Thai Journal of Mathematics : 21-33 Special Issue: Annual Meeting in Mathematics 2018



http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

# Edelstein Type L-fuzzy Fixed Point Theorems

Muhammad Sirajo Abdullahi $^{\dagger \S \ddagger}$ , Akbar Azam $^{\P}$  and Poom Kumam $^{\S \ddagger 1}$ 

<sup>†</sup>Department of Mathematics, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria. e-mail: abdullahi.sirajo@udusok.edu.ng <sup>¶</sup>Department of Mathematics, Faculty of Science, COMSATS Institute of Information Technology, Park Road 24105, Islamabad, Pakistan. e-mail : akbar\_azam@comsats.edu.pk §KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road Bang Mod, Thrung Khru, Bangkok 10140, Thailand. e-mail: poom.kumam@mail.kmutt.ac.th <sup>‡</sup>KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS) Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road Bang Mod, Thrung Khru, Bangkok 10140, Thailand. e-mail: poom.kumam@mail.kmutt.ac.th

Abstract : In this manuscript, we introduced some L-fuzzy contractive mappings and established some L-fuzzy fixed points results for L-fuzzy contractive and L-fuzzy locally contractive mappings on a compact metric spaces and compact connected metric spaces respectively. Our results extend some interesting results in the literature, we also presented an example to support our findings.

**Keywords :** Fuzzy sets; *L*-fuzzy sets; Fixed points; *L*-fuzzy fixed points; Contractive mapping; *L*-fuzzy mapping.

Copyright C 2019 by the Mathematical Association of Thailand. All rights reserved.

<sup>&</sup>lt;sup>1</sup>Corresponding author email: poom.kumam@mail.kmutt.ac.th)

2010 Mathematics Subject Classification : 46S40; 47H10; 54H25.

### 1 Introduction

In 1965, Zadeh [22] initiated the development of the modified set theory known as fuzzy set theory, which is a tool that makes possible the description of vagueness and imprecision. Later in 1967, Goguen [12] makes a generalization of the fuzzy set theory by replacing the interval [0, 1] with a lattice L.

The study of fixed points theorems in fuzzy mathematics was initiated by Weiss [21]. Heilpern [13] introduced the concept of fuzzy contraction mappings and established a fixed point theorem for fuzzy contraction mappings in a complete metric linear spaces, which is a fuzzy extension of Banach contraction principle [8] and Nadler's fixed point theorem [14].

In [9], [10] Edelstein established a generalization of Banach contraction principle for contractive mappings as follows.

**Theorem 1.1.** Let X be a compact metric space and  $T: X \longrightarrow X$  satisfy

d(Tx,Ty) < d(x,y), for all  $x, y \in X$  with  $x \neq y$ .

Then there exist a unique  $x \in X$  such that x = Tx.

Afterwards, several authors (see [3, 6, 11, 15, 16, 17, 18] and references therein) studied fixed point theorems for fuzzy generalized contractive mappings.

Frigon and Regan [11] generalized the Heilpern theorem under a contractive condition for 1-level sets of a fuzzy contraction on a complete metric space, where the 1-level sets need not be convex or compact. And later Azam and Beg [7] obtained a common  $\alpha$ -fuzzy fixed point of a pair of fuzzy mappings on a complete metric space under a generalized contractive condition for  $\alpha$ -level sets via Hausdorff metric for fuzzy sets, which generalized the results proved by Azam and Arshad [4] among others.

In 2009, Azam et al. [5] presented some fixed point theorems for fuzzy mappings under Edelstein locally contractive conditions on a compact metric space using the  $d_{\infty}$ -metric for fuzzy sets.

Recently, Rashid et al. [20] introduced the notions of  $d_L^{\infty}$ -metric and Hausdorff distances for *L*-fuzzy sets to identify a contractive relation between *L*-fuzzy and crisp mappings, and also presented some fixed point and coincidence theorems. Rashid et al. [19] introduced the concept of  $\beta_{\alpha_L}$ -admissible for a pair of *L*-fuzzy mappings and establish the existence of common *L*-fuzzy fixed point theorem.

In this paper, we will establish some fixed point theorems for an L-fuzzy mappings by using contractive conditions in compact connected metric spaces, which is a generalization of [5] and construct an example to support our results.

Edelstein Type L-fuzzy Fixed Point Theorems

#### 2 Preliminaries

Throughout this paper, we shall adopt the notations as being recorded in [1, 2, 5, 9, 10, 11, 13, 14, 19, 20]. Let (X, d) be a metric space. Define and denote.

 $CB(X) = \{A : A \text{ is closed and bounded subsets of } X\}$ 

 $C(X) = \{A : A \text{ is compact subsets of } X\}$ 

For  $\epsilon > 0$  and  $A, B \in CB(X)$ . We define

$$d(x, A) = \inf_{y \in A} d(x, y),$$
  

$$d(A, B) = \inf_{x \in A, y \in B} d(x, y),$$
  

$$N(\epsilon, A) = \{x \in X : d(x, y) < \epsilon \text{ for some } a \in A\},$$
  

$$E_{A,B} = \{\epsilon > 0 : A \subseteq N(\epsilon, B), B \subseteq N(\epsilon, A)\}.$$

Then,

 $H(A, B) = \inf E_{A,B}.$ 

**Definition 2.1.** A fuzzy set in X is a function with domain X and range in [0, 1]. i.e A is a fuzzy set if  $A: X \longrightarrow [0, 1]$ .

Let  $\mathcal{F}(X)$  denotes the collection of all fuzzy sets of X. If A is a fuzzy set and  $x \in X$ , then A(x) is called the grade of membership of x in A. The  $\alpha$ -level set of A is denoted by  $[A]_{\alpha}$  and is defined as below:

$$\begin{split} & [A]_{\alpha} = \{ x \in X : A(x) > 0 \} \text{ for } \alpha \in (0,1], \\ & [A]_0 = \text{ closure of the set } \{ x \in X : A(x) > 0 \}. \end{split}$$

**Definition 2.2.** (Abdullahi and Azam [2]). A partially ordered set  $(L, \leq_L)$  is called

- (i) a lattice: if  $a \lor b \in L$ ,  $a \land b \in L$  for any  $a, b \in L$ ;
- (ii) a complete lattice: if  $\bigvee A \in L$ ,  $\bigwedge A \in L$  for any  $A \subseteq L$ ;
- (iii) a distributive lattice: if  $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ ,  $a \land (b \lor c) = (a \land b) \lor (a \land c)$  for any  $a, b, c \in L$ ;
- (iv) a complete distributive lattice: if  $a \lor (\bigwedge b_i) = \bigwedge_i (a \land b_i)$ ,  $a \land (\bigvee_i b_i) = \bigvee_i (a \land b_i)$  for any  $a, b_i \in L$ .

**Definition 2.3.** (Goguen [12]). An L-fuzzy set in X is a function whose domain is X and co-domain is L, where L is a complete distributive lattice with  $1_L$  and  $0_L$  i.e If  $A: X \longrightarrow L$ , then A is an L-fuzzy set.

**Definition 2.4.** (Goguen [12]). Let L be a lattice, the top and bottom elements of L are  $1_L$  and  $0_L$  respectively, and if  $a, b \in L, a \lor b = 1_L$  and  $a \land b = 0_L$  then b is a unique complement of a denoted by  $\dot{a}$ .

**Remark 2.5.** (Goguen [12]). If L = [0, 1], then the L-fuzzy set is just the fuzzy set in the original sense by Zadeh [22], which shows that L-fuzzy set is bigger.

Let  $\mathcal{F}_L(X)$  denotes the class of all *L*-fuzzy sets of *X*. The  $\alpha_L$ -level set of an *L*-fuzzy set *A* is denoted as  $A_{\alpha_L}$  and defined as below:

$$A_{\alpha_L} = \{ x \in X : \alpha_L \preceq_L A(x) \} \text{ for } \alpha_L \in L \setminus \{0_L\},$$
$$A_{0_L} = \overline{\{ x \in X : 0_L \preceq_L A(x) \}},$$

where  $\overline{B}$  denotes the closure of the set B (Crisp).

For  $A, B \in \mathcal{F}(X), A \subset B$  means  $A(x) \leq B(x)$  for each  $x \in X$ . If there exists an  $\alpha \in [0, 1]$  such that  $[A]_{\alpha}, [B]_{\alpha} \in CB(X)$ . Then, we define

 $D_{\alpha}(A,B) = H([A]_{\alpha}, [B]_{\alpha}).$ 

If  $[A]_{\alpha}, [B]_{\alpha} \in CB(X)$  for each  $\alpha \in [0, 1]$ . Then, we define

 $d_{\infty}(A,B) = \sup_{\alpha} D_{\alpha}(A,B).$ 

Let X be an arbitrary set, Y be a metric space. A mapping T is called a fuzzy mapping if T is a mapping from X to  $\mathcal{F}(Y)$ .

A fuzzy mapping T is a fuzzy subset on  $X \times Y$  with membership function T(x)(y). The function T(x)(y) is the grade of membership of y in T(x).

**Definition 2.6.** A fuzzy set A in a metric linear space V is said to be an approximate quantity if and only if  $[A]_{\alpha}$  is compact and convex in V for each  $\alpha \in [0, 1]$  and  $\sup_{x \in V} A(x) = 1$ . Let  $\mathcal{W}(V)$  denotes the collection of all approximate quantities in V.

For  $A, B \in \mathcal{F}_L(X), A \subset B$  means  $A(x) \preceq_L B(x)$  for each  $x \in X$ . If there exists an  $\alpha_L \in L \setminus \{0_L\}$  such that  $A_{\alpha_L}, B_{\alpha_L} \in CB(X)$ . Then, we define

$$D_{\alpha_L}(A,B) = H(A_{\alpha_L}, B_{\alpha_L}).$$

If  $A_{\alpha_L}, B_{\alpha_L} \in CB(X)$  for each  $\alpha_L \in L \setminus \{0_L\}$ . Then, we define

$$d_L^{\infty}(A,B) = \sup_{\alpha_L} D_{\alpha_L}(A,B).$$

Let X be an arbitrary set, Y be a metric space. A mapping T is called an L-fuzzy mapping if T is a mapping from X to  $\mathcal{F}_L(Y)$  (i.e class of L-fuzzy subsets of Y).

An L-fuzzy mapping T is an L-fuzzy subset on  $X \times Y$  with membership function T(x)(y). The function T(x)(y) is the grade of membership of y in T(x).

Edelstein Type L-fuzzy Fixed Point Theorems

**Definition 2.7.** An L-fuzzy set A in a metric linear space V is said to be an approximate quantity if and only if  $A_{\alpha_L}$  is compact and convex in V, for each  $\alpha_L \in L \setminus \{0_L\}$  and  $\sup_{x \in V} A(x) = 1_L$ . Let  $W_L(V)$  denotes the collection of all approximate quantities in V.

**Definition 2.8.** (Azam et. al. [5]). A mapping  $T : X \longrightarrow \mathcal{F}(X)$  is called fuzzy (globally) contraction if there exists  $\lambda \in [0, 1)$  such that

$$d_{\infty}(Tx, Ty) \leq \lambda d(x, y), \text{ for all } x, y \in X$$

**Definition 2.9.** (Azam et. al. [5]). A mapping  $T : X \longrightarrow \mathcal{F}(X)$  is called  $(\epsilon, \lambda)$  uniformly fuzzy locally contraction if for  $x, y \in X, \lambda \in [0, 1)$ 

$$d(x,y) < \epsilon \implies d_{\infty}(Tx,Ty) \le \lambda \, d(x,y).$$

**Definition 2.10.** (Azam et. al. [5]). A mapping  $T: X \longrightarrow \mathcal{F}(X)$  is called fuzzy (globally) contractive if for  $x, y \in X, x \neq y$ 

$$d_{\infty}(Tx, Ty) < d(x, y).$$

**Definition 2.11.** (Azam et. al. [5]). A mapping  $T : X \longrightarrow \mathcal{F}(X)$  is called fuzzy locally contractive if to each  $x \in X$  there exists an open set U containing x so that if  $y, z \in U, y \neq z$ 

 $d_{\infty}(Ty, Tz) < d(y, z).$ 

**Definition 2.12.** A mapping  $T : X \longrightarrow \mathcal{F}_L(X)$  is called an L-fuzzy (globally) contraction if there exists  $\lambda \in [0, 1)$  such that

$$d_L^{\infty}(Tx, Ty) \leq \lambda d(x, y), \text{ for all } x, y \in X.$$

**Definition 2.13.** A mapping  $T: X \longrightarrow \mathcal{F}_L(X)$  is called  $(\epsilon, \lambda)$  uniformly L-fuzzy locally contraction if for  $x, y \in X, \lambda \in [0, 1)$ 

$$d(x,y) < \epsilon \implies d_L^{\infty}(Tx,Ty) \le \lambda d(x,y).$$

**Definition 2.14.** A mapping  $T : X \longrightarrow \mathcal{F}_L(X)$  is called an L-fuzzy (globally) contractive if for  $x, y \in X, x \neq y$ 

$$d_L^{\infty}(Tx, Ty) < d(x, y). \tag{2.1}$$

**Definition 2.15.** A mapping  $T : X \longrightarrow \mathcal{F}_L(X)$  is called an L-fuzzy locally contractive if to each  $x \in X$  there exists an open set U containing x so that if  $y, z \in U, y \neq z$ 

$$d_L^{\infty}(Ty, Tz) < d(y, z). \tag{2.2}$$

**Definition 2.16.** (Abdullahi and Azam [2]). A point  $x \in X$  is said to be a fuzzy fixed point of a fuzzy mapping  $T: X \longrightarrow \mathcal{F}(X)$  if  $\{x\} \subseteq T(x)$ .

**Definition 2.17.** (Abdullahi and Azam [2]). A point  $z \in X$  is said to be an Lfuzzy fixed point of an L-fuzzy mapping  $T : X \longrightarrow \mathcal{F}_L(X)$  if  $z \in [Tz]_{\alpha_L}$  for some  $\alpha_L \in L \setminus \{0_L\}$ .

**Lemma 2.18.** (Heilpern [13]). Let  $x \in X, A \in \mathcal{W}(X)$ , and  $\{x\}$  be a fuzzy set with membership function equal to characteristic function of set  $\{x\}$ . If  $\{x\} \subset A$ , then  $p_{\alpha}(x, A) = 0$  for each  $\alpha \in [0, 1]$ .

**Lemma 2.19.** Let  $x \in X, A \in \mathcal{W}_L(X)$ , and  $\{x\}$  be an L-fuzzy set with membership function equal to characteristic function of set  $\{x\}$ . If  $\{x\} \subset A$ , then  $p_{\alpha_L}(x, A) = 0_L$  for  $\alpha_L \in L \setminus \{0_L\}$ .

**Lemma 2.20.** (Heilpern [13]).  $p_{\alpha}(x, A) \leq d(x, y) + p_{\alpha}(y, A)$  for any  $x, y \in X$ .

**Lemma 2.21.**  $p_{\alpha_L}(x, A) \leq d(x, y) + p_{\alpha_L}(y, A)$  for any  $x, y \in X$ .

**Lemma 2.22.** (Heilpern [13]). If  $\{x_0\} \subset A$ , then  $p_\alpha(x_0, B) \leq D_\alpha(A, B)$  for each  $B \in \mathcal{W}(X)$ .

**Lemma 2.23.** If  $\{x_0\} \subset A$ , then  $p_{\alpha_L}(x_0, B) \leq D_{\alpha_L}(A, B)$  for each  $B \in \mathcal{W}_L(X)$ .

**Lemma 2.24.** (Nadler [14]). Let (X, d) be a metric space and  $A, B \in CB(X)$ . Then for any  $a \in A$  there exists  $b \in B$  such that  $d(a, b) \leq H(A, B)$ .

**Definition 2.25.** Let (X,d) be a metric space,  $x, y \in X$  and  $\epsilon > 0$ . An  $\epsilon$ chain from x to y is define as a finite set of points  $x_0, x_1, x_2, \ldots, x_n$  such that  $x = x_0, y = x_n$  and  $d(x_j, x_{j+1}) < \epsilon$  for all  $j = 0, 1, 2, \ldots, j - 1$ .

**Lemma 2.26.** Let (X, d) be a compact connected metric space, then for each  $\epsilon > 0$ and  $x, y \in X$ , there exists an  $\epsilon$ -chain from x to y and the mapping  $d^{\epsilon} : X \times X \longrightarrow \mathbb{R}$ define by:

$$d^{\epsilon}(x,y) = \inf\{M\}$$

where  $M = \{\sum_{j=0}^{n-1} d(x_j, x_{j+1}) : x_0, x_1, x_2, \dots, x_n \text{ is an } \epsilon \text{-chain from } x \text{ to } y\}$ , is a metric on X equivalent to d. Furthermore, for  $x, y \in X, \epsilon > 0$  there exists an  $\epsilon - \text{chain } x = x_0, x_1, x_2, \dots, x_n = y$  such that

$$d^{\epsilon}(x,y) = \sum_{j=0}^{n-1} d(x_j, x_{j+1})$$

#### 3 Main Results

**Theorem 3.1.** Let (X,d) be a compact metric space and  $T: X \longrightarrow \mathcal{F}_L(X)$  be L-fuzzy contractive mapping. Then T has an L-fuzzy fixed point.

Edelstein Type  $L\mbox{-}{\rm fuzzy}$  Fixed Point Theorems

*Proof:* For  $x \in X$ .  $[Tx]_{\alpha_L}$  is non empty and compact. Define a mapping  $g: X \longrightarrow [0, \infty)$  by  $g(x) = p_{\alpha_L}(x, Tx)$ . It now implies that,

$$\begin{split} g(x) &= p_{\alpha_L}(x, Tx) \\ &\leq d(x, y) + p_{\alpha_L}(y, Tx) \\ &\leq d(x, y) + p_{\alpha_L}(y, Ty) + H([Tx]_{\alpha_L}, [Ty]_{\alpha_L}) \\ &\leq d(x, y) + p_{\alpha_L}(y, Ty) + D_{\alpha_L}(Tx, Ty) \\ &\leq d(x, y) + p_{\alpha_L}(y, Ty) + \sup_{\alpha_L} D_{\alpha_L}(Tx, Ty) \\ &\leq d(x, y) + p_{\alpha_L}(y, Ty) + d_L^{\infty}(Tx, Ty) \end{split}$$

Thus,

$$g(x) - g(y) \le d(x, y) + d_L^{\infty}(Tx, Ty),$$

and by symmetry, we have

$$|g(x) - g(y)| \le d(x, y) + d_L^{\infty}(Tx, Ty).$$

Hence g is continuous from (2.1) and the above inequality. Since X is compact g attains it's minimum say at a point  $x^* \in X$ .

By compactness of  $[Tx^*]_{\alpha_L}$  we can choose  $x_1 \in X$ , such that  $\{x_1\} \subset T(x^*)$ and  $d(x^*, x_1) = p_{\alpha_L}(x^*, Tx^*) = g(x^*)$ . Then,  $\{x^*\} \subset T(x^*)$ . Otherwise  $g(x_1) = p_{\alpha_L}(x_1, Tx_1)$  along with Lemma 2.23 will imply that

$$g(x_{1}) = p_{\alpha_{L}}(x_{1}, Tx_{1})$$

$$\leq D_{\alpha_{L}}(Tx^{*}, Tx_{1})$$

$$\leq \sup_{\alpha_{L}} D_{\alpha_{L}}(Tx^{*}, Tx_{1})$$

$$\leq d_{L}^{\infty}(Tx^{*}, Tx_{1})$$

$$< d(x^{*}, x_{1})$$

$$= p_{\alpha_{L}}(x^{*}, Tx^{*}) = g(x^{*})$$

A contradiction and therefore,  $\{x^*\} \subset T(x^*)$ . Hence,

$$x^* \in [T(x^*)]_{\alpha_L}, \, \alpha_L \in L \setminus \{0_L\},$$

as required.

**Example 3.2.** Let X = [0,1], d(x,y) = |x - y| for all  $x, y \in X$ , then (X,d) is a compact metric space. Let  $L = \{\delta, \gamma, \tau\}$  with  $\delta \preceq_L \tau$  and  $\gamma \preceq_L \tau$ , where  $\delta$  and  $\gamma$  are not comparable, then  $(L, \preceq_L)$  is a complete distributive lattice. Define  $T: X \longrightarrow \mathcal{F}_L(X)$  as below:

$$T(x)(t) = \begin{cases} \tau, & \text{if } 0 \le t \le \frac{x}{6}; \\ \delta, & \text{if } \frac{x}{6} < t \le \frac{x}{3}; \\ \gamma, & \text{if } \frac{x}{3} < t \le 1. \end{cases}$$

For every  $x \in X$ ,  $\alpha_L = \tau$  exists for which

$$[Tx]_{\tau} = [0, \frac{x}{6}].$$

Now, for each  $x, y \in X$ , we have

$$d_L^{\infty}(Tx, Ty) = \sup_{\alpha_L} D_{\alpha_L}(Tx, Ty)$$
  
=  $\sup_{\alpha_L} H([Tx]_{\alpha_L}, [Ty]_{\alpha_L})$   
=  $\sup |\frac{x}{6} - \frac{y}{6}|$   
 $\leq \frac{1}{6} \sup |x - y|$   
 $\leq \frac{1}{6} \sup d(x, y)$   
 $< d(x, y),$ 

which implies that all the conditions of Theorem 3.1 are satisfied. Hence, there exists  $0 \in X$  such that  $0 \in [T0]_{\tau}$ .

**Corollary 3.3.** Let (X,d) be a compact metric space and  $T: X \longrightarrow \mathcal{F}_L(X)$  be L-fuzzy contractive mapping. If  $\alpha_L = 1_L$ , then T has a fixed point.

*Proof:* Since  $\alpha_L = 1_L \in L$ , by theorem 3.1 it follows that there exists an  $x^* \in X$  such that  $x^* \in [T(x^*)]_{1_L}$ . Thus, implying that  $x^* = T(x^*)$  and hence T has a fixed point.

**Theorem 3.4.** Let (X, d) be a compact connected metric space and  $T : X \longrightarrow \mathcal{F}_L(X)$  be L-fuzzy locally contractive mapping. Then T has an L-fuzzy fixed point.

*Proof:* To begin with, definition 2.15 and Lemma 2.24, implies that for each  $x \in X$  which belongs to an open set say U so that if  $y, z \in U, y \neq z$ , we have

$$H([Ty]_{\alpha_L}, [Tz]_{\alpha_L}) < d(y, z).$$
(3.1)

By Lemma 2.26, for each  $\epsilon > 0$  and each pair of points say  $u, v \in X$ , there exists an  $\epsilon$ -chain  $u = x_0, x_1, x_2, \ldots, x_n = v$  from u to v. Also, as X is compact we find  $\delta > 0$  so that for  $y, z \in U, y \neq z$ , and  $d(x, y) < \delta$ , then

 $H([Tx]_{\alpha_L}, [Ty]_{\alpha_L}) < d(x, y).$ 

Define  $d^*(u, v) : X \times X \longrightarrow [0, \infty)$  by

$$d^*(u,v) = \inf\{M\},\$$

where  $M = \sum_{j=0}^{n-1} d(x_j, x_{j+1})$  such that  $x_0, x_1, x_2, \ldots, x_n$  is a  $\frac{\delta}{2}$ -chain from u to v. Thus,  $d^* = d^{\frac{\delta}{2}}$  and  $d^*$  is a metric on X which is equivalent to d and there exists Edelstein Type  $L\mbox{-}{\rm fuzzy}$  Fixed Point Theorems

a  $\frac{\delta}{2}$ -chain  $u = x_0, x_1, x_2, \dots, x_n = v$  from u to v such that

$$d^*(u,v) = \sum_{j=0}^{n-1} d(x_j, x_{j+1}).$$
(3.2)

Now,  $d(x_j, x_{j+1}) \leq \frac{\delta}{2} < \delta$  implies that

$$H([Tx_j]_{\alpha_L}, [Tx_{j+1}]_{\alpha_L}) < d(x_j, x_{j+1}) < \delta,$$

and it further implies that

$$d(x_j, x_{j+1}) - H([Tx_j]_{\alpha_L}, [Tx_{j+1}]_{\alpha_L}) > 0.$$

Let

$$M_j = d(x_j, x_{j+1}) - H([Tx_j]_{\alpha_L}, [Tx_{j+1}]_{\alpha_L}) > 0,$$

for  $j = 0, 1, 2, \dots, j - 1$  and

$$H([Tx_j]_{\alpha_L}, [Tx_{j+1}]_{\alpha_L}) < d(x_j, x_{j+1}) - \frac{M_j}{2}.$$
(3.3)

To show that

$$[Tx_0]_{\alpha_L} \subset N^{d^*}(k, [Tx_n]_{\alpha_L}), \text{ for some } k > 0,$$

$$(3.4)$$

we consider an element (arbitrary)  $y_0 \in [Tx_0]_{\alpha_L}$ , using (3.3) we may choose  $y_1 \in [Tx_1]_{\alpha_L}$  such that

$$d(y_0, y_1) < d(x_0, x_1) - \frac{M_0}{2}.$$

Similarly, we find  $y_2 \in [Tx_2]_{\alpha_L}$  such that

$$d(y_1, y_2) < d(x_1, x_2) - \frac{M_1}{2}.$$

Continuing in this way, will yield a set of points  $y_0, y_1, y_2, \ldots, y_n$  where  $y_j \in [Tx_j]_{\alpha_L}$  such that

$$d(y_j, y_{j+1}) < d(x_j, x_{j+1}) - \frac{M_j}{2},$$

for j = 0, 1, 2, ..., j - 1. Clearly the points  $y_0, y_1, y_2, ..., y_n$  forms a  $\frac{\delta}{2}$ -chain from  $y_0$  to  $y_n$ . Hence,

$$d^*(y_0, y_n) \le \sum_{j=0}^{n-1} d(y_j, y_{j+1})$$
  
$$< \sum_{j=0}^{n-1} \left( d(x_j, x_{j+1}) - \frac{M_j}{2} \right)$$
  
$$= \sum_{j=0}^{n-1} d(x_j, x_{j+1}) - \sum_{j=0}^{n-1} \frac{M_j}{2}$$

Thus, by (3.2) we have

$$d^*(y_0, y_n) < \sum_{j=0}^{n-1} d^*(u, v) - \sum_{j=0}^{n-1} \frac{M_j}{2}.$$

Letting

$$k = d^*(u, v) - \sum_{j=0}^{n-1} \frac{M_j}{2},$$

we have k > 0 and  $y_0 \in N^{d^*}(k, [Tx_n]_{\alpha_L})$ , hence (3.4) holds. We now only remain to show that

$$[Tx_n]_{\alpha_L} \subset N^{d^*}(k, [Tx_0]_{\alpha_L}).$$

$$(3.5)$$

So, consider an element (arbitrary)  $z_n \in [Tx_n]_{\alpha_L}$ , again using (3.3) we may choose  $z_{n-1} \in [Tx_{n-1}]_{\alpha_L}$  such that

$$d(z_{n-1}, z_n) < d(x_0, x_1) - \frac{M_{n-1}}{2}$$

Similarly, we find  $z_{n-2} \in [Tx_{n-2}]_{\alpha_L}$  such that

$$d(z_{n-2}, z_{n-1}) < d(x_1, x_2) - \frac{M_{n-2}}{2}.$$

Continuing in this way, we have a set of points  $z_0, z_1, z_2, \ldots, z_n$  where  $z_j \in [Tx_j]_{\alpha_L}$  such that

$$d(z_j, z_{j+1}) < d(x_j, x_{j+1}) - \frac{M_j}{2}.$$

Therefore,  $z_n \in N^{d^*}(k, [Tx_0]_{\alpha_L})$ , hence (3.5) holds. It now follows from (3.4) and (3.5) that,  $k \in E^{d^*}_{[Tx_0]_{\alpha_L}, [Tx_n]_{\alpha_L}}$ .

Thus,

$$H^*([Tx_0]_{\alpha_L}, [Tx_n]_{\alpha_L}) < k,$$

and

$$H^*([Tu]_{\alpha_L}, [Tv]_{\alpha_L}) < d^*(u, v) - \sum_{j=0}^{n-1} \frac{M_j}{2}$$
  
<  $d^*(u, v).$ 

Hence

$$D^*_{\alpha_L}(Tx, Ty) < d^*(x, y), \text{ for any } x, y \in X.$$
(3.6)

Edelstein Type  $L\mbox{-}{\rm fuzzy}$  Fixed Point Theorems

Define a mapping  $g: X \longrightarrow [0, \infty)$  by  $g(x) = p^*_{\alpha_L}(x, Tx)$ . It implies that

$$g(u) = p^*_{\alpha_L}(u, Tu) \leq d^*(u, v) + p^*_{\alpha_L}(v, Tu) \leq d^*(u, v) + p^*_{\alpha_L}(v, Tv) + D^*_{\alpha_L}(Tu, Tv).$$

It further implies that

$$g(u) \le d^*(u, v) + p^*_{\alpha_L}(v, Tv) + d^*_{\alpha_L}(Tu, Tv).$$
(3.7)

Now, from (3.6) and (3.7), we have

$$g(u) \le d^*(u, v) + p^*_{\alpha_L}(v, Tv) + d^*(u, v).$$

Thus,

$$g(u) - g(v) \le 2 d^*(u, v),$$

and by symmetry, we have

 $|g(u) - g(v)| \le 2 d^*(u, v).$ 

Hence g is continuous. Since X is compact g attains it's minimum say at a point  $x^* \in X$  such that  $g(x^*) = m = p^*_{\alpha_L}(x^*, Tx^*)$ . Otherwise, by compactness of  $[Tx^*]_{\alpha_L}$  we can choose  $u_1 \in [Tx^*]_{\alpha_L}$ , such that  $\{u_1\} \subset T(x^*)$ ,  $d(x^*, u_1) = p^*_{\alpha_L}(x^*, Tx^*) = g(x^*) = m$  and

$$g(u_1) = p^*_{\alpha_L}(u_1, Tu_1) \le D^*_{\alpha_L}(Tx^*, Tu_1).$$

Thus, using (3.6) and the above inequality, we have

$$g(u_1) < d^*(x^*, u_1) = m,$$

which contradicts the fact that m is minimal point of g. Therefore

$$x^* \in [T(x^*)]_{\alpha_L}, \, \alpha_L \in L \setminus \{0_L\}.$$

**Corollary 3.5.** Let (X, d) be a compact connected metric space and  $T : X \longrightarrow \mathcal{F}_L(X)$  be L-fuzzy locally contractive mapping. If  $\alpha_L = 1_L$ , then T has a fixed point.

*Proof:* Since  $\alpha_L = 1_L \in L$ , by theorem 3.4 it follows that T has a fixed point.  $\Box$ 

## 4 Conclusion

In this manuscript, we utilized the idea of L-fuzzy set [12] to introduced some L-fuzzy contractive mappings and furthermore established some L-fuzzy fixed points theorems for L-fuzzy contractive and L-fuzzy locally contractive mappings on a compact metric spaces and a compact connected metric spaces respectively, our results generalized many results in the literature. We also gave an example to support our findings.

#### Acknowledgements

The first author was supported by the Petchra Pra Jom Klao Doctoral Scholarship Academic for Ph.D. Program at KMUTT.

#### References

- Abdullahi, M.S.: L-fuzzy fixed point theorems in metric spaces [dissertation]. Master's thesis, COMSATS Institute of Information Technology (2016). Islamabad
- [2] Abdullahi, M.S., Azam, A.: *L*-fuzzy fixed point theorems for *L*-fuzzy mappings via  $\beta_{F_L}$ -admissible with applications. Journal of Uncertainty Analysis and Applications 5(2), 1–13 (2017)
- [3] Abu-Donia, H.M.: Common fixed point theorems for fuzzy mappings in metric space under  $\phi$ -contraction condition. Chaos, Solitons and Fractals **34**(2), 538–543 (2007)
- [4] Azam, A., Arshad, M.: A note on "Fixed point theorems for fuzzy mappings" by P. Vijayaraju and M. Marudai. Fuzzy Sets and Systems 161(8), 1145–1149 (2010)
- [5] Azam, A., Arshad, M., Beg, I.: Fixed points of fuzzy contractive and fuzzy locally contractive maps. Chaos, Solitons and Fractals 42(5), 2836–2841 (2009)
- [6] Azam, A., Beg, I.: Common fixed points of fuzzy maps. Mathematical and Computer Modelling 49(7), 1331–1336 (2009)
- [7] Azam, A., Beg, I.: Common fuzzy fixed points for fuzzy mappings. Fixed Point Theorem and Application 2013(14), 1–11 (2013)
- [8] Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math **3**(1), 133–181 (1922)
- [9] Edelstein, M.: An extension of Banach's contraction principle. Proceedings of the American Mathematical Society 12(1), 7–10 (1961)
- [10] Edelstein, M.: On fixed and periodic points under contractive mappings. Journal of the London Mathematical Society 37(1), 74–79 (1962)
- Frigon, M., O'Regan, D.: Fuzzy contractive maps and fuzzy fixed points. Fuzzy Sets and Systems 129(1), 39–45 (2002)
- [12] Goguen, J.A.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18(1), 145–174 (1967)
- [13] Heilpern, S.: Fuzzy mappings and fixed point theorems. Journal of Mathematical Analysis and Applications 83(2), 566–569 (1981)
- [14] Nadler Jr, S.B.: Multi-valued contraction mappings. Pacific J. Math 30(2), 475–488 (1969)

Edelstein Type L-fuzzy Fixed Point Theorems

- [15] Phiangsungnoen, S., Kumam, P.: Fuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces. J. Nonlinear Sci. Appl 8, 55–63 (2015)
- [16] Phiangsungnoen, S., Sintunavarat, W., Kumam, P.: Common  $\alpha$ -fuzzy fixed point theorems for fuzzy mappings via  $\beta_F$ -admissible pair. Journal of Intelligent and Fuzzy Systems **27**(5), 2463–2472 (2014)
- [17] Phiangsungnoen, S., Sintunavarat, W., Kumam, P.: Fuzzy fixed point theorems for fuzzy mappings via  $\beta$ -admissible with applications. Journal of Uncertainty Analysis and Applications **2**(20), 1–11 (2014)
- [18] Qiu, D., Shu, L., Guan, J.: Common fixed point theorems for fuzzy mappings under *\phi*-contraction condition. Chaos, Solitons and Fractals **41**(1), 360–367 (2009)
- [19] Rashid, M., Azam, A., Mehmood, N.: *L*-fuzzy fixed points theorems for *L*-fuzzy mappings via  $\beta_{F_L}$ -admissible pair. The Scientific World Journal **2014** (2014)
- [20] Rashid, M., Kutbi, M.A., Azam, A.: Coincidence theorems via alpha cuts of *L*-fuzzy sets with applications. Fixed Point Theory and Applications 2014(212), 1–16 (2014)
- [21] Weiss, M.D.: Fixed points, separation and induced topologies for fuzzy sets. Journal of Mathematical Analysis and Applications 50(1), 142–150 (1975)
- [22] Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

(Received 15 February 2018) (Accepted 21 November 2018)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$  Online @ http://thaijmath.in.cmu.ac.th