_{n+1}-\tilde{x}\right\|^{2}\right] \\
& \left.+2 \alpha_{n} \beta_{n}\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle .
\end{aligned}
$$

This yields that

$$
\begin{align*}
\left\|x_{n+1}-\tilde{x}\right\|^{2} \leq & \frac{\left(1-\alpha_{n} \beta_{n}\right)^{2}}{1-\alpha_{n} \beta_{n} \alpha}\left\|x_{n}-\tilde{x}\right\|^{2}+\frac{\alpha_{n} \beta_{n} \alpha}{1-\alpha_{n} \beta_{n} \alpha}\left\|y_{n}-\tilde{y}\right\|^{2} \\
& \left.+\frac{2 \alpha_{n} \beta_{n}}{1-\alpha_{n} \beta_{n} \alpha}\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle . \tag{3.16}
\end{align*}
$$

Applying the similar argument as (3.16) , we also get

$$
\begin{align*}
\left\|y_{n+1}-\tilde{y}\right\|^{2} \leq & \frac{\left(1-\alpha_{n} \beta_{n}\right)^{2}}{1-\alpha_{n} \beta_{n} \alpha}\left\|y_{n}-\tilde{y}\right\|^{2}+\frac{\alpha_{n} \beta_{n} \alpha}{1-\alpha_{n} \beta_{n} \alpha}\left\|x_{n}-\tilde{x}\right\|^{2} \\
& \left.+\frac{2 \alpha_{n} \beta_{n}}{1-\alpha_{n} \beta_{n} \alpha}\langle g(\tilde{x})-\tilde{y}), y_{n+1}-\tilde{y}\right\rangle . \tag{3.17}
\end{align*}
$$

Combining (3.16) and (3.工7), we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-\tilde{x}\right\|^{2}+\left\|y_{n+1}-\tilde{y}\right\|^{2} \\
\leq & \frac{\left(1-\alpha_{n} \beta_{n}\right)^{2}+\alpha_{n} \beta_{n} \alpha}{1-\alpha_{n} \beta_{n} \alpha}\left(\left\|x_{n}-\tilde{x}\right\|^{2}+\left\|y_{n}-\tilde{y}\right\|^{2}\right) \\
& \left.\left.+\frac{2 \alpha_{n} \beta_{n}}{1-\alpha_{n} \beta_{n} \alpha}\left(\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle+\langle g(\tilde{x})-\tilde{y}), y_{n+1}-\tilde{y}\right\rangle\right) \\
= & \left(1-\frac{2 \alpha_{n} \beta_{n}(1-\alpha)}{1-\alpha_{n} \beta_{n} \alpha}\right)\left(\left\|x_{n}-\tilde{x}\right\|^{2}+\left\|y_{n}-\tilde{y}\right\|^{2}\right) \\
& +\frac{2 \alpha_{n} \beta_{n}(1-\alpha)}{1-\alpha_{n} \beta_{n} \alpha}\left(\frac{\alpha_{n} \beta_{n}}{2(1-\alpha)}\left(\left\|x_{n}-\tilde{x}\right\|^{2}+\left\|y_{n}-\tilde{y}\right\|^{2}\right)\right. \\
& \left.\left.\left.+\frac{1}{1-\alpha}\left(\langle f(\tilde{y})-\tilde{x}), x_{n+1}-\tilde{x}\right\rangle+\langle g(\tilde{x})-\tilde{y}), y_{n+1}-\tilde{y}\right\rangle\right)\right)
\end{aligned}
$$

 converge strongly to $\tilde{x}=P_{\Omega_{1}} f(\tilde{y})$ and $\tilde{y}=P_{\Omega_{2}} g(\tilde{x})$, respectively. Furthermore,
 $P_{\Omega_{1}} f(\tilde{y})$ and $\tilde{y}=P_{\Omega_{2}} g(\tilde{x})$, respectively.. This completes the proof.

The following Corollary is a direct consequence of Theorem [3.1].
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F, G: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying $(A 1)-(A 4)$. Let $f, g:$ $C \rightarrow C$ be a contractive mapping with coefficients α_{1} and α_{2}, respectively, with $\alpha=\max _{i \in\{1,2\}} \alpha_{i}$. Assume that $\operatorname{EP}(F), E P(G) \neq \emptyset$. Let the sequences $\left\{x_{n}\right\}$, $\left\{y_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be generated by $x_{1}, y_{1} \in C$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall y \in C \\
G\left(v_{n}, y\right)+\frac{1}{s_{n}}\left\langle y-v_{n}, v_{n}-y_{n}\right\rangle \geq 0, \forall y \in C \\
x_{n+1}=\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(\alpha_{n} f\left(y_{n}\right)+\left(1-\alpha_{n}\right) u_{n}\right) \\
y_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n}\left(\alpha_{n} g\left(x_{n}\right)+\left(1-\alpha_{n}\right) v_{n}\right), \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{r_{n}\right\},\left\{s_{n}\right\} \subseteq(0,1)$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\tau \leq \beta_{n} \leq v<1$, for some $\tau, v>0$;
(iii) $0<\epsilon \leq r_{n} \leq \eta<\infty$, for some $\epsilon, \eta>0$;
(iv) $0<\delta \leq s_{n} \leq \mu<\infty$, for some $\delta, \mu>0$;
(v) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$,
$\sum_{n=1}^{\infty}\left|s_{n+1}-s_{n}\right|<\infty$.

Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to $\tilde{x}=P_{E P(F)} f(\tilde{y})$ and $\tilde{y}=P_{E P(G)} g(\tilde{x})$, respectively.

Proof. Put $F \equiv F_{i}$ and $G \equiv G_{i}$, for every $i=1,2, \ldots, N$. Then, from Theorem [3.1), the result of this corollary can be obtained.

4 A Numerical Example

In this section, we give a numerical example to support our main theorem.
Example 4.1. Let \mathbb{R} be the set of real numbers. For every $i=1,2, \ldots, N$, let $F_{i}, G_{i}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
F_{i}(x, y) & =i(y-x)(y+5 x+6) \\
G_{i}(x, y) & =i(y-x)(y+5 x-6), \text { for all } x, y \in \mathbb{R}
\end{aligned}
$$

Moreover, let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
f x & =\frac{x}{2} \\
g x & =\frac{x}{6}, \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Put $a_{i}=\frac{3}{5^{i}}+\frac{1}{N 5^{N}}$ and $b_{i}=\frac{2}{9^{i}}+\frac{1}{N 9^{N}}$, for every $i=1,2, \ldots, N$. Let $\alpha_{n}=\frac{1}{100 n}$, $\beta_{n}=\frac{3 n}{5 n+3}, r_{n}=\frac{3 n+7}{4 n+9}$ and $s_{n}=\frac{7 n+1}{9 n+11}$ for every $n \in \mathbb{N}$. Then, the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to -1 and 1 , respectively.
Solution. Since $a_{i}=\frac{3}{5^{i}}+\frac{1}{N 5^{N}}$, we obtain

$$
\begin{align*}
\sum_{i=1}^{N} a_{i} F_{i}(x, y) & =\sum_{i=1}^{N}\left(\frac{3}{5^{i}}+\frac{1}{N 5^{N}}\right) i(y-x)(y-2 x+1) \\
& =\xi(y-x)(y+5 x+6) \tag{4.1}
\end{align*}
$$

where $\xi=\sum_{i=1}^{N}\left(\frac{3}{5^{i}}+\frac{1}{N 5^{N}}\right) i$. It is clear to check that $\sum_{i=1}^{N} a_{i} F_{i}$ satisfies all conditions (A1)-(A4) and $-1 \in E P\left(\sum_{i=1}^{N} a_{i} F_{i}\right)=\bigcap_{i=1}^{N} E P\left(F_{i}\right)$. Using (4.1), we also obtain that

$$
\sum_{i=1}^{N} b_{i} G_{i}(x, y)=\varepsilon(y-x)(y+5 x-6)
$$

where $\varepsilon=\sum_{i=1}^{N} \frac{2}{9^{i}}+\frac{1}{N 9^{N}} i$. Thus we also get $1 \in E P\left(\sum_{i=1}^{N} b_{i} G_{i}\right)=\bigcap_{i=1}^{N} E P\left(G_{i}\right)$. Observe that

$$
\begin{align*}
0 & \leq \sum_{i=1}^{N} a_{i} F_{i}\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \\
& =\xi\left(y-u_{n}\right)\left(y+5 u_{n}+6\right)+\frac{1}{r_{n}}\left(y-u_{n}\right)\left(u_{n}-x_{n}\right) \\
& \Leftrightarrow \\
0 & \leq r_{n} \xi\left(y-u_{n}\right)\left(y+5 u_{n}+6\right)+\left(y-u_{n}\right)\left(u_{n}-x_{n}\right) \\
& =\xi r_{n} y^{2}+6 \xi r_{n} y+u_{n} y+4 \xi r_{n} u_{n} y-x_{n} y-6 \xi r_{n} u_{n}-u_{n}^{2}-5 \xi r_{n} u_{n}^{2}+u_{n} x_{n} . \tag{4.2}
\end{align*}
$$

Let $G(y)=\xi r_{n} y^{2}+6 \xi r_{n} y+u_{n} y+4 \xi r_{n} u_{n} y-x_{n} y-6 \xi r_{n} u_{n}-u_{n}^{2}-5 \xi r_{n} u_{n}^{2}+u_{n} x_{n}$. Then $G(y)$ is a quadratic function of y with coefficients $a=\xi r_{n}, b=6 \xi r_{n}+u_{n}+$ $4 \xi r_{n} u_{n}-x_{n}$, and $c=-6 \xi r_{n} u_{n}-u_{n}^{2}-5 \xi r_{n} u_{n}^{2}+u_{n} x_{n}$. Determine the discriminant Δ of G as follows:

$$
\begin{aligned}
\Delta= & b^{2}-4 a c \\
= & \left(6 \xi r_{n}+u_{n}+4 \xi r_{n} u_{n}-x_{n}\right)^{2}-4\left(x i r_{n}\right)\left(-6 \xi r_{n} u_{n}-u_{n}^{2}-5 \xi r_{n} u_{n}^{2}+u_{n} x_{n}\right) \\
= & 36 \xi^{2} r_{n}^{2}+12 \xi r_{n} u_{n}+72 x i^{2} r_{n}^{2} u_{n}+12 \xi r_{n} u_{n}^{2}+36 \xi^{2} r_{n}^{2} u_{n}^{2}-12 \xi r_{n} x_{n}-2 u_{n} x_{n} \\
& -12 \xi r_{n} u_{n} x_{n}+x_{n}^{2} \\
= & \left(6 \xi r_{n}+u_{n}+6 \xi r_{n} u_{n}-x_{n}\right)^{2} .
\end{aligned}
$$

From (庄.2), we have $G(y) \geq 0$, for every $y \in \mathbb{R}$. If $G(y)$ has most one solution in \mathbb{R}, thus we have $\Delta \leq 0$. This implies that

$$
\begin{equation*}
u_{n}=\frac{x_{n}-6 \xi r_{n}}{1+6 \xi r_{n}} . \tag{4.3}
\end{equation*}
$$

Similar to (4.3), we also obtain

$$
\begin{equation*}
v_{n}=\frac{y_{n}+6 \varepsilon s_{n}}{1+6 \varepsilon s_{n}} . \tag{4.4}
\end{equation*}
$$

Clearly, all sequences and parameters are satisfied all conditions of Theorem [3.]. Hence, by Theorem [8.], we can conclude that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to -1 and 1 respectively.

Table \boxtimes and Figure \square show the numerical results of sequences $\left\{u_{n}\right\},\left\{x_{n}\right\},\left\{v_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{1}=1, y_{1}=-1, N=20$ and $n=30$.

n	u_{n}	x_{n}	v_{n}	y_{n}
1	-0.624549	1.000000	0.384615	-1.000000
2	-0.737571	0.391261	0.621027	-0.481587
3	-0.835139	-0.128592	0.771185	0.026030
4	-0.901507	-0.480452	0.865187	0.397286
5	-0.942797	-0.698698	0.922050	0.640175
\vdots	\vdots	\vdots	\vdots	\vdots
15	-0.999587	-0.997836	0.999583	0.997881
\vdots	\vdots	\vdots	\vdots	\vdots
26	-0.999851	-0.999219	0.999883	0.999391
27	-0.999857	-0.999251	0.999888	0.999416
28	-0.999863	-0.999281	0.999893	0.999440
29	-0.999868	-0.999308	0.999897	0.999461
30	-0.999872	-0.999333	0.999901	0.999481

Table 1: The values of $\left\{u_{n}\right\},\left\{x_{n}\right\},\left\{v_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{1}=1, y_{1}=-1$, $N=20$ and $n=30$.

Figure 1: An independent convergence of $\left\{u_{n}\right\},\left\{x_{n}\right\},\left\{v_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{1}=1, y_{1}=-1, N=20$ and $n=30$.

Remark 4.2. From the previous example, we can conclude that
(i) Table $\mathbb{\square}$ and Figure \rrbracket show that the sequences $\left\{u_{n}\right\}$, $\left\{x_{n}\right\}$ converge to $-1 \in \Omega_{1}$ and $\left\{v_{n}\right\},\left\{y_{n}\right\}$ converge to $1 \in \Omega_{2}$, independently.
(ii) The convergence of $\left\{u_{n}\right\},\left\{x_{n}\right\},\left\{v_{n}\right\}$ and $\left\{y_{n}\right\}$ can be guaranteed by Theorem [.].

Acknowledgement(s) : This research is supported by Lampang Rajabhat University.

References

[1] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4(1953) 506-510.
[2] I.Ishikawa, Fixed point by a new iterative method. Proc. Am. Math. Soc. 44 (1974) 147-150 .
[3] E. Blum, W. Oettli, From optimization and variational inequilities to equilibrium problems. Math Student 63 (1994) 123-145.
[4] A. Moudafi, Viscosity approximation methods for fixed-points problems, Journal of mathematical analysis and applications 241 (2000) 46-55.
[5] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[6] H.K. Xu, An iterative approach to quadric optimization. J. Optim. Theory Appl. 116 (2003) 659-678.
[7] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136.
[8] C.L. Ceng, Q.H. Ansari, J.C. Yao, Strong and weak convergence theorems for asymptotically strict pseudocontractive mappings in intermediate sense. Journal of Nonlinear and Convex Analysis 11 (2010) 283-308.
[9] C.L. Ceng, A. Petruşel, J.C. Yao, Iterative Approximation of Fixed Points for Asymptotically Strict Pseudocontractive Type Mappings in the Intermediate Sense. Taiwanese Journal of Mathematics 15 (2011) 587-606.
[10] C.L. Ceng, A. Petruşel, J.C. Yao, A Hybrid Method for Lipschitz Continuous Monotone Mappings and Asymptotically Strict Pseudocontractive Mappings in the Intermediate Sense. Journal of Nonlinear and Convex Analysis 11 (2010).
[11] S. Suwannaut, A. Kangtunyakarn, The combination of the set of solutions of equilibrium problem for convergence theorem of the set of fixed points of strictly pseudo-contractive mappings and variational inequalities problem. Fixed point Theory and Applications 291 (2013).
[12] Z. Yao, S.M. Kang, H.J. Li, An intermixed algorithm for strict pseudocontractions in Hilbert spaces. Fixed Point Theory and Applications 206 (2015).
(Received 6 July 2018)
(Accepted 21 November 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{0}$ This research is supported by Lampang Rajabhat University
 ${ }^{1}$ Corresponding author email: sarawut-suwan@hotmail.co.th
 Copyright © 2019 by the Mathematical Association of Thailand. All rights reserved.

