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Abstract : Inspired by the work of Yao [12], the S-intermixed iteration for equi-
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support the result.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C × C → R be bifunction. The equilibrium problem for F is to determine its
equilibrium point, i.e., the set

EP (F ) = {x ∈ C : F (x, y) ≥ 0,∀y ∈ C}. (1.1)

Equilibrium problems were introduced by [3] in 1994 where such problems
have had a significant impact and influence in the development of several branches
of pure and applied sciences. Various problems in physics, optimization, and
economics are related to seeking some elements of EP (F ), see [3, 7]. Many authors
have been investigated iterative algorithms for the equilibrium problems, see, for
example, [7, 11].
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In 2013, Suwannaut and Kangtunyakarn [11] introduced the combination of
equilibrium problem which is to find u ∈ C such that

N∑
i=1

aiFi (x, y) ≥ 0,∀y ∈ C, (1.2)

where Fi : C × C → R be bifunctions and ai ∈ (0, 1) with
∑N

i=1 ai = 1, for every
i = 1, 2, . . . , N . The set of solution (1.2) is denoted by

EP

(
N∑
i=1

aiFi

)
=

N∩
i=1

EP (Fi) .

If Fi = F, ∀i = 1, 2, . . . , N , then the combination of equilibrium problem (1.2)
reduces to the equilibrium problem (1.1).

The fixed point problem for the mapping T : C → C is to find x ∈ C such
that x = Tx. We denote the fixed point set of a mapping T by Fix(T ).

Definition 1.1. Let T : C → C be a mapping. Then

(i) a mapping T is called contractive if there exists α ∈ (0, 1) such that

∥Tx− Ty∥ ≤ α ∥x− y∥ ,∀x, y ∈ C;

(ii) a mapping T is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ,∀x, y ∈ C;

(iii) T is said to be κ-strictly pseudo-contractive if there exists a constant κ ∈
[0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + κ ∥(I − T )x− (I − T )y∥2 ,∀x, y ∈ C.

Note that the class of κ-strictly pseudo-contractions strictly includes the class
of nonexpansive mappings, that is, a nonexpansive mapping is a 0-strictly pseudo-
contractive mapping.

For the last decades, many researcher have studied fixed point theorems asso-
ciated with various types of nonlinear mappings, see, for instance, [8, 9, 10].

Over the past decades, many others have constructed various types of iter-
ative methods to approximate fixed points. The first one is the Mann iteration
introduced by Mann [1] in 1953 and is defined as follows:{

x0 ∈ H arbitrary chosen,

xn+1 = (1− αn)xn + αnTxn,∀n ≥ 0,
(1.3)

where C is a nonempty closed convex subset of a normed space, T : C → C is a
mapping and the sequence {αn} is in the interval (0,1). But this algorithm has
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only weak convergence. Thus, many mathematicians have been trying to modify
Mann’s iteration (1.3) and construct new iterative method to obtain the strong
convergence theorem.

By modification of Mann’s iteration (1.3), the next iteration process is referred
to as Ishikawa’s iteration process [2] which is defined recursively as follows:

x0 ∈ H arbitrary chosen,

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,∀n ≥ 0,

(1.4)

where {αn} and {βn} are real sequences in [0, 1]. He also obtain the strong con-
vergence theorem for the iterative method (1.4) converging to a fixed point of
mapping T . Observe that if βn = 1, then the Ishikawa’s iteration (1.4) reduces to
the Mann’s iteration (1.3).

In 2000, Moudafi [4] introduced the viscosity approximation method for non-
expansive mapping S as follows:
Let C be a closed convex subset of a real Hilbert space H and let S : C → C be a
nonexpansive mapping such that Fix(S) is nonempty. Let f : C → C be a contrac-
tion, that is, there exists α ∈ (0, 1) such that ∥fx− fy∥ ≤ α ∥x− y∥ ,∀x, y ∈ C,
and let {xn} be a sequence defined by{

x1 ∈ C arbitrary chosen,

xn+1 = 1
1+ϵn

Sxn + ϵn
1+ϵn

f (xn) ,∀n ∈ N,
(1.5)

where {εn} ⊂ (0, 1) satisfies certain conditions. Then the sequence {xn} converges
strongly to z ∈ Fix(S), where z = PFix(S)f(z) and PFix(S) is the metric projection
of H onto Fix(S).

Recently, in 2015, Yao et al. [12] proposed the intermixed algorithm for two
strict pseudocontractions S and T as follows:

Algorithm 1.2. For arbitrarily given x0 ∈ C, y0 ∈ C, let the sequences {xn} and
{yn} be generated iteratively by

xn+1 = (1− βn)xn + βnPC [αnf (yn) + (1− k − αn)xn + kTxn] , n ≥ 0,

yn+1 = (1− βn) yn + βnPC [αng (xn) + (1− k − αn) yn + kSyn] , n ≥ 0, (1.6)

where T : C → C is a λ-strictly pseudo-contraction, f : C → H is a ρ1-contraction
and g : C → H is a ρ2-contraction, k ∈ (0, 1 − λ) is a constant and {αn}, {βn}
are two real number sequences in (0, 1).

Furthermore, under some control conditions, they proved that the iterative
sequences {xn} and {yn} defined by (1.6) converges independently to PFix(T )f (y∗)
and PFix(S)g (x

∗), respectively, where x∗ ∈ Fix(T ) and y∗ ∈ Fix(S).
Motivated by Yao et al. [12], we introduce the new iterative method called

the S-intermixed iteration for two finite families of nonlinear mappings as in the
following algorithm:
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Algorithm 1.3. Starting with x1, y1, z1 ∈ C, let the sequences {xn}, {yn} and
{zn} be defined by

xn+1 = (1− βn)xn + βn (αnf1 (yn) + (1− αn)Sxn) ,

yn+1 = (1− βn) yn + βn (αnf2 (xn) + (1− αn)Tyn) , n ≥ 1,

where S, T : C → C, is a nonlinear mapping with Fix(S) ∩ Fix (T ) ̸= ∅, fi : C →
C is a contractive mapping with coefficients αi; i = 1, 2 and {βn},{αn} are real
sequences in (0, 1), ∀n ≥ 1.

Inspired by the previous research, we introduce the S-intermixed iteration
for equilibrium problems without considering the constant k. Under appropriate
conditions, we prove a strong convergence theorem for finding a common solution
of two finite families of equilibrium problems. Finally, we give a numerical example
for the main theorem in a space of real numbers.

2 Preliminaries

In this section, some well-known definitions and Lemmas are recalled. Let H
be a real Hilbert space and C be a nonempty closed convex subset of H. We
denote weak convergence and strong convergence by notations ‵‵ ⇀′′ and ‵‵ →′′,
respectively. For every x ∈ H, there is a unique nearest point PCx in C such that

∥x− PCx∥ ≤ ∥x− y∥,∀y ∈ C.

Such an operator PC is called the metric projection of H onto C.

Lemma 2.1 ([5]). For a given z ∈ H and u ∈ C,

u = PCz ⇔ ⟨u− z, v − u⟩ ≥ 0,∀v ∈ C.

Furthermore, PC is a firmly nonexpansive mapping of H onto C and satisfies

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ ,∀x, y ∈ H.

Lemma 2.2 ([6]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + δn,∀n ≥ 0,

where αn is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=1

αn = ∞,

(2) lim sup
n→∞

δn
αn

≤ 0 or

∞∑
n=1

|δn| < ∞.

Then, lim
n→∞

sn = 0.
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For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F and C satisfy the following conditions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) For each x, y, z ∈ C,

lim
t→0+

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) For each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 2.3 ([11]). Let C be a nonempty closed convex subset of a real Hilbert
space H. For i = 1, 2, . . . , N , let Fi : C × C → R be bifunctions satisfying
(A1)− (A4) with

∩N
i=1 EP (Fi) ̸= ∅. Then,

EP

(
N∑
i=1

aiFi

)
=

N∩
i=1

EP (Fi) ,

where ai ∈ (0, 1) for every i = 1, 2, . . . , N and

N∑
i=1

ai = 1.

Lemma 2.4 ([3]). Let C be a nonempty closed convex subset of H and let F be
a bifunction of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then,
there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C.

Lemma 2.5 ([7]). Assume that F : C ×C → R satisfies (A1)− (A4). For r > 0,
define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C

}
for all x ∈ H. Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Tr(x)− Tr(y)∥2 ≤ ⟨Tr(x)− Tr(y), x− y⟩ ;

(iii) Fix (Tr) = EP (F );

(iv) EP (F ) is closed and convex.

Remark 2.6 ([11]). Since
∑N

i=1 aiFi satisfies (A1)-(A4), by Lemma 2.3 and
Lemma 2.5, we obtain

Fix(Tr) = EP

(
N∑
i=1

aiFi

)
=

N∩
i=1

EP (Fi) ,

where ai ∈ (0, 1), for each i = 1, 2, . . . , N , and
∑N

i=1 ai = 1.
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3 Strong convergence theorem

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. For i = 1, 2, . . . , N , let Fi, Gi : C × C → R be a bifunction satisfying
(A1) − (A4). Let f, g : C → C be a contractive mapping with coefficients α1 and

α2, respectively, with α = maxi∈{1,2} αi. Assume that Ω1 :=
∩N

i=1 EP (Fi) ̸= ∅
and Ω2 :=

∩N
i=1 EP (Gi) ̸= ∅. Let the sequences {xn}, {yn}, {un} and {vn} be

generated by x1, y1 ∈ C and

N∑
i=1

aiFi (un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C,

N∑
i=1

biGi (vn, y) +
1

sn
⟨y − vn, vn − yn⟩ ≥ 0,∀y ∈ C,

xn+1 = (1− βn)xn + βn (αnf(yn) + (1− αn)un) ,

yn+1 = (1− βn) yn + βn (αng(xn) + (1− αn)vn) ,∀n ≥ 1,

where {αn} , {βn} , {rn} , {sn} ⊆ (0, 1) and 0 ≤ ai, bi ≤ 1 for every i = 1, 2, . . . , N,
satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) 0 < τ ≤ βn ≤ υ < 1, for some τ, υ > 0;

(iii) 0 < ϵ ≤ rn ≤ η < ∞, for some ϵ, η > 0;

(iv) 0 < δ ≤ sn ≤ µ < ∞, for some δ, µ > 0;

(v)
∑N

i=1 ai = 1 and
∑N

i=1 bi = 1;

(vi)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |rn+1 − rn| < ∞,∑∞
n=1 |sn+1 − sn| < ∞.

Then the sequences {xn} and {yn} converge strongly to x̃ = PΩ1f (ỹ) and ỹ =
PΩ2

g (x̃), respectively.

Proof. Since
∑N

i=1 aiFi and
∑N

i=1 biGi satisfy (A1)-(A4) and (3.1), by Lemma 2.5

and Remark 2.6, we have un = T 1
rnxn, vn = T 2

snyn, Fix(T 1
rn) =

∩N
i=1 EP (Fi) and

Fix(T 2
sn) =

∩N
i=1 EP (Gi).

Step 1 We show that {xn} and {yn} are bounded.
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Let x∗ ∈ Ω1 and y∗ ∈ Ω2. Then we derive

∥xn+1 − x∗∥ = ∥(1− βn) (xn − x∗) + βn (αn (f(yn)− x∗) + (1− αn) (un − x∗))∥

≤ (1− βn) ∥xn − x∗∥+ βn

[
αn ∥f(yn)− x∗∥+ (1− αn) ∥un − x∗∥

]
≤ (1− βn) ∥xn − x∗∥+ βn

[
αn ∥f(yn)− f(y∗)∥+ αn ∥f(y∗)− x∗∥

+ (1− αn)
∥∥T 1

rnxn − x∗∥∥ ]
≤ (1− βn) ∥xn − x∗∥+ βn

[
αnα1 ∥yn − y∗∥+ αn ∥f(y∗)− x∗∥

+ (1− αn) ∥xn − x∗∥
]

=(1− αnβn) ∥xn − x∗∥+ βnαnα ∥yn − y∗∥+ βnαn ∥f(y∗)− x∗∥ .
(3.1)

Using the same argument as (3.1), we also obtain

∥yn+1 − y∗∥ ≤ (1− αnβn) ∥yn − y∗∥+ βnαnα ∥xn − x∗∥+ βnαn ∥g(x∗)− y∗∥ .
(3.2)

Combining (3.1) and (3.2), we have

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥
≤ (1− αnβn(1− α)) (∥xn − x∗∥+ ∥yn − y∗∥)

+ αnβn (∥f(y∗)− x∗∥+ ∥g(x∗)− y∗∥)

≤max

{
∥x1 − x∗∥+ ∥y1 − y∗∥, ∥f(y

∗)− x∗∥+ ∥g(x∗)− y∗∥
1− α

}
.

By induction, we get

∥xn − x∗∥+ ∥yn − y∗∥

≤ max

{
∥x1 − x∗∥+ ∥y1 − y∗∥, ∥f(y

∗)− x∗∥+ ∥g(x∗)− y∗∥
1− α

}
.

This implies that {xn} and {yn} are bounded. So are {un} and {vn}.

Step 2. Derive that ∥xn+1 − xn∥ → 0 and ∥yn+1 − yn∥ → 0 as n → ∞.
Using the same method as in [11], we get

∥un − un−1∥ ≤ ∥xn − xn−1∥+
1

ϵ
|rn − rn−1| ∥un − xn∥ . (3.3)

Take pn = αnf(yn) + (1− αn)un and qn = αng(xn) + (1− αn)vn. Then, by (3.3),
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we obtain

∥pn − pn−1∥
≤αn∥f(yn)− f(yn−1)∥+ |αn − αn−1| ∥f(yn−1)∥+ (1− αn)∥un − un−1∥
+ |αn − αn−1| ∥un−1∥

≤αnα∥yn − yn−1∥+ |αn − αn−1| ∥f(yn−1)∥+ (1− αn)∥xn − xn−1∥

+
1

ϵ
|rn − rn−1| ∥un − xn∥+ |αn − αn−1| ∥un−1∥. (3.4)

From (3.4), we have

∥xn+1 − xn∥ ≤(1− βn) ∥xn − xn−1∥+ |βn − βn−1| ∥xn−1∥+ βn ∥pn − pn−1∥
+ |βn − βn−1| ∥pn−1∥

≤(1− αnβn) ∥xn − xn−1∥+ αnβnα ∥yn − yn−1∥

+ |αn − αn−1| (∥f(yn−1)∥+ ∥un−1∥) +
1

ϵ
|rn − rn−1| ∥un − xn∥

+ |βn − βn−1| (∥xn−1∥+ ∥pn−1∥) . (3.5)

Applying the same proof as (3.5), we get

∥yn+1 − yn∥ ≤(1− αnβn) ∥yn − yn−1∥+ αnβnα ∥xn − xn−1∥

+ |αn − αn−1| (∥g(xn−1)∥+ ∥vn−1∥) +
1

δ
|sn − sn−1| ∥vn − yn∥

+ |βn − βn−1| (∥yn−1∥+ ∥qn−1∥) . (3.6)

By (3.5) and (3.6), we derive

∥xn+1 − xn∥+ ∥yn+1 − yn∥

≤ (1− αnβn(1− α)) (∥xn − xn−1∥+ ∥yn − yn−1∥) +
1

ϵ
|rn − rn−1| ∥un − xn∥

+
1

δ
|sn − sn−1| ∥vn − yn∥+ |αn − αn−1|

(
∥f(yn−1)∥+ ∥g(xn−1)∥+ ∥un−1∥

+ ∥vn−1∥
)
+ |βn − βn−1| (∥xn−1∥+ ∥yn−1∥+ ∥pn−1∥+ ∥qn−1∥) .

By Lemma 2.2 and the conditions (i), (ii), (vi), we obtain

∥xn+1 − xn∥ → 0 as n → ∞ (3.7)

and
∥yn+1 − yn∥ → 0 as → 0 as n → ∞. (3.8)

Step 3. Prove that limn→∞ ∥un − xn∥ = 0 and limn→∞ ∥vn − yn∥ = 0.
Observe that

xn+1 − xn = βn [αn (f(yn)− xn) + (1− αn) (un − xn)] (3.9)
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and

yn+1 − yn = βn [αn (g(xn)− yn) + (1− αn) (vn − yn)] . (3.10)

It follows by (3.9) that

βn (1− αn) ∥un − xn∥ ≤ αnβn ∥f(yn)− xn∥+ ∥xn+1 − xn∥ .

From the condition (i), (ii) and (3.7), we have

∥un − xn∥ → 0 as n → ∞. (3.11)

Shortly, from (3.10), we also obtain

∥vn − yn∥ → 0 as n → ∞. (3.12)

Step 4 Claim that lim supn→∞ ⟨f(ỹ)− x̃, xn − x̃⟩ ≤ 0, where x̃ = PΩ1
f(ỹ) and

lim supn→∞ ⟨g(x̃)− ỹ, yn − ỹ⟩ ≤ 0, where ỹ = PΩ2g(x̃).
Without of generality, we can assume that xnk

⇀ ω1 as k → ∞. From (3.11), it
follows that unk

⇀ ω1 as k → ∞. Continuiing the same method as in Step 4 of
[11], we get

ω1 ∈ Ω1. (3.13)

By (3.13) and xnk
⇀ ω1 as k → ∞, we derive that

lim sup
n→∞

⟨f(ỹ)− x̃, xn − x̃⟩ = lim
k→∞

⟨f(ỹ)− x̃, xnk
− x̃⟩ = ⟨f(ỹ)− x̃, ω1 − x̃⟩ ≤ 0.

(3.14)

Similarly, we can assume that ynk
⇀ ω2 as k → ∞ and we have that vnk

⇀ ω2 as
k → ∞. This implies that ω2 ∈ Ω2. Thus, we also obtain

lim sup
n→∞

⟨g(x̃)− ỹ, yn − ỹ⟩ = lim
k→∞

⟨g(x̃)− ỹ, ynk
− ỹ⟩ = ⟨g(x̃)− ỹ, ω2 − ỹ⟩ ≤ 0.

(3.15)

Step 5 Show that {xn} and {yn} converge strongly to x̃ = PΩ1
f(ỹ) and ỹ =

PΩ2
g(x̃), respectively.

Hence, we derive

∥xn+1 − x̃∥2

= ∥(1− βn) (xn − x̃) + βn (αn(f(yn)− x̃) + (1− αn)(un − x̃))∥2

≤∥(1− βn) (xn − x̃) + βn(1− αn)(un − x̃)∥2 + 2αnβn ⟨f(yn)− x̃), xn+1 − x̃⟩

≤ [(1− βn) ∥xn − x̃∥+ βn(1− αn) ∥un − x̃∥]2 + 2αnβn ∥f(yn)− f(ỹ)∥ ∥xn+1 − x̃∥
+ 2αnβn ⟨f(ỹ)− x̃), xn+1 − x̃⟩

≤ (1− αnβn)
2 ∥xn − x̃∥2 + 2αnβnα ∥yn − ỹ∥ ∥xn+1 − x̃∥

+ 2αnβn ⟨f(ỹ)− x̃), xn+1 − x̃⟩

≤ (1− αnβn)
2 ∥xn − x̃∥2 + αnβnα

[
∥yn − ỹ∥2 + ∥xn+1 − x̃∥2

]
+ 2αnβn ⟨f(ỹ)− x̃), xn+1 − x̃⟩ .
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This yields that

∥xn+1 − x̃∥2 ≤ (1− αnβn)
2

1− αnβnα
∥xn − x̃∥2 + αnβnα

1− αnβnα
∥yn − ỹ∥2

+
2αnβn

1− αnβnα
⟨f(ỹ)− x̃), xn+1 − x̃⟩ . (3.16)

Applying the similar argument as (3.16), we also get

∥yn+1 − ỹ∥2 ≤ (1− αnβn)
2

1− αnβnα
∥yn − ỹ∥2 + αnβnα

1− αnβnα
∥xn − x̃∥2

+
2αnβn

1− αnβnα
⟨g(x̃)− ỹ), yn+1 − ỹ⟩ . (3.17)

Combining (3.16) and (3.17), we obtain

∥xn+1 − x̃∥2 + ∥yn+1 − ỹ∥2

≤ (1− αnβn)
2
+ αnβnα

1− αnβnα

(
∥xn − x̃∥2 + ∥yn − ỹ∥2

)
+

2αnβn

1− αnβnα
(⟨f(ỹ)− x̃), xn+1 − x̃⟩+ ⟨g(x̃)− ỹ), yn+1 − ỹ⟩)

=

(
1− 2αnβn(1− α)

1− αnβnα

)(
∥xn − x̃∥2 + ∥yn − ỹ∥2

)
+

2αnβn(1− α)

1− αnβnα

(
αnβn

2(1− α)

(
∥xn − x̃∥2 + ∥yn − ỹ∥2

)
+

1

1− α
(⟨f(ỹ)− x̃), xn+1 − x̃⟩+ ⟨g(x̃)− ỹ), yn+1 − ỹ⟩)

)
.

By Lemma 2.2 and the conditions (i),(ii), we can conclude that {xn} and {yn}
converge strongly to x̃ = PΩ1

f(ỹ) and ỹ = PΩ2
g(x̃), respectively. Furthermore,

from (3.11) and (3.12), hence we get {un} and {vn} converge strongly to x̃ =
PΩ1f(ỹ) and ỹ = PΩ2g(x̃), respectively.. This completes the proof.

The following Corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F,G : C × C → R be a bifunction satisfying (A1) − (A4). Let f, g :
C → C be a contractive mapping with coefficients α1 and α2, respectively, with
α = maxi∈{1,2} αi. Assume that EP (F ), EP (G) ̸= ∅. Let the sequences {xn},
{yn}, {un} and {vn} be generated by x1, y1 ∈ C and

F (un, y) +
1
rn

⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C,

G (vn, y) +
1
sn

⟨y − vn, vn − yn⟩ ≥ 0,∀y ∈ C,

xn+1 = (1− βn)xn + βn (αnf(yn) + (1− αn)un) ,

yn+1 = (1− βn) yn + βn (αng(xn) + (1− αn)vn) ,∀n ≥ 1,
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where {αn} , {βn} , {rn} , {sn} ⊆ (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(ii) 0 < τ ≤ βn ≤ υ < 1, for some τ, υ > 0;

(iii) 0 < ϵ ≤ rn ≤ η < ∞, for some ϵ, η > 0;

(iv) 0 < δ ≤ sn ≤ µ < ∞, for some δ, µ > 0;

(v)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |rn+1 − rn| < ∞,∑∞
n=1 |sn+1 − sn| < ∞.

Then the sequences {xn} and {yn} converge strongly to x̃ = PEP (F )f (ỹ) and
ỹ = PEP (G)g (x̃), respectively.

Proof. Put F ≡ Fi and G ≡ Gi, for every i = 1, 2, . . . , N . Then, from Theorem
3.1, the result of this corollary can be obtained.

4 A Numerical Example

In this section, we give a numerical example to support our main theorem.

Example 4.1. Let R be the set of real numbers. For every i = 1, 2, . . . , N , let
Fi, Gi : R× R → R be defined by

Fi(x, y) = i(y − x)(y + 5x+ 6),

Gi(x, y) = i(y − x)(y + 5x− 6), for all x, y ∈ R.

Moreover, let f, g : R → R be defined by

fx =
x

2

gx =
x

6
, for all x ∈ R.

Put ai =
3
5i +

1
N5N

and bi =
2
9i +

1
N9N

, for every i = 1, 2, . . . , N . Let αn = 1
100n ,

βn = 3n
5n+3 , rn = 3n+7

4n+9 and sn = 7n+1
9n+11 for every n ∈ N. Then, the sequences {xn}

and {yn} converge strongly to −1 and 1, respectively.
Solution. Since ai =

3
5i +

1
N5N

, we obtain

N∑
i=1

aiFi(x, y) =

N∑
i=1

(
3

5i
+

1

N5N

)
i(y − x)(y − 2x+ 1)

= ξ(y − x)(y + 5x+ 6), (4.1)

where ξ =
∑N

i=1

(
3
5i +

1
N5N

)
i. It is clear to check that

∑N
i=1 aiFi satisfies all

conditions (A1)-(A4) and −1 ∈ EP (
∑N

i=1 aiFi) =
∩N

i=1 EP (Fi). Using (4.1), we
also obtain that

N∑
i=1

biGi(x, y) = ε(y − x)(y + 5x− 6),
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where ε =
∑N

i=1
2
9i +

1
N9N

i. Thus we also get 1 ∈ EP (
∑N

i=1 biGi) =
∩N

i=1 EP (Gi).
Observe that

0 ≤
N∑
i=1

aiFi (un, y) +
1

rn
⟨y − un, un − xn⟩

= ξ(y − un)(y + 5un + 6) +
1

rn
(y − un) (un − xn)

⇔
0 ≤ rnξ(y − un)(y + 5un + 6) + (y − un) (un − xn)

= ξrny
2 + 6ξrny + uny + 4ξrnuny − xny − 6ξrnun − u2

n − 5ξrnu
2
n + unxn.

(4.2)

Let G(y) = ξrny
2+6ξrny+uny+4ξrnuny−xny− 6ξrnun−u2

n− 5ξrnu
2
n+unxn.

Then G(y) is a quadratic function of y with coefficients a = ξrn, b = 6ξrn + un +
4ξrnun−xn, and c = −6ξrnun−u2

n−5ξrnu
2
n+unxn. Determine the discriminant

∆ of G as follows:

∆ =b2 − 4ac

=(6ξrn + un + 4ξrnun − xn)
2 − 4 (xirn)

(
−6ξrnun − u2

n − 5ξrnu
2
n + unxn

)
= 36ξ2r2n + 12ξrnun + 72xi2r2nun + 12ξrnu

2
n + 36ξ2r2nu

2
n − 12ξrnxn − 2unxn

− 12ξrnunxn + x2
n

=(6ξrn + un + 6ξrnun − xn)
2
.

From (4.2), we have G(y) ≥ 0, for every y ∈ R. If G(y) has most one solution in
R, thus we have ∆ ≤ 0. This implies that

un =
xn − 6ξrn
1 + 6ξrn

. (4.3)

Similar to (4.3), we also obtain

vn =
yn + 6εsn
1 + 6εsn

. (4.4)

Clearly, all sequences and parameters are satisfied all conditions of Theorem
3.1. Hence, by Theorem 3.1, we can conclude that the sequences {xn} and {yn}
converge strongly to −1 and 1 respectively.

Table 1 and Figure 1 show the numerical results of sequences {un}, {xn}, {vn}
and {yn} with x1 = 1, y1 = −1, N = 20 and n = 30.
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n un xn vn yn
1 -0.624549 1.000000 0.384615 -1.000000
2 -0.737571 0.391261 0.621027 -0.481587
3 -0.835139 -0.128592 0.771185 0.026030
4 -0.901507 -0.480452 0.865187 0.397286
5 -0.942797 -0.698698 0.922050 0.640175
...

...
...

...
...

15 -0.999587 -0.997836 0.999583 0.997881
...

...
...

...
...

26 -0.999851 -0.999219 0.999883 0.999391
27 -0.999857 -0.999251 0.999888 0.999416
28 -0.999863 -0.999281 0.999893 0.999440
29 -0.999868 -0.999308 0.999897 0.999461
30 -0.999872 -0.999333 0.999901 0.999481

Table 1: The values of {un}, {xn}, {vn} and {yn} with x1 = 1, y1 = −1,
N = 20 and n = 30.

Figure 1: An independent convergence of {un}, {xn}, {vn} and {yn} with
x1 = 1, y1 = −1, N = 20 and n = 30.
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Remark 4.2. From the previous example, we can conclude that

(i) Table 1 and Figure 1 show that the sequences {un}, {xn} converge to −1 ∈ Ω1

and {vn},{yn} converge to 1 ∈ Ω2, independently.

(ii) The convergence of {un}, {xn}, {vn} and {yn} can be guaranteed by Theorem
3.1.
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