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1 Introduction

Upfront, this talk is about applied mathematics for mathematicians. Here,
by “Applied Mathematics”, where the emphasis (or distinction) is on the noun
“Mathematics” (not the adjective “Applied”), we mean mathematical research
problems arising from specific application domains, and aiming at solving problems
The classical example is Newton’s calculus for describing quantitatively his second
law of motion (in which, when a force is applied to a moving object, the object
changes its velocity) and coming back to derive his explicit second law of motion
for us to build airplanes!

Another example of developimg new mathematics in science came from the
failure of Newton mechanics (based on his calculus and differential equations)
to explain the phenomenon of “blackbody radiation” at the beginning of the 20th
century, leading von Neumann to develop what we know now as functional analysis,
which, in turn, provide us with our i-phones!

This is in sharp constrast with “Mathematical Applications” research, where
the emphasis is on “Applications”, and the adjective “Mathematical” is just used
to remind us that we simply use existing mathematical knowledge to solve some
probkems of interest, such as shoppers of groceries using arithmetics.

Needed to say, as G. Hardy once said, pure mathematics has its own grandeur!
Just look at the actual Langlands program!

How to do applied mathematics? Well, first, we need to have new (open)
applications in mind. Remember, in an ideal sense, once the new mathematics has
been developed appropriately, we need to come back to solve the original problem!

Where the applied problems came from? Well, as N. Wiener once said, you
need to be a scientist, i.e., someone who knows well an application domain (e.g.,
economics) AND a “tool”, e.g., Fourier analysis.

In the following, biased by my own research interests at present, I will only
talk about applied mathematics for economics.

The purpose of my talk is simply indicating some potentially useful applied
mathematical research issues in economics for mathematicians.

2 A past panorama of applied mathematics

Before talking about what we face ahead in this 21th century, let me entertain you
a bit with history which, I think, could be useful for young mathematicians as a
guideline to conduct significant applied mathematics.

The point is this. Essentially, mathematics was started as applied mathemat-
ics, again, in the sense that it was developed to provide a scientific language to
fullfil some applications in mind, especially in physics. This will bring out the
obvious fact that today econometrics (a combination of economic theories, mathe-
matics and statistics) should “borrow” concepts and methods from physics, since,
like quantum mechanics, economic fluctuations are precisely uncertain, dynamical
systems.



A Panorama of Applied Mathematical Problems in Economics 3

While it was said that “There are two kinds of mathematicians: John von
Neumann and the rest of us”, von Neumann gave a good example of doing ap-
plied mathematics: from transforming Hilbert’s pure mathematics (abstract gen-
eralization of Euclidean spaces to an infinitely dimensional setting) to provide
the language for quantum mechnanics, around 1927 (Linear operators on Hilbert
spaces and their spectral theory), to inventing Monte Carlo method (Statistical
simulations) for computing integrals in physics, to suggesting game theory for
analyzing economics behavior (social sciences), inaugurating a “rational” human
decision theory based upon his Expected Utility Theory, see von Neumann and
Morgenstern, 1944. Here is a short list of applied mathematical achievements in
the past.

Isaac Newton (1643-1727)

It started out when humans seriously tried to understand things around them,
in a scientific way (i.e., using measurements as observations, rather than just
“look” and argue philosophically!). The legend mentioned questions such as “why
apples fall to the ground, but the moon does not, and does not fly away from
earth?”

Newton started wondering about how objects move, and realizing that they
move because of forces acting upon them, and when they move, they move with
speed, and speed can change, so the “acceleration” exists. His genius second law of
motion is “Force = mass times acceleration”. Of course, it is not a mathematical
theorem (we cannot prove it). It is just an excellent guess. It became a “law”
since “it works” as testified by experiments (making good predictions from his
law). How to express his law in a “scientific language?” (i.e., mathematics). First,
he had to develop what you learn in your first year at universities: The calculus
(limits, derivatives); next, once an equation like F = mx′′(t) is rigorously written
in mathematical language, we need to solve it, leading to what you call “differential
equations”. With all that we have a theory of rational mechanics applying to
motions on earth as well as on heaven.

Joseph Louis Lagrange (1736-1813)

Together with other giants (mathematicians) like Euler and Hamilton, La-
grange reformulated Newton’s mechanics program. Can we study Newton me-
chanics without carrying out Newton’s program? i.e., without solving differential
equations. Of course, there are reasons for asking a such question.

Now, for a moving object, started at an initial state (to, x(to) = a) (time,
position) to be at a future state (T, x(T ) = b), the object must take some path
x(t) (a continuous function of time) joining the points a and b during the time
interval [to, T ]. Which one? Well, Newton will tell us: Solve my differential
equation to get it.

Is there some other ways to get the object’s trajectory without solving New-
ton’s equation?



4 Thai J. Math. (Special Issue, 2019)/ Hung T. Nguyen and Nguyen Ngoc Thach

Focusing on energy rather than force, Lagrange got the answer: the trajectory
of the object is a stationary solution to an optimization problem. Specifically, Let
L = K − V , where K,V are kinetic and potential energies, respectively of the
moving object, and the difference L is called the Lagrangian (in his honor). Note
that K is a function of x′(.), whereas V is a function of x(.), alone, so that in
“generalized coordinates”, L(x, x′) is a function of the position and velocity.

An action is a functional: S(.) : P([to, T ]) (space of all paths joining a to b)
→ R:

S(x) =

∫ T

to

L(x(t), x′(t))dt

The path which makes this functional unchanged (stationary), i.e., an ex-
tremum, is precisely Newton’s solution. This is referred to as the Least Action
Principle (LAP).

The mathematical problem is how to solve this optimization problem (in the
18th century)? Clearly, it is not an optimization on euclidean spaces that you are
aware off in Calculus. It is a functional optimization problem, where the domain
of optimization P([to, T ]) is an infinitely dimensional set (a function space), where
we did not have a concept of derivative with respect to function” yet, i.e., a concept
of functional derivative. They need to invent one. Together with Euler, Lagrange
developed what we know now as the Calculus of Variations. Roughly speaking,
this new tool implies that stationary solutions are solutions of the Euler-Lagrange’s
equation:

dS

dx
=
∂L

∂x
− d

dt
(
∂L

∂x′
) = 0

i.e., the trajectory of the moving object is the path x∗(.) such that dS
dx |x∗ = 0.

John von Neumann (1903-1957)

Studied under Hilbert, Von Neumann gave a pleasant surprise to Hilbert. As
a “pure” mathematician, Hilbert loved axiomatizations and generalizations. He
generalized familiar Euclidean spaces to infinitely dimensional spaces which were
called Hilbert spaces by Von Neumann (not Hilbert himself, of course!). They
are purely mathematical structures without any applications in his mind. It was
simply the transition from vectors to functions. Since a Hilbert space is a vector
space, elements of it are called vectors.

Being living in a time where quantum mechanics (motion of particles/ micro-
objects) was in full developments (around 1927), Von Neumann realized that
Hilbert spaces can be used to represent “quantum states” in Schrodinger’s theory,
and hence developed spectral theory of sell adjoint operators on Hilbert spaces,
providing the needed foundations for quantum mechanics, as we know today, and
in your course that you call functional analysis. Note that Schrodinger’s equation
is the best “theory” of quantum physics we have, which “works”, as you have your
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smart phones to use today! Specifically, Schrodinger’s equation is a PDE equation
of the form

ih
∂ψ(x, t)

∂t
= − h2

2m
∆xψ(x, t) + V (x)ψ(x, t)

The solutions (wave functions) ψ(., t) ∈ L2(R3,B(R3), dx), a separable, com-
plex Hilbert space. Von Neumann’s functional analysis provides all necessary
ingredients for quantum mechanics. See, e.g., Dirac [4].

In your elementary calculus course, you learn both derivatives and integral.
You did learn functional derivatives (in the Calculus of Variations, e.g. dS

dx above)
in your course on Functional Analysis.

One question: How about derivative of set-functions? Of course, I am not
talking about Radon-Nikodym derivatives of measures, but a “variational calculus
of set-functions”, i.e., a notion of derivative of a set function with respect to set
to be used for optimization purposes (similar to the functional derivative via the
calculus of variations). Well, see Nguyen [11].

This was also an “applied mathematical research” problem, since the motiva-
tion for doing it was to find a way to maximize an excess mass function in the
process of estimating, nonparametrically, a probability density function.

But did you learn also functional integrals? i.e., integrals over a space of func-
tions? an infinitely dimensional space, as opposed to finitely dimensional euclidean
space Rd, in Functional Analysis? Maybe yes, maybe no! Yes, perhaps, e.g., for
those who know probability, Wiener’s (1894-1964) functional integral based on his
Gaussian measure (for assigning a probability value to a set of paths in a Brownian
motion).

As you know, integrals can be defined either based on a measure (like Lebesgue)
or without a measure (like Riemann). Wiener integral is defined from its Wiener
Gaussian measure. A Riemann-type functional integral was defined by Richard
Feynman in 1948, providing an alternative way to obtain Schrodinger’s wave func-
tion.

Richard Feynman (1918-1988)

The situation is similar to the reformulation of classical mechanics (of Newton)
by Lagrange, via the crucial notion of an ”action”.

The law of quantum mechanics is given as solutions of the Schrodinger’s equa-
tion, where a solution ψ(x, t), the wave function, is the “probability amplitude” for
a future state (x, t), i.e., the probability density for the position x ∈ R3, at a given
time t, is |ψ(x, t)|2. Note that, unlike Newtonian mechanics (for macro-objects),
there is no concept of trajectories for particles, since, as shown by experiments,
under the same initial conditions, a particle can move in different paths. at ran-
dom. i.e., randomness is intrinsic in quantum mechanics (as opposed to Einstein
“Does God play dice?”). As such, any path joining two points a and b in R3can be
taken by the particle, so that the best you can ask is “what is the probability that
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the particle will land at x, at a future time t?”. The answer given by Schrodinger
is the absolute square of its probability amplitude.

The Schrodinger’s equation plays the role of Newton’s equation in classical
mechanics. What is its counterpart of Lagrangian? Can a reformulation, based on
Lagrangian, be found to provide a solution of the Schrodinger’s equation, without
solving it?

Recall that the Lagrangian L = K − V of a system “determines” the time
evolution of the object via the actions S(x) upon possible paths x(.). Now, by the
nature of quantum mechanics, we are not seeking to identify just one path, but
rather we consider all possible paths, i.e., the space P([to, T ]). Since the particle
could take any path, but at random, so that there should be a probability (in fact,
a probability amplitude) attached to each path, and considering all of them could
provide the overall probability amplitude for a state (T, b), similar to the value
provided by Schrodinger wave function ψ(T, b).

That was Feynman’s idea. How to carry out his program? The first step
is to find out what is local probability amplitude (contributed by each path)?
Without going in details, we simply say this. By physical considerations, each path
x(, ) ∈ P([to, T ]) contributes the “amount” exp{ i

hS(x)} to the total probability
amplitude. The second step is “sum them up”. The third step is verifying that
that “sum” is correct, i.e., satisfying Schrodinger’s equation. When this Feynman’s
program is done, we explore its implications, mostly with respect to applications,
both in quantum mechanics and econometrics. It can be shown that Schrodinger’s
equation

ih
∂ψ

∂t
= − h2

2m

∂2ψ

∂x2
+ V (x)ψ(x, t)

follows from Feynman’s path integral formalism. Thus, Feynman’s path in-
tegral is an equivalent formalism for quantum mechanics. For more details, see
Feynman and Hibbs [6], Mazzucchi [9]. For the application of Path integrals to
financial econometrics, see e.g., Baaquie [1[.

3 Economic equilibrium issues

Leaving aside econometric analyses in quantitative economics, equilibrium issues
(for competive economies and economic dynamics) are central in economic studies.
See a text like Stokey and Lucas,[13].

It is well known that Fixed Point Theory is an useful tool to investigate these
issues, at least in the context of von Neumann’s expected utility theory. With
respect to stochastic dynamical economies, say, using Markov models, there is a
need to provide various forms of FPT to establish the existence of equilibrium
of economies, noting that an invariante (stationary) probability measure is the
fixed point of a Markov operator. Specifically, the search for FPT, under various
conditions, is in a setting such as:
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Let the state space be an arbitrary set Ω, and A be a σ− field of its subsets.
A Markov process on (Ω,A) is specified by an initial probability on (Ω,A) and a
transition function Q : Ω×A → [0, 1] such that

a) For each ω ∈ Ω, Q(ω, .) is a probability measure on (Ω,A),
b) For each A ∈ A, Q(., A) is a A− measurable function,
where Q(ω,A) is the (conditional) probability that the process moves from

state ω in one time period to a state in the set A in the next time period.
Let P(Ω,A) denote the space of all probability measures on (Ω,A), and con-

sider the self map (a Markov operator) T : P(Ω,A) → P(Ω,A) , P → TP , defined
by

TP (A) =

∫
Ω

Q(ω,A)dP (ω)

where TP is the probability measure in the next time period given that the
current values of the state are drawn according to the probability measure P .
Then a probability measure P is called “invariant” if it is a fixed point of T , i.e.,
for all A ∈ A, we have

P (A) =

∫
Ω

Q(ω,A)dP (ω)

meaning that if an economy governed by a Markov process begins with an
invariant law, then it will maintain that same law in all future time periods.

Note that the existence, uniqueness and stability of equilibrium of economic
dynamical systems requires a fixed point argument for a self map T on some metric
space (U, d), such as a Markov operator T and U is the space D(µ) of probability
densities with respect to µ, equiped with the L1 metric, we need to figure out
when T has a fixed point.

The emphasis is on stochastic ordering and metrics on spaces ,such as the
Hellinger metric

d(P,Q) = [
1

2

∫
Ω

(
√
p−√

q)2d(P +Q)(ω)]
1
2

of probability measures for establihing appropriate fixed point theorems for appli-
cations to economics.

In view of the application of Tarski fixed point theorem to equilibria of economies
and Knaster-Tarski fixed point theorem to stochastic dynamic economies,.more
work is needed for fixed points of self maps on ordered, compact spaces of mea-
sures.

Remark. The set M(Ω,A) of finite signed measures on (Ω,A), equiped with
total variation norm is a Banach lattice, i.e., a real Banach space with an order
relation ≤ such that (M,≤) is a vector lattice and the norm is a lattice norm.

(M,≤) is a vector lattice if it is an ordered vector space such that for any
µ, ν ∈ M, µ ∨ ν and µ ∧ ν exist and µ ≤ ν =⇒ µ + γ ≤ ν + γ for all µ, ν, γ ∈
M (additivity); and 0 ≤ µ =⇒ 0 ≤ tµ for all µ ∈ M, and t ∈ R+(positive
homogeneous)
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A norm on a vector lattice is called a lattice norm if |µ| ≤ |ν| =⇒ ||µ|| ≤ ||ν||
where |µ| = (µ ∨ 0) + (−µ ∨ 0).(µ+ = µ ∨ 0, µ− = −(µ ∧ 0)).

It could be “interesting” to investigate PFT on these Banach lattices. This
is so since the mathematical setting for commodity spaces is topological vector
lattices (Riesz spaces). A topological vector lattice is a vector lattice where the
lattice operations (µ, ν) → µ ∨ ν, µ ∧ ν are (uniformly) continuous. The most
important case is Banach lattices. Those are Banach spaces having a lattice order
≤ such that |µ| ≤ |ν| =⇒ ||µ|| ≤ ||ν|| where |µ| = (µ ∨ 0) + (−µ ∨ 0).(µ+ = µ ∨ 0,
µ− = −(µ∧ 0)). For example, Lp is a Banach lattice with their natural norm and
order.

In economic applications, lattice structures of probability measures (e.g., aris-
ing from stochastic dominance) is useful for “stochastic optimization” since we
can reduce a constraint involving a number of “inequalities” among probability
measures (a constraint consisting of an ordered set of probability measures) to a
single one (by taking the “minimum” of them). Also, in robust Bayesian statis-
tics, where probability measures are prior ones, the minimum of them is not a
probability measure, but some nonadditive set function, called capacity, or fuzzy
measure (a situation termed “ambiguity” in decision theory). Here, the search for
stochastic orders which can lead to lattice structures is thus useful. In this search,
we will “run into” copulas!

Let me elaborate a bit on lattice structure of M(Ω,A). Recall that the TV
norm on M(Ω,A) is

||µ||TV = ||dµ
dλ

||1 =

∫
Ω

|dµ
dλ

|dλ = sup
|f |≤1

|
∫
Ω

f(ω)dµ(ω)| = sup
A∈A

(|µ(A)|+ |µ(Ac)|)

for some dominating measure λ.
Note that the topology induced by TV norm on P(Ω,A) is strictly stronger

than the “weak” topology, namely
Pn → P weakly iff Pn(A) → P (A) when n → ∞, for all A ∈ A such that

P (δA) = 0, where δA is the boundary of A, and Ω is a metric space. With respect
to TV norm, P(Ω,A) is a subset of the Banach lattice M(Ω,A).

The use of arbitrary chosen dominating measure λ allows us to define lattice
structure for M(Ω,A). The order relation on M(Ω,A) is induced by the usual
order ≤ on real numbers: for µ, ν ∈ M(Ω,A), µ ≤ ν when µ(A) ≤ ν(A) for all
A ∈ A. We are going to show that (M,≤) is a lattice.

First, observe that A → max(µ, ν)(A) = max{µ(A), ν(A)} is not a measure
since it need not be additive (same for min{µ(.), ν(.)}) so that it is not an upper
bound for {µ, ν} in M(Ω,A)

For µ, ν both ≪ λ, let γ be the measure defined by γ(A) =
∫
A
(dµdλ ∨ dν

dλ )dλ =∫
A
(f(ω) ∨ g(ω))dλ(ω), where (f ∨ g)(ω) = max{f(ω), g(ω)}.
Clearly, for all A ∈ A.

γ(A) =

∫
A

(
dµ

dλ
∨ dν

dλ
)dλ ≥ max{

∫
A

dµ

dλ
dλ,

∫
A

dν

dλ
dλ} = max{µ(A), ν(A)}
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we have that γ(.) ≥ max{µ(.), ν(.)}.
Moreover, γ(.) is the smallest measure greater than both µ and ν. Indeed, if

τ(A) =
∫
A
hdλ such that τ ≥ max{µ(.), ν(.)}, then, for all A ∈ A,∫
A∩(f≥g)

fdλ = µ[A ∩ (f ≥ g)] ≤ τA ∩ (f ≥ g)] =

∫
A∩(f≥g)

hdλ

i.e., ∫
A∩(f≥g)

(h− f)dλ ≥ 0

implying that h ≥ f on (f ≥ g) λ− a.e. Similarly, h ≥ g on (f < g) λ− a.e,
so that h ≥ f ∨ g, λ− a.e, and hence τ ≥ γ.

Thus, for any {µ, ν} in M(Ω,A), there exist a smallest µ ∨ ν ≥ max{µ, ν}.
Similarly, there is a largest µ ∧ ν ≥ min{µ, ν}, so that M(Ω,A) is a lattice

wrt ≤. The signed measure, denoted as µ ∧ ν, has density min{f, g} with respect
to λ.

Fixed point theorems on ordered sets (for applications to economics)
If you seek more “applied rationale” to do more theoretical research on FPT

or “areas” to apply FPT, then it seems the most promising one is quantitative
economics, in which, besides econometrics, the investigation of equilibria, as “so-
lutions” for (stochastic or deterministic) economic dynamics (systems), often re-
quires “Fixed Point Arguments”.

For example, in economics context, the commodity spaces are locally con-
vex, Hausdorff, ordered vector spaces (e.g. Banach lattices), price functionals are
elements of the topological dual of the commodity space (continuous linear func-
tionals). One important problem is the existence of price equilibrium in exchange
economies in which the commodity spaces could be infinitely dimensional such as
L∞ (Banach space), L2 (Hilbert), the space of signed measures on a compact met-
ric space. The finite demensional existence theory is when the commodity space
is Rd.

For a flavor of economic research involving the above mathematical structures,
see e.g.,

The price equilibrium existence problem in topological vector lattices
A. Mas-Colell, Econometrica 54(5), 1039-1053, 1986

By “fixed point arguments” we mean looking at an equilibrium (of an economic
dynamics) at a fixed point of some self map on appropriate spaces. From an
application viewpoint, having a variety of available fix point theorems, we examine
whether some of these can be applied to ”solve” the economic problem. This
consists essentially of figuring out whether sufficient conditions for the validity of
some FPT are satisfied.

Typically, suppose the “solution” of an economic problem is formulated as a
fixed point of a map T : X → X. If X is a complete metric space and T is a
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contraction, then, by Banach FPT, the solution is approximated by limn→∞ Tnxo
for any xo ∈ X, providing an algorithm for locating the solution (fixed point of T )
computationally (with a geometric convergence rate). If we only have sufficient
conditions for applying, say, Brouwer or Schauder’s theorems, then the solutions,
while existed, might not be unique, and the orbit Tnxo might not be convergent.

Are there additional conditions (to sufficient conditions for Brouwer or Schauder’s
theorems) to obtain similar (desirable) results as in the setting of Banach’s theo-
rem?

The basic additional condition is when X is an ordered set, and T is monotone
increasing.

This reminds us of Tarski’s fixed point theorem: “If X is a complete lattice and
T is monotone then the set of fixed points forms a non-empty complete lattice”
(i.e., a monotone self map on a complete lattice has a least fix point) or.

Knaster-Tarski’s theorem : For a monotone self map T on a complete lattice
(i) The least fixed and the prefixed points of T exist, and they are identical,
(ii) The greatest fixed and postfixed points of T exist, and they are identical,
(iii) The fix points of T form a complete lattice
For T : (X,≤) → (X,≤), a point x ∈ X is a prefixed point on T if Tx ≤ x, and

is a postfixed point if x ≤ Tx. Note that a fixed point x = Tx is both a prefixed and
postfixed point. Knaster-Tarski Theorem is simply this: Let T : (X,≤) → (X,≤)
where (X,≤) is a complete lattice and T monotone (order-preserving) . Then T
has at least a fixed point. And, in fact, the set of fixed points of T is a complete
lattice. Note that this theorem is non-constructive.

Historically, the above theorem, for a special case, was in

Un theoreme sur les fonctions d’ensembles
B. Knaster, Ann. Soc. Polon. Math. (6), 133-134, 1928

with the general version in

A lattice-theoretical fix point theorem and its applications
A. Tarski, Pacific J. Math. (5), 285-309, 1955

The proof of Tarski’s theorem is non-constructive. A constructive proof (i.e.,
with a procedure for finding a fixed point) for it, as well as its extension to set-
valued maps (due to L. Zhou, 1994) is in

A short and constructive proof of Tarski’s fixed point theorem
F. Echenique, Intern. J. Game Theory 32(2), 215-218, 2005

We will elaborate on using Knaster-Tarski’s fixed point theorem to show the
existence of fixed points of self maps on compact sets of probability measures
equiped with stochastic ordering (i.e., existence of stationary distributions of dy-
namic economies).

First, a simple example. The stochastic order relation on probability measures
on the real line, P(R,B), is this.
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µ ≤st ν iff
∫
R f(x)dµ(x) ≤

∫
R f(x)dν(x) for any measurable f : R → R,

nondecreasing.
If we let Fµ : R → [0, 1], Fµ(x) = P ((−∞, x]), then µ ≤st ν iff Fν(.) ≤ Fµ.),

or equivalently

F ∗
µ(.) = 1− Fµ(.) ≤ F ∗

ν (.) = 1− Fν(.)

For a proof, see p. 67 in

Stochastic Dominance and Applications to Finance, Risk and Economics
S. Sriboonchitta, W-K. Wong, S. Dhompongsa & H.T. Nguyen

Chapman and Hall/CRC Press, 2010

Now, observe that the function

F (x) = 1−min{F ∗
µ(x), F

∗
ν (x)}

is a “distribution function”.
As such, by Lebesgue-Stieltjes characterization theorem, there exists a proba-

bility measure γ ∈ P(R,B) determined by γ((−∞, x]) = F (x).
Clearly γ ≤st µ, ν since F ∗

γ (x) = min{Fµ(x), F
∗
ν (x)}. Thus, γ is the smallest

glb of µ, ν, i.e., γ = µ ∧st ν. Similarly, µ ∨st ν is the probability measure with
distribution 1 − max{F ∗

µ(x), F
∗
ν (x)}. Therefore, the stochastic order leads to a

lattice structure for P(R,B).
In economics, the above stochastic order is termed first order stochastic domi-

nance when referring to (random) economic variables A real-valued random vari-
able X is stochastic larger than another Y when X ≥ Y which is equivalent to
FX(x) = P (X ≤ x) ≤ P (Y ≤ x) = FY (x), for all x ∈ R.

The “converse” can be seen as follows. Supose FX(.) ≤ FY (, ). What can be
said about X and Y ? Well, we can construct a pair of random variables X ′, Y ′,
possibly defined on different probability spaces, having (marginal) distributions
FX , FY , respectively and more over X ′ ≥ Y ′ (a.s.). This is the method of coupling.

Here, we take X ′ = F−1
X (U) and Y ′ = F−1

Y (U), where F−1
X (.) : (0, 1) → R is

the quantile function of FX(.), i.e., the left continuous inverse defined as

F−1
X (α) = inf{x ∈ R : FX(x) ≥ α}

and U is a random variable uniformly distributed on (0, 1).
Note that FX(.) ≤ FY (, ) is equivalent to F−1

Y (.) ≤ F−1
X (.), we do have that

X ′ ≥ Y ′ (a.s.). The “coupling” (X ′, Y ′) is a pair of random variables whose
“joint probability measure” (on a product space) has as marginals the probability
measures associated with FX(.), FY (, ). It’s right here that the notion of copulas
could be useful.

For example, the multivariate stochastic dominance order, i.e., on P(Rd,B(Rd)),
is defined just like the one dimension case, namely
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µ ≤st ν iff

∫
R
f(x)dµ(x) ≤

∫
R
f(x)dν(x)

for all measurable f(.) : Rd → R increasing (with respect to the usual com-
ponentwise order on Rd). But unlike the unidimensional case, the order set
P(Rd,B(Rd),≤st) is not a lattice. However, some subsets of it could be. For
example, the following PC(Rd,B(Rd)):

A probability measure µ on (Rd,B(Rd)) is like a “joint” probability measure
which has n “marginal” measures on the factor spaces, as Rd = R × R × ... × R
(n times), namely the projections of µ on each factor space. In view of Lebesgue-
Stieltjes’ theorem on Rd, each µ on (Rd,B(Rd)) is characterized by a multivariate
distribution function

Fµ : Rd → [0, 1], Fµ(x) = µ(
∏ d

lim
i=1

(−∞, xi])

And as such, according to Sklar’s theorem, there is a multivariate copula C
joining the marginals µi (univariate distributions, or marginal measures) with the
“joint” measure µ. Each copula describes a type of dependence between variables.

So let PC(Rd,B(Rd)) be the subspace of probability measures on (Rd,B(Rd)
with a common copula C, i.e., with the same type of dependence. Specifically, for
all µ ∈ PC(Rd,B(Rd)),

Fµ(x) = µ(

d∏
i=1

(−∞, xi]) = C[µi((−∞, xi]), i = 1, 2, ..., d]

It can be shown that the ordered set (PC(Rd,B(Rd)),≤st) is in fact a lattice.
For a proof, see

Stochastic order relations and lattices of probability measures
A. Muller & M. Scarsini (Google)

Since economic dynamics could be often modeled by Markov processes, I will
say more about copulas and Markov operators in the next Lecture.

The stochastic order on P(Rd,B(Rd)) should be extended to M(Ω,A) for
economic applications.

Markov operators
Markov processes enter economic modeling as stochastic exogenuous “shocks”

to economic systems (e.g., in determining equilibrium asset prices in exchange
economies).

A stochastic process is a collection of random elements indexed by an index set
: X = (Xt, t ∈ T ). The random elements Xt : (Ω,A, P ) → (X , σ(X )) (the state
space). While one random variable Xt is governed by its probability law PXt

, the
whole process X is governed by its system of finitely dimentional distributions, by
Kolmogorov consistency theorem.
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Let’s start out with a simple type of stochastic processes: Discrete-time Markov
chains on a finite state space.

Here, X = (Xn, n ≥ 0), and (X , σ(X )) = ({1, 2, ..., k}, 2{1,2,...,k}).
The so-called Markov property says that the future depends only on the

present, and not the past.Specifically,

P (Xn+1 = j|X0, X1, ..., Xn = i) = P (Xn+1 = j|Xn = i) = pij

If the initial distribution of Xo is πo (as a density on X = {1, 2, ..., k} or equiv-
alently a probability measure of 2X ), then all finitely dimensional distributions are
determined via the transistion matrix p = [pij ]k×k. Note that p is a stochastic
matrix, i.e., pij ≥ 0, and for each row i,

∑
j pij = 1 which is the probability that,

if at present, the chain is in state i, then the next state will be in some state.

P (Xo = io, X1 = i1, ..., Xn = in) =

P (Xn = in|Xo = io, ..., Xn−1 = in−1)P (Xo = io, ..., Xn−1 = in−1)

= P (Xn = in|Xn−1 = in−1)P (Xo = io, X1 = i1, ..., Xn−1 = in−1)

= pin−1inP (Xo = io, X1 = i1, ..., Xn−1 = in−1)

= ....(by Markov property)

= pin−1in ....pioi1πo(io)

We are interested in knowing whether or not, after a long time, the chain will
attain a (steady) stationary mode. Note that, as a stochastic process, the chain
will be strictly stationary when all Xn have the same distribution. What is the
limiting distribution of the chain?, i.e., limn→∞ P (Xn = j) = πj , j ∈ X ? noting
that

P (Xn = j) =
∑
i∈X

πo(i)p
n
ij

where pnij = P (Xn = j|X0 = i) (the n− step transition).

To determine the limiting distribution π(.), we observe that it is “invariant”
(with respect to the operator (a self map) T : π(.) →

∑
i∈X π(i)pij on the space

of probability measures on the finite set X ), i.e., for each j ∈ X , Tπ = π:

π(j) =
∑
i∈X

π(i)pij

Indeed,
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π(j) = lim
n→∞

P (Xn+1 = j) = lim
n→∞it

∑
i

P (Xn = i)pij

=
∑
i

[ lim
n→∞

P (Xn = i)pij =
∑
i∈X

π(i)pij

It is in fact unique, using a FPT on contraction (viewing the simplex as a
metric space with the TV metric), noting that the condition pij > 0 is satisfied by
replacing p with pn, for some n large, where pnij > 0.

Without going into technical details on general Markov processesXt : (Ω,A, P ) →
(X , σ(X )) , we simply replace the stochastic matrix p = [pij ]k×k by a ”transition
function” Q : X×σ(X ) → [0, 1] where Q(x,A) is the probability that the next
state will be in A given that it is at state x at present.

Remark. Let (X(t), t ≥ 0) be a stochastic process, defined on (Ω,A, P ) with
values in X , and let the filtration Ft = σ(X(s) : s ≤ t). Then (X(t), t ≥ 0) is
called a Markov process if

P (X(t+ s) ∈ A|Ft) = P (X(t+ s) ∈ A|X(t))

The transition function is

Q(s,X(t), A) = P (X(t+ s) ∈ A|Ft)

Technically, for each A ∈ σ(X ), x → Q(x,A) is measurable, and for each
x ∈ σ(X ), the set-function A → Q(x,A) is a probability measure on (X , σ(X )),
denoted as Q(x, dy).

We can define two operators associated with Q:
(i) T : f →

∫
X f(y)Q(x, dy) = (Tf)(x)

(ii) T ∗ : µ ∈ P(X , σ(X )) → (T ∗µ)(A) =
∫
X Q(x,A)dµ(x) ∈ P(X , σ(X )).

Of course, in investigating fixed points, we need to ensure that the above
operators are self maps.

With appropriate function spaces for f , e.g., the space of bounded, continuous
functions on X (say, a metric space) C(X ), a Banach space with the sup norm,
the above (Markov) operators could be self maps, depending on Q.

Similarly to the finite case, a probability measure µ ∈ P(X , σ(X )) is invariant
with respect to T ∗ (a fixed point) when, for all A ∈ σ(X ),

µ(A) =

∫
X
Q(x,A)dµ(x)

The economic interpretation is this. If an economy governed by a Markov
process begins where the probability distribution of states is invariant, then it will
maintain that same distribution in all future periods.

For example, the transition function Q is said to satisfy the Feller property if
T on C(X ) is a self map. For example, if X is a compact subset of Rd, and Q has



A Panorama of Applied Mathematical Problems in Economics 15

the Feller property, then there exists a probability measure on (X , σ(X )) which is
invariant under Q.

The monotonicity of Q, in the sense that its associated T is monotone: f ≤
g =⇒ Tf ≤ Tg, could be useful to investigate invariant probability measures
under Q.

Also, some other conditions should be used for this purpose, such as
Condition D: the transition function Q is said to satisfy the condition D if

there exist a finite measure γ on (X , σ(X )) , an integer N ≥ 1, and a number
ε > 0 such that if γ(A) ≤ ε then Q(x,A) ≤ 1− ε for all x ∈ X .

For example, when a Q satisfies the condition D, and in addition, if γ(A) > 0,
then for each x ∈ X , there exists n ≥ 1 such that Qn(x,A) > 0, then T ∗ has only
one invariant probability measure.

Of course, in applications, we need to address:
(a) Does an invariant probability measure exist?
(b) If so, is it unique?
(c) How can an invariant probability measure be calculated?
As such, more research on FPT for Markov transition functions seems “inter-

esting”!

4 Social decision issues in economics

Clearly economic activities and data are affected by economic agents’ decisions,
among other uncertain information. Thus, technically, while economic time series
data can be regarded as uncertain and dynamical systems (i.e., modeled as stochas-
tic processes), they are somewhat different than “natural” stochastic processes by
the fact that economic outcomes are influenced by human (e.g., customers) de-
cisions, in the form of choices. Thus, since the birth of quantitative economics,
understanding human (cognitive) decisions is essential, leading to a theory of de-
cision (of course, under uncertainty, or incomplete information). Taking human
decision-making process into the analysis of economic data is what we know now as
Behavioral Economics, the topic of the 2017 Nobel Memorial Prize in Economics,
awarded to Richard Thaler.

How humans make decisions under uncertainty? It’s a question in social sci-
ence, not natural science. However, it should bear some analogies? Right after
providing the new mathematics for quantum mechanics, von Neumann embarked
on another new mathematics for social science, with his game theory in 1928
[14]. It was precisely to answer this basic question, leading to the foundations of
quantitative economics in 1944. It is his theory of rational decision-making based
upon his concept of expected utility (where uncertainty is modeled as Kolmogorov
probability, 1933, and not quantum probability!). See, e.g., Kreps [8].

Putting “expected utility” as a way (or a ”law”) that humans are supposed
to follow to make decisions is just a “hypothesis” which, like with physics, need
to be confirmed (or validated) by facts. But this is social science, so that the
question of whether people actually make decisions in the way predicted by von
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Neumann is left to psychologists! As we will see, the situation is completely
similar to mechanics: While Newtonian mechanics is good for macro-objects, we
should turn to quantum mechanics when dealing with micro-objects (particles).
The basic assumption of von Neumann’s decision theory is rationality of people.
But are people always rational? And if they are not, why? Technically speaking,
to carry out von Neumann’s decision program, people need to have probabilities
available to them, which they do not have in general. This is the main reason for
a Bayesian approach: just “guess” prior probabilities and then use the Bayesian
updating machinery to come up with necessary probabilities (noting that, as far as
calculus is concerned, Bayesian probability follows the same calculus of frequentist
probability, in particular, obeys the additivity axiom). Psychologists such as Allais
(1953), Ellsberg (1961) and Edwards (1968), showed that von Neumann’s expected
utility as well as Bayesian updating are violated.

To be complete, psychologists added more situations showing that “likelihood”
should not be additive. Here is one, the so-called “conjunction fallacy” showing
that people seem to model uncertainty by set-functions which are not monotone
increasing, and hence cannot be additive probability measures. This is serious
for current approaches of “non-additive probabilities” which are still monotone
set-functions.

Here is the well-known “Conjunction Fallacy” from the literature (Tversky &
Kahneman, 1983). A lady named Linda was known as an active feminist in the
past. consider now two events: A = “She is acitive in the feminist movement”,
B =“she is a bank teller”. Subjects are asked to guess the likelihoods of A,B ,
A ∪B and A ∩B. It turns out that subjects judged A ∩B is more likely than B.

In conclusion, the research question could be: How to model quantitatively
the intuitive concept of “likelihood”? The current attempt in behavioral decision-
making focuses only on relaxing the additivity axiom of Kolmogorov probability,
leading to a host of non-additive probability approaches in the literature. However,
at least two main characteristics in cognitive decision seems missing: the semantics
of likelihood (needed to obtain likelihoods from empirical data) and the so-called
“order effects” of information (in human’s judgements towards decisions), which, in
mathematical terms, means that information (as supplied by consecutive “events”)
is non commutative.

5. Quantum probability for behavioral economics
In view of the issues raised in the previous section, current research efforts

turn to a concept of probability in quantum mechanics which seems to possess all
desirable properties of likelihood used by humans. See e.g., Busemeyer and Bruza
[2] and Haven and Khrennikov [7].

Discovering the laws of quantum mechanics was the best achievement of sci-
entists of the 20th century. It was about how nature behaves. Although, at
the atomic level, nature behaves randomly, physicists arrived at revealing how to
compute probabilities of quantum events leading to technological advances as we
witnessed in our actual societies.

It is about modeling the uncertainty involved in nature behavior. The concept
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of chance is the same as for games of chance, i.e., viewed in a frequentist (objective)
interpretation. What is different is the “rules” to compute probabilities of quan-
tum events, due to the very physical observed facts. These differences are mainly
the non additivity of the probability measures, and the non commutative of ob-
servables (quantum “random variables”). As Richard Feynman has said “and yet,
these do not lead to logical inconsistencies”, i.e., it is possible to define a concept
of probability (to model the type of uncertainty encountered in quantum mechan-
ics) based on some other set of axioms (different from those of Kolmogorov) but
keeping the same meaning of chance that we are all familiar off. Specifically, a non
addtive probability measure can be axiomatized. Moreover. such a non additive
probability measure can be incorporated into a non commutative framework of
observables. All this is for the most important thing in our quest to understand
the world around us.

As we may have a good idea about the physical world around us, we may not
have such an idea bout how people around us behave! Why we are interested about
human behavior? Well, many reasons, but, practically, it’s because of economics,
the thing wich truely affects all of us. It is clear that such a topic should belong
to psychology? For sure, it belongs to social sciences. So, having physical sciences
aside, we are facing social sciences for various reasons, especially for economics,
as self evidence! Understanding how investors will make their financial decisions
should be a dream for economists!

The emergence of quantum probability (1927 or so) is a striking phenomenon.
Not only quantum probability is non additive, it is also non commutative, a prop-
erty “stranger” to all probability concepts we had so far (since it’s hard to imagine
such a property in measuring or assessing uncertainties).

In 1951, at a Berkeley Symposium on Mathematical Statistics and Probability,
Richard Feynman gave a talk on quantum probability to probabilists, statisticians
and mathematicians about “The concept of probability in quantum mechanics”,
see Feynman [5], pointing out precisely the “strange” (but natural, i.e., its axioms
are not imposed by men, but they are the way nature designed our world!) prop-
erties of probability in quantum mechanics (as discovered by physicists): While
quantum probability has a frequentist interpretation, it is not additive. It did not
ring the bell! Perhaps, probabilists have simply reacted like “It’s interesting, it’s
good to know, but it’s not our business, we are concerned with uncertainty not in
quantum mechanics”. Some time later, in Strasbourg, France, Paul Andre Meyer,
appearently motivated by pure mathematical interests, pursued deep research into
non commutative probability, specifically addressing probabilists, in Meyer [10].
See also Parthasarathy [12], and Connes [3].

It is striking that, much earlier, physicists were facing the same problem as
psychologists, namely the uncertainty encountered in quantum mechanics, as testi-
fied by observations, cannot be modeled as Kolmogorov probability since it is non
additive and non commutative (in a sense to be specified shortly). What physi-
cists have found is that a new theory of probability, called quantum probability,
is nothing else than a natural generalization of Kolmogorov theory. In terms of
cognition, this simply means that the axioms of ordinary probability measures are
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too strong for behavioral decision-making.

How to generalize a commutative probability theory to a non commutative
theory (which will entails the non additivity)? Perhaps, inspired by this problem
that later Alain Connes pursued a general theory of non commutative geometry.

Following David Hilbert’s advice “What is clear and easy to grasp attracts us,
complications deter”, let’s first consider the simplest case of Kolmogorov proba-
bility, namely the finite sample space, representing a random experiment with a
finite number of possible outcomes, e.g., a roll of a pair of dice. A finite proba-
bility space is a triple (Ω,A, P ) where Ω = {1, 2, ..., n}, say, i.e., a finite set with
cardinality n, A is the power set of Ω (events), and P : A → [0, 1] is a probability
measure (P (Ω) = 1, and P (A ∪B) = P (A) + P (B) when A ∩B = ∅). Note that
since Ω is finite, the set-function P is determined by the density ρ : Ω → [0, 1],
ρ(j) = P ({j}), with

∑n
j=1 ρ(j) = 1. A real-valued random variable is X : Ω → R.

In this finite case, of course X−1(B(R)) ⊆ A. The domain of P is the σ−field A of
subsets of Ω (events) which is Boolean (commutative: A∩B = B∩A), i.e., events
are commutative, with respect to intersection of sets. We wish to generalize this
setting to a non commutative one, where ”extended” events could be, in general,
non commutative, with respect to an ”extension” of ∩.

For this, we need some appropriate equivalent representation for all elements in
this finite probability setting. Now since Ω = (1, 2, ..., n}, each function X : Ω → R
is identified as a point in the (finitely dimensional Hilbert) space Rn, namely
(X(1), X(2), ..., X(n))t, which, in turn, is equivalent to a n × n diagonal matrix
with diagonal terms X(1), X(2), ..., X(n). and zero outside (a special symmetric
matrix), i.e.,

X ⇐⇒ [X] =


X(1) 0

X(2)
0 . 0

0 .
0 X(n)


The set of such matrices is denoted as Do which is a commutative (with respect

to matrix multiplication) subalgebra of the algebra of all n× n matrices with real
entries. As matrices act as (bounded, linear) operators from Rn → Rn, we have
transformed (equivalently) random variables into operators on a Hilbert space.

In particular, for each event A ⊆ Ω, its indicator function 1A : Ω → {0, 1} is
identified as an element of Do with diagonal terms 1A(j) ∈ {0, 1}.As such, each
event A is identified as a (orthogonal) projection on Rn, i.e., an operator T such
that T = T 2 = T ∗ (its transpose/ adjoint). Finally, the density ρ : Ω → [0, 1]
is identified with the element [ρ] of Do with nonnegative diagonal terms, and
with trace tr([ρ]) = 1. An element of Do with nonnegative diagonal terms is a
positive operator, i.e., an operator T such that < Tx, x > ≥ 0, for any x ∈ Rn

(where < ., . > denotes the scalar product of Rn). Such an operator is necessarily
symmetric (self adjoint). Thus, a probability density is a positive operator with
unit trace. Thus, we have transformed the standard (Kolmogorov) probability



A Panorama of Applied Mathematical Problems in Economics 19

space (Ω,A, P ), with #(Ω) = n, into the triple (Rn,Po, ρ), where Po denotes the
subset of projections represented by elements of Do (i.e., with 0−1 diagonal terms)
which represent ”ordinary” events; and ρ (or [ρ]), an element of Do, is a positive
operator with unit trace.

Now, keeping Rn as a finitely dimensional Hilbert space, we will proceed to
extend (Rn,Po, ρ) to a non commutative “probabilty space”. It suffices to extend
D0, a special set of symmetric matrices, to the total set of all n × n symmetric
matrices, denoted as S(Rn), so that a random variable becomes an “observable”,
i.e., a self-adjoint operator on Rn; an “quantum event” is simply an arbitrary
projection on Rn, i.e., an element of P (the set of all projections); and the proba-
bility density ρ becomes an arbitrary positive operator with unit trace. The triple
(Rn,P, ρ) is called a (finitely dimensional) quantum probability space. We recog-
nize that quantum probability is based upon a new language, not real analysis, but
functional analysis (i.e., not on the geometry of Rn, but on its non commutative
geometry, namely linear operators on it).

The extension of the above to arbitrary (Ω,A, P ) essentially involves the re-
placement of Rn by an infinitely dimensional, complex and separable Hilbert space
H. For details, see texts like Dirac [4], Meyer [10], Parthasarathy [12].

References

[1] Baaquie, B.E. (2007) Quantum Finance, Cambridge University Press.

[2] Busemeyer, J. R. and Bruza, P.D. (2012) Quantum Models of Cognition and
Decision, Cambridge University Press.

[3] Connes, A. (2010) Noncommutative Geometry, Academic Press

[4] Dirac, P. (1948) The Principle of Quantum Mechanics, Clarendon Press, Ox-
ford.

[5] Feynman, R. (1951) The concept of probability in quantum mechanics, Berke-
ley Symposium on Mathematical Statistics and Probability, 533-541.

[6] Feynman, R. and Hibbs, A (1965) Quantum Mechanics and Path Integral,
Dover.

[7] Haven, E. and Khrennikov, A (2013) Quantum Social Science, Cambridge
University Press.

[8] Kreps, D.M. (1988) Notes on the Theory of Choice, Westview Press.

[9] Mazzucchi, S. (2009) Mathematical Feynman Path Integrals and Their Appli-
cations, World Scientific

[10] Meyer, P.A. (1995) Quantum Probability for Probabilists, Lecture Notes in
Mathematics, Springer.

[11] Nguyen, H.T. (2006) An Introduction to Random Sets, Chapman & Hall /
CRC Press.



20 Thai J. Math. (Special Issue, 2019)/ Hung T. Nguyen and Nguyen Ngoc Thach

[12] Parthasarathy, K.R. (1992) An Introduction to Quantum Stochastic Calculus,
Springer

[13] Stokey, N.L. and Lucas, Jr., R. E. (1989) Recursive Methods in Economic
Dynamics, Cambridge University Press.

[14] von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic
Behavior, Princeton University Press.

(Received 7 October 2018)
(Accepted 22 November 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	A past panorama of applied mathematics
	Economic equilibrium issues
	Social decision issues in economics

