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Abstract : The domination game consists of two players, Dominator and Staller,
who construct a dominating set in a given graph G by alternately choosing a
vertex from G, with the restriction that in each turn at least one new vertex
must be dominated. Dominator wants to minimize the size of the dominating set,
while Staller wants to maximize it. In the game, both play optimally. The game
domination number γg(G) is the number of vertices chosen in the game which
Dominator starts, and γ′

g(G) is the number of vertices chosen in the game which
Staller starts. In this paper these two numbers are analyzed when the game is
played on a graph constructed from paths on n vertices, Pn, and on two vertices,
P2, by gluing them together at a vertex. This type of operation is called 1-sum.
The motivation behind our research is to study the game domination number of a
tree that can be constructed from 1-sum of paths.
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1 Introduction

In this paper, the domination game is played on a finite simple graph G. The
domination game was first introduced by Breŝar, Klavẑar and Rall in 2010 [1]. It
is basically different from the domination number of a graph G (the minimum size
of its dominating set), γ(G), although γ(G) ≤ γg(G) ≤ 2γ(G) − 1, see [1]. The
game domination numbers, γg and γ′

g, of some simple graphs such as paths and
cycles are determined in [2, 3]. For a tree T , a connected graph with no cycles,
the problem of determining its game domination numbers are non-trivial and the
lower bound of γg(T ) is given in terms of the number of vertices and maximum
degree of T [4]. To explain the relationship between γg(G) and γ′

g(G) of a graph
G, they use imagination strategy, which compares the moves in a real game with
an imaginary game both played on G. It is showed in [7] that these two numbers
can differ only by 1, |γg(G) − γ′

g(G)| ≤ 1. We call a pair (k, l) is realized by G
if γg(G) = k and γ′

g(G) = l. Some possible realizable pairs are studied in [1, 4].
All possible realizable pairs are given in [5]. For example, for every k, (k, k + 1)
can be realized by a tree [4], and for all k ≥ 2, (2k, 2k − 1) can be realized by a
class of 2-connected graphs[5]. One way to study the game domination numbers
of a graph is by considering graph operations such as deletion of a vertex or of an
edge. As proved in [6], for a graph G and an edge e in G, the game domination
numbers of G and G deleted e can deffer only by 2, |γg(G) − γg(G − e)| ≤ 2 and
|γ′

g(G)− γ′
g(G− e)| ≤ 2. The same result holds for deleting a vertex in G.

We can think of a tree as joining paths together at vertices. The operation of
combining two graphs by identifying a vertex of one graph with a vertex of another
is called the 1-sum. Then a tree can be constructed from 1-sum of paths. In our
paper, we consider the game domination numbers of a tree constructed from 1-sum
of a path on n vertices, Pn, and a path on two vertices, P2. To state our main
result we need to define a few graphs. Let x1, x2, ..., xn be vertices of Pn, and let
v1, v2 be vertices of P2. We define a graph Qn+1, n ≥ 4, to be a 1-sum of Pn≥4

and P2 at x2 and v1, see Figure 1.

Figure 1: Graph Qn+1

In a graph G, vertices u and v in G are neighbours if uv is an edge in G. Let
N [u] be the set consisting of u and all its neighbours. Note that a vertex in a
graph is called dominated if it is chosen or it is a neighbour of the vertex chosen.
Let S be a subset of the vertex set of G, V (G). Then a partially dominated graph
G|S is a subgraph of G where the vertices of S are already dominated. So these
vertices do not need to be dominated in the course of the game. The residual graph
corresponding to G|S is a graph obtained from G by deleting all edges between
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dominated vertices and all vertices u that cannot be chosen any more, N [u] ⊆ S.
Our main results are as follows.

Theorem 1.1. γ(Qn+1) ≤ 1 + γ′
g(Qn+1|N [x2]) < 1 + γ′

g(Qn+1|N [x3]).

Theorem 1.2. γ′
g(Qn+1) ≥ 1 + γg(Qn+1|N [x3]).

Theorem 1.3. In a Staller-start game played on Qn+1, for n ≡ 3 (mod 4), if the
Staller first move is v2, then Dominator cannot choose x4.

For the rest of the paper, we start with introducing our tools used in our
proofs. Then we analyze domination games played on Qn+1. Finally, we consider
a Dominator-start game played on 1-sum of Pn and P2.

2 Basic Lemmas

In this section, we introduce our main tools, which are the continuation principal,
properties of realization, and formulas involving the game domination numbers of
a path Pn.

Theorem 2.1 (Continuation Principle). [7] Let G be a graph and A,B ⊆ V (G).
If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′

g(G|A) ≤ γ′
g(G|B).

The next theorem shows the relation between the game domination numbers.

Theorem 2.2. [7] For any graph G, |γg(G)− γ′
g(G)| ≤ 1.

Suppose that γg(G) = k and γ′
g(G) = m. Theorem 2.2 implies that the

realization of G is (k, k), (k, k + 1), (k, k − 1), where m = {k − 1, k, k + 1}. We
call equal for the case (k, k), plus for the case (k, k + 1), and minus for the case
(k, k − 1). If G is a family of forests, then the realization is (k, k) or (k, k + 1).

Theorem 2.3. [1, 7] Forests are no-minus graphs.

If the disjoint union of no-minus graphs has at least one equal graph (compo-
nent), then the following holds.

Theorem 2.4. [8] Let G1|S1 and G2|S2 be partially dominated no-minus graphs.
If G1|S1 realizes (k, k) and G2|S2 realizes (l,m) (where m ∈ l, l + 1), then the
disjoint union (G1 ∪G2)|(S1 ∪ S2) realizes (k + l, k +m).

In the case that both components of a no-minus graph are plus, the following
statement holds.

Theorem 2.5. [8] Let G1|S1 and G2|S2 be partially dominated no-minus graphs
such that G1|S1 realizes (k, k + 1) and G2|S2 realizes (l, l + 1). Then

k + l ≤ γg((G1 ∪G2)|(S1 ∪ S2)) ≤ k + l + 1,

k + l + 1 ≤ γ′
g((G1 ∪G2)|(S1 ∪ S2)) ≤ k + l + 2.
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Let P ′′
n denote the partially dominated path of order n+2, which its endpoints

are dominated, see Figure 2, and let P ′
n denote the partially dominated path of

order n + 1, which only one of its endpoint is dominated, see Figure 2. In both
cases, n vertices are not dominated. The following is an important lemma involving
the proof of the game domination numbers of a path.

Figure 2: Partially dominated paths of P ′′
n (left) and P ′

n (right)

Lemma 2.6. [3] For every n ≥ 0, we have

γg(P
′′
n ) =

{⌈
n
2

⌉
− 1; n ≡ 3 (mod 4),⌈

n
2

⌉
; otherwise,

γ′
g(P

′′
n ) =

{⌈
n
2

⌉
+ 1; n ≡ 2 (mod 4),⌈

n
2

⌉
; otherwise.

Moreover, for every i, j ≥ 0 such that i + j = n, ir = (i mod 4) and jr = (j
mod 4), we also have

γg(P
′′
i ∪ P ′′

j ) =


γg(P

′′
i ) + γg(P

′′
j ); (ir, jr) ∈ {0, 1} × {0, 1, 2, 3}∪

{0, 1, 2, 3} × {0, 1} ,
γg(P

′′
i ) + γg(P

′′
j ) + 1; (ir, jr) ∈ {2, 3} × {2, 3} ,

γ′
g(P

′′
i ∪ P ′′

j ) =


γg(P

′′
i ) + γg(P

′′
j ); (ir, jr) ∈ {0, 1} × {0, 1} ,

γg(P
′′
i ) + γg(P

′′
j ) + 1; (ir, jr) ∈ {0, 1} × {2, 3}∪

{2, 3} × {0, 1} ∪ {(2, 2)} ,
γg(P

′′
i ) + γg(P

′′
j ) + 2; (ir, jr) ∈ {(2, 3), (3, 2), (3, 3)} .

This lemma shows the optimal first move of both players playing on a partially
dominated graph P ′′

n . Dominator always chooses a vertex distance two from the
dominated endpoint, but Staller always choose dominated endpoint. Hence, both
players play the same way in P ′

n. The following statement holds.

Lemma 2.7. [3] For every n,m ≥ 0, we have

γg(P
′
n ∪ P ′

m) = γg(P
′′
n ∪ P ′

m) = γg(P
′′
n ∪ P ′′

m) and

γ′
g(P

′
n ∪ P ′

m) = γ′
g(P

′′
n ∪ P ′

m) = γ′
g(P

′′
n ∪ P ′′

m)

We can apply Lemmas 2.6 and 2.7 to determine the game domination number
of paths.
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Theorem 2.8. [3] For every n ≥ 0, we have

γg(Pn) =

{⌈
n
2

⌉
− 1; n ≡ 3 (mod 4),⌈

n
2

⌉
; otherwise,

γ′
g(Pn) =

⌈n
2

⌉
.

3 A Dominator-Start Game Played on Qn+1

In this section, we analyze γg(Qn+1). First, we study the game when the Domi-
nator first move is vertex x3.

Lemma 3.1. Suppose the Dominator first move is x3. Then

γ′
g(Qn+1|N [x3]) ≥

{⌈
n
2

⌉
− 1; n ≡ 3 (mod 4),⌈

n
2

⌉
; otherwise.

Proof. After the Dominator first move at x3, the residual graph is a disjoint union
between graph Px1x2v2 and P ′

n−4≥0, where Px1x2v2
is a path in Pn with the vertex

set {x1, x2, v2}. Notice that γ′
g(Qn+1|N [x3]) = γ′

g(Px1x2v2 ∪ P ′
n−4). We calcu-

late the game domination number directly ,and obtain that γg(Px1x2v2) = 1 and
γ′
g(Px1x2v2) = 2. So Px1x2v2 is a plus graph. We now consider γ′

g(Px1x2v2 ∪P ′
n−4).

If P ′
n−4 is a plus graph where n − 4 ≡ 2, 3 (mod 4), then the residual graph is a

disjoint union between plus graphs Px1x2v2 and P ′
n−4. By Theorem 2.5, we have

γ′
g(Px1x2v2

∪ P ′
n−4) ≥ γg(Px1x2v2) + γg(P

′
n−4) + 1

≥ 2 + γg(P
′
n−4).

If P ′
n−4 is an equal graph where n − 4 ≡ 0, 1 (mod 4), then the residual graph is

a disjoint union between plus and equal graphs. By Theorem 2.4, we have

γ′
g(Px1x2v2 ∪ P ′

n−4) = γ′
g(Px1x2v2) + γ′

g(P
′
n−4)

= γg(Px1x2v2) + 1 + γg(P
′
n−4)

= 2 + γg(P
′
n−4).

We can easily check by hand for the case n = 4. Suppose that n ≥ 5, we consider
four cases according to the value of n mod 4. We apply Lemmas 2.6 and 2.7 to
obtain the solution for all k ≥ 1 as follows.

γ′
g(Px1x2v2 ∪ P ′

4(k−1)) = 2 + γg(P
′
4(k−1))

= 2 + γg(P
′′
4(k−1))

= 2 + 2k − 2 = 2k,
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γ′
g(Px1x2v2 ∪ P ′

4(k−1)+1) = 2 + γg(P
′
4(k−1)+1)

= 2 + γg(P
′′
4(k−1)+1)

= 2 + 2k − 2 + 1 = 2k + 1,

γ′
g(Px1x2v2 ∪ P ′

4(k−1)+2) ≥ 2 + γg(P
′
4(k−1)+2)

≥ 2 + 2(k − 1) + 1 = 2k + 1,

γ′
g(Px1x2v2 ∪ P ′

4(k−1)+3) ≥ 2 + γg(P
′
4(k−1)+3)

≥ 2 + 2(k − 1) + 2− 1 = 2k + 1.

Notice that γg(Qn+1) = 1 + minx∈Qn+1
{γ′

g(Qn+1|N [x])}. We obtain this
equality when x is the Dominator first move in an optimal strategy. Since it does
not guarantee that the Dominator first move at x3 is an optimal strategy, we
obtain the following corollary.

Corollary 3.1. γ(Qn+1) ≤ 1 + γ′
g(Qn+1|N [x3]).

Next, we consider the game domination number on graph Qn+1 after the
Dominator first move choosing vertex x2.

Lemma 3.2. If the Dominator first move is x2, then

γ′
g(Qn+1|N [x2]) =

{⌈
n
2

⌉
− 2; n ≡ 3 (mod 4),⌈

n
2

⌉
− 1; otherwise.

Proof. Suppose that the Dominator first move is x2. Then vertices x1, x2, x3, v2
are all dominated, and the residual graph is P ′

n−3. We consider four cases accord-
ing to the value of n mod 4. Let k ≥ 1. By Lemmas 2.6 and 2.7, we obtain that

γ′
g(P

′
4(k−1)+1) = γ′

g(P
′′
4(k−1)+1)

= γg(P
′′
4(k−1)+1)

= 2(k − 1) + 1 = 2k − 1,

γ′
g(P

′
4(k−1)+2) = γ′

g(P
′′
4(k−1)+2)

= γg(P
′′
4(k−1)+2) + 1 = 2k,

γ′
g(P

′
4(k−1)+3) = γ′

g(P
′′
4(k−1)+3)

= γg(P
′′
4(k−1)+3) + 1 = 2k,
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γ′
g(P

′
4k) = γ′

g(P
′′
4k)

= γg(P
′′
4k) = 2k.

Proof of Theorem 1.1. We compare γ′
g(Qn+1|N [x2]) and γ′

g(Qn+1|N [x3]). Since
γ′
g(Qn+1|N [x2]) < γ′

g(Qn+1|N [x3]), we obtain the result.

We now consider some vertices which are not the Dominator first move in an
optimal strategy.

Lemma 3.3. In an optimal strategy of the Dominator-start game played on Qn+1,
the Dominator first move cannot be x1, x3, xn and v2.

Proof. We know that N [x1] and N [v2] are subsets of N [x2], and {xn} is a subset
of N [xn−1]. By the continuation principle and Theorem 1.1, the result follows.

From our analysis, we propose the following conjecture. In an optimal strategy
of the Dominator-start game played onQn+1, the Dominator first move is x2. Then

γg(Qn+1) = 1 + γ′
g(Qn+1|N [x2])

=

{⌈
n
2

⌉
− 1; n ≡ 3 (mod 4),⌈

n
2

⌉
; otherwise.

4 A Staller-Start Game Played on Qn+1

In this part, we consider the Staller-start game domination number on graph Qn+1.

Lemma 4.1. If the Staller first move is x3, then

γg(Qn+1|N [x3]) =


⌈
n
2

⌉
− 1; n ≡ 0, 1 (mod 4),⌈

n
2

⌉
− 1 or

⌈
n
2

⌉
; n ≡ 2 (mod 4),⌈

n
2

⌉
− 1 or

⌈
n
2

⌉
− 2; n ≡ 3 (mod 4).

Proof. Suppose that the Staller first move is x3. Then the residual graph is a
disjoint union between Px1x2v2 and P ′

n−4≥0, where Px1x2v2 is a path in Pn with
the vertex set {x1, x2, v2}. Notice that γg(Qn+1|N [x3]) = γg(Px1x2v2 ∪P ′

n−4). We
can find the game domination number directly from the graph; γg(Px1x2v2) = 1
and γ′

g(Px1x2v2) = 2. So Px1x2v2 is a plus graph. Nest we find γg(Px1x2v2 ∪P ′
n−4).

If P ′
n−4 is a plus graph, where n− 4 ≡ 2, 3 (mod 4), then the residual graph is a

disjoint union between plus graphs Px1x2v2
and P ′

n−4. By Theorem 2.5, we have
that

γg(Px1x2v2) + γg(P
′
n−4) ≤ γg(Px1x2v2 ∪ P ′

n−4) ≤ γg(Px1x2v2) + γg(P
′
n−4) + 1

1 + γg(P
′
n−4) ≤ γg(Px1x2v2 ∪ P ′

n−4) ≤ 2 + γg(P
′
n−4).
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If P ′
n−4 is an equal graph, where n−4 ≡ 0, 1 (mod 4), then the residual graph

is a disjoint union between plus graph and equal graph. By Theorem 2.4, we have
that

γg(Px1x2v2 ∪ P ′
n−4) = γg(Px1x2v2

) + γg(P
′
n−4)

= 1 + γg(P
′
n−4).

It can be easily checked for n = 4. Assume that n ≥ 5. There are four cases
according to the value of n mod 4. Then we apply Lemmas 2.6 and 2.7 to obtain
the solution for all k ≥ 1.

γg(Px1x2v2 ∪ P ′
4(k−1)) = 1 + γg(P

′
4(k−1))

= 1 + γg(P
′′
4(k−1))

= 1 + 2k − 2 = 2k − 1,

γg(Px1x2v2 ∪ P ′
4(k−1)+1) = 1 + γg(P

′
4(k−1)+1)

= 1 + γg(P
′
4(k−1)+1)

= 1 + 2k − 2 + 1 = 2k,

1 + γg(P
′
4(k−1)+2) ≤ γg(Px1x2v2 ∪ P ′

4(k−1)+2) ≤ 2 + γg(P
′
4(k−1)+2)

1 + 2k − 2 + 1 ≤ γg(Px1x2v2 ∪ P ′
4(k−1)+2) ≤ 2 + 2k − 2 + 1

2k ≤ γg(Px1x2v2 ∪ P ′
4(k−1)+2) ≤ 2k + 1,

1 + γg(P
′
4(k−1)+3) ≤ γg(Px1x2v2 ∪ P ′

4(k−1)+3) ≤ 2 + γg(P
′
4(k−1)+3)

1 + 2k − 2 + 1 ≤ γg(Px1x2v2
∪ P ′

4(k−1)+3) ≤ 2 + 2k − 2 + 1

2k ≤ γg(Px1x2v2 ∪ P ′
4(k−1)+3) ≤ 2k + 1.

Proof of Theorem 1.2. We know that

γg(Qn+1) = 1 +maxx∈V (Qn+1) {γ
′
g(Qn+1|N [x])}.

We can obtain this equality when x is the Staller first move in an optimal strategy.
Since it does not guarantee that the Staller first move at x3 is an optimal strategy,
we obtain the result.

We next consider the Staller-start game domination number when Staller
chooses v2 and Dominator chooses x2.
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Lemma 4.2. If the Staller first move is v2 and the next move by Dominator is
x2, then

γ′
g(Qn+1|N [v2, x2]) =

{⌈
n
2

⌉
− 2; n ≡ 3 (mod 4),⌈

n
2

⌉
− 1; otherwise.

Proof. Suppose that the first move of Staller is v2, then x2 is dominated. If
Dominator chooses x2, then γg(Qn+1|N [v2]) = 1 + γ′

g(Qn+1|N [v2, x2]). The cor-
responding residual graph is P ′

r, where r ≥ 0 and r = n − 3. We have that
γ′
g(P

′
n−3) = γ′

g(Qn+1|N [v2, x2]). There are four cases according to the value of
n mod 4. For k ≥ 1, by Lemmas 2.6 and 2.7, we have that

γ′
g(P

′
4(k−1)+1) = γ′

g(P
′′
4(k−1)+1)

= γg(P
′′
4(k−1)+1)

= 2(k − 1) + 1 = 2k − 1,

γ′
g(P

′
4(k−1)+2) = γ′

g(P
′′
4(k−1)+2)

= γg(P
′′
4(k−1)+2) + 1 = 2k,

γ′
g(P

′
4(k−1)+3) = γ′

g(P
′′
4(k−1)+3)

= γg(P
′′
4(k−1)+3) + 1 = 2k,

γ′
g(P

′
4k) = γ′

g(P
′′
4k)

= γg(P
′′
4k) = 2k.

We assume that the Dominator first move is x4 in the Staller-start game.

Lemma 4.3. In the Staller-start game, if the Staller first move is v2 and the
Dominator first move is x4, then

γ′
g(Qn+1|N [v2, x4]) =

{⌈
n
2

⌉
− 2; n ≡ 1 (mod 4),⌈

n
2

⌉
− 1; otherwise.

Proof. Suppose that the Staller first move is v2 and the Dominator first move is
x4. Then γg(Qn+1|N [x4]) = 1 + γ′

g(Qn+1|N [v2, x4]). The corresponding residual
graph is P ′

1 ∪ P ′
r, where r ≥ 0 and r + 1 = n− 4. We have that γ′

g(P
′
1 ∪ P ′

n−3) =
γ′
g(Qn+1|N [v2, x4]). There are four cases according to the value of n mod 4. For

k ≥ 1, by Lemmas 2.6 and 2.7, we have that

γ′
g(P

′
1 ∪ P ′

4(k−2)+3) = γg(P
′′
1 ) + γg(P

′′
4(k−2)+3) + 1

= 2 + γg(P
′′
4(k−2)+3)

= 2 + 2(k − 2) + 2− 1

= 2 + 2k − 4 + 1 = 2k − 1,
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γ′
g(P

′
1 ∪ P ′

4(k−1)) = γg(P
′′
1 ) + γg(P

′′
4(k−1))

= 1 + γg(P
′′
4(k−1))

= 1 + 2k − 2 = 2k − 1,

γ′
g(P

′
1 ∪ P ′

4(k−1)+1) = γg(P
′′
1 ) + γg(P

′′
4(k−1)+1)

= 1 + γg(P
′′
4(k−1)+1)

= 1 + 2k − 2 + 1 = 2k,

γ′
g(P

′
1 ∪ P ′

4(k−1)+2) = γg(P
′′
1 ) + γg(P

′′
4(k−1)+2) + 1

= 2 + γg(P
′′
4(k−1)+2)

= 2 + 2k − 2 + 1 = 2k + 1.

Proof of Theorem 1.3. Note that for u ∈ Qn+1,

γg(Qn+1|N [u]) = 1 +minv∈V (Qn+1)−u {γ′
g(Qn+1|N [u, v])}.

From Lemmas 4.2 and 4.3, for n ≡ 3 (mod 4),

γ′
g(Qn−1|N [v2, x2]) =

⌈n
2

⌉
− 2 <

⌈n
2

⌉
− 1 = γ′

g(Qn−1|N [v2, x4]).

So for Dominator, choosing x2 is better than choosing x4.

From our analysis, we propose the following conjecture. In an optimal strategy
of the Staller-start game, if the Staller first move is v2 and the Dominator first
move is xn−1, then

γ′
g(Qn+1) = 1 +

{⌈
n
2

⌉
; n ≡ 1, 3 (mod 4),⌈

n
2

⌉
+ 1; otherwise.

5 A Dominator-Start Game Played on 1-sum of
Pn and P2

In this section, we analyze the game domination number on a graph Tn+1, which
is a graph constructed from 1-sum of Pn and P2 at xk, for some k = 2, ..., n − 1,
and v1, see figure 3. Then we find the upper bound of γg(Tn+1) by assuming that
the Dominator first move is xk. By applying Lemmas 2.6 and 2.7, we obtain the
following lemma.
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Figure 3: Graph Tn+1

Lemma 5.1. If k ≡ 0 (mod 4), then

γg(Tn+1) ≤


⌈
n
2

⌉
; n ≡ 0 (mod 4),⌈

n
2

⌉
+ 1; n ≡ 1 (mod 4),⌈

n
2

⌉
+ 2; n ≡ 2, 3 (mod 4).

If k ≡ 1 (mod 4), then

γg(Tn+1) ≤


⌈
n
2

⌉
; n ≡ 0 (mod 4),⌈

n
2

⌉
+ 1; n ≡ 1, 2 (mod 4),⌈

n
2

⌉
+ 2; n ≡ 3 (mod 4).

If k ≡ 2 (mod 4), then γg(Tn+1) ≤
⌈
n
2

⌉
+ 1.

If k ≡ 3 (mod 4), then

γg(Tn+1) ≤

{⌈
n
2

⌉
+ 1; n ≡ 0, 1 (mod 4),⌈

n
2

⌉
+ 2; n ≡ 2, 3 (mod 4).

Proof. We can easily check by hand for the case n = 4. Assume that n ≥ 5.
Suppose that Dominator chooses xk in the first move, then the residual graph is
P ′
r ∪ P ′

s, where r + s = n− 3. We now consider the following cases of the residual
graph according to the value of n mod 4.

If n ≡ 0 (mod 4) or n = 4j, where j > 0, there are two cases: 1) P ′
4l ∪ P ′

4m+1

where l+m+ 1 = j and l,m ≥ 0; and 2) P ′
4l+2 ∪ P ′

4m+3 where l+m+ 2 = j and
l,m ≥ 0.

If n ≡ 1 (mod 4) or n = 4j + 1, where j > 0, there are three cases: 1)
P ′
4l+3∪P ′

4m+3 where l+m+2 = j and l,m ≥ 0; 2) P ′
4l∪P ′

4m+2 where l+m+1 = j
and l,m ≥ 0; and 3) P ′

4l+1 ∪ P ′
4m+1 where l +m+ 1 = j and l,m ≥ 0.

If n ≡ 2 (mod 4) or n = 4j+2, where j > 0, there are two cases: 1) P ′
4l∪P ′

4m+3

where l+m+ 1 = j and l,m ≥ 0; and 2) P ′
4l+1 ∪ P ′

4m+2 where l+m+ 1 = j and
l,m ≥ 0.

If n ≡ 3 (mod 4) or n = 4j+3, where j > 0, there are three cases: 1) P ′
4l∪P ′

4m

where l+m = j and l,m ≥ 0; 2) P ′
4l+1 ∪P ′

4m+3 where l+m+1 = j and l,m ≥ 0;
and 3) P ′

4l+2 ∪ P ′
4m+2 where l +m+ 1 = j and l,m ≥ 0.

By applying Lemmas 2.6 and 2.7 to consider each cases, the result follows.
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