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1 Introduction

This class of asymptotically nonexpansive mappings was to introduced by
Goebel and Kirk [1] in 1972. They proved that, if C is a nonempty bounded
closed convex subset of a uniformly convex Banach space X, then every asymp-
totically nonexpansiveself-mapping T of C has a fixed point. The fixed point
iteration process for asymptotically nonexpansive mapping in Banach spaces in-
cluding Mann and Ishikawa iterations processes have been studied extensively by
many authors; see ([1]-[5]). Throughout this paper, N denotes the set of all posi-
tive integers and X be a uniformly convex Banach space, C be a nonempty closed
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convex subset of X and F (T ) : Tx = x. A mapping T : C → C is said to be
asymptotically nonexpansive if for a sequence {kn}, kn ≥ 1 wih lim

n→∞
kn = 1, if

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C and for all n ∈ N.
In 2003, Chang et al. [6] introduced the following iteration process: x0 ∈ X

and {
yn = (1− βn)xn + βnT

nxn,
xn+1 = (1− αn)xn + αnT

nyn,
(1.1)

for all n ≥ 0, where {αn} and {βn} are sequences in [0, 1]. The iterative schemes
(1.1) are called the modified Ishikawa iteration.

In 2008, by combination of the concepts in fixed point theory and graph theory,
Jachymski [7] generalized the Banach’s contraction principle in a complete metric
space endowed with a directed graph. In 2015, Tiammee et al. [8] proved Brow-
ders convergence theorem for G-nonexpansive mapping in a Hilbert space with a
directed graph. They also proved the strong convergence of the Halpern iteration
for a G-nonexpansive mapping. Recently, Suparatulatorn et al. [9] proved the
weak and strong convergence of a sequence generated by a modified S-iteration
process for finding a common fixed point of two G-nonexpansive mappings in a
uniformly convex Banach space with a directed graph.

On this basis, we have introduced a new iterative scheme as follows: x0 ∈ C
and {

yn = (1− βn)xn + βnT
n
2 xn,

xn+1 = (1− αn)yn + αnT
n
1 yn,

(1.2)

for all n ≥ 1, where {αn} and {βn} are sequences in [0, 1] and T1, T2 : C → C
are two G-asymptotically nonexpansive mappings. We prove, under some certain
conditions, weak and strong convergence theorem of a new iterative scheme for ap-
proximating common fixed points of two G-asymptotically nonexpansive mappings
in a uniformly convex Banach space X endowed with a directed graph. Moreover,
we present numerical example for the new iterative scheme to compare with the
modified Ishikawa iteration.

2 Preliminaries

In this section, we provide and recall some definitions and lemmas which will
be used in the next sections.

Let C be a nonempty subset of a real Banach space X. Let 4 denote the
diagonal of the cartesian product C × C, i.e., 4 = {(x, x) : x ∈ C}. Consider a
directed graph G such that the set V (G) of its vertices coincides with C, and the
set E(G) of its edges contains all loops, i.e., E(G) ⊇ 4. We assume G has no
parallel edges. Thus we can identify the graph G with the pair (V (G), E(G)). A
mapping T : C → C is said to be G-asymptotically nonexpansive if T satisfies the
following conditions:
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(i) T preserves edges of G (or T is edge-preserving), i.e.,

(x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G).

(ii) if there exists a sequence {kn}, kn ≥ 1 with lim
n→∞

kn = 1 such that

||Tnx− Tny|| ≤ kn||x− y||,

whenever (x, y) ∈ E(G) and each n ≥ 1.

Definition 2.1. The conversion of a graph G is the graph obtained from G by
reversing the direction of edges denoted by G−1 and

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Definition 2.2. Let x and y be vertices of a graph G. A path in G from x to y of
length N(N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1 vertices for which x0 = x,
xN = y, and (xi, xi+1) ∈ E(G) for i = 0, 1, . . . , N − 1.

Definition 2.3. A graph G is said to be connected if there is a path between any
two vertices of the graph G.

Definition 2.4. Let x0 ∈ V (G) and A ⊆ V (G). We say that

(i) A is dominated by x0 if (x0, x) ∈ E(G) for all x ∈ A.

(ii) A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

Definition 2.5. A directed graph G = (V (G), E(G)) is said to be transitive if,
for any x, y, z ∈ V (G) such that (x, y) and (y, z) are in E(G), then (x, z) ∈ E(G).

Definition 2.6 ([7]). A mapping T : X → X is called G-continuous if given
u ∈ X and a sequence {un} for n ∈ N, un → u and (un, un+1) ∈ E(G) imply
Tun → Tu.

Definition 2.7. A mapping T : C → C is called G-semicompact if for a sequence
{xn} in C with (xn, xn+1) ∈ E(G) and lim

n→∞
||Txn − xn|| = 0, there exists a

subsequence {xnj
} of {xn} such that xnj

→ p ∈ C as j →∞.

Definition 2.8. Let C be a nonempty subset of a Banach space X and let
T : C → X be a mapping. Then, T is said to be G-demiclosed at y ∈ X if,
for any sequence {xn} in C such that {xn} converges weakly to x ∈ C, {Txn}
converges strongly to y and (xn, xn+1) ∈ E(G) imply Tx = y.

Definition 2.9 ([10]). A Banach space X is said to satisfy Opial’s condition if
for any sequence {xn} in X, xn ⇀ x implies that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

for all y ∈ X with x 6= y.
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Property G ([8]) Let C be a nonempty subset of a normed space X and let
G = (V (G), E(G)) be a directed graph with V (G) = C. We said that C has
the Property G if for each sequence {xn} in C converging weakly to x ∈ C with
(xn, xn+1) ∈ E(G), there is a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G)

for all k ∈ N.

Lemma 2.10 ([11]). Suppose X is a Banach space satisfying Opial’s condition
and C is a nonempty weakly compact convex subset of X and T : C → C is
an asymptotically nonexpansive mapping. Suppose also {xn} is a sequence in C
converging weakly to x and for which the sequence {xn − Txn} converges strongly
to 0. Then {Tnx} converges weakly to x.

Lemma 2.11 ([5]). Let {an}, {bn}and {δn} be sequences of nonnegative real num-
bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn,

for all n = 1, 2, . . . . If
∑∞
n=1 δn <∞ and

∑∞
n=1 bn <∞, then

(i) lim
n→∞

an exists;

(ii) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.

Lemma 2.12 ([12]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space
X is uniformly convex if and only if there exists a continuous, strictly increasing,
and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

||λx+ (1− λ)y||p ≤ λ||x||p + (1− λ)||y||p − wp(λ)g(||x− y||),

for all x, y in Br = {x ∈ X : ||x|| ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1− λ)p + λp(1− λ).

Lemma 2.13 ([13]). Suppose C has Property G : {xn}⇀ x and (xn, xn+1) ∈ E(G),
there exists a subsequence {xnk

} such that for each k, (xnk
, x) ∈ E(G). Let T be

a G-asymptotically nonexpansive mapping on C with asymptotic coefficient {kn}
such that

∑∞
n=1(kn − 1) <∞. Then I − T is G-demiclosed at 0.

Lemma 2.14 ([14]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X. Let u, v ∈ X be such that lim

n→∞
||xn − u|| and

lim
n→∞

||xn−v|| exist. If {xnk
} and {xmk

} are subsequences of {xn} which converges

weakly to u and v, respectively, then u = v.

3 Weak and Strong Convergence Theorems

In this section, we prove weak and strong convergence theorems of a new
iteration for two G-asymptotically nonexpansive mappings in a Banach space en-
dowed with a directed graph. Thoughtout of this section, let C be a nonempty
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closed, bounded and convex subset of a Banach space X with a directed graph G =
(V (G), E(G)) such that V (G) = C and E(G) is convex. We also suppose the graph
G is transitive. Suppose T1, T2 : C → C are two G-asymptotically nonexpansive
mappings with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn − 1) <∞, and F = F (T1) ∩

F (T2) 6= ∅. For arbitrary x0 ∈ C, define{
yn = (1− βn)xn + βnT

n
2 xn,

xn+1 = (1− αn)yn + αnT
n
1 yn

(3.1)

for all n ≥ 1, where {αn} and {βn} are sequences in [0, 1].

First, we need the following propositons and lemmas.

Proposition 3.1. Let z0 ∈ F and x0 ∈ C be such that (x0, z0), (z0, x0) are
in E(G). Then (xn, z0), (yn, z0), (z0, xn), (z0, yn), (xn, yn) and (xn, xn+1) are in
E(G).

Proof. We proceed by induction. Since T1, T2 are edge-preserving, it can be easily
seen that Tn1 and Tn2 are also edge-preserving for all n ∈ N. From (x0, z0) ∈ E(G),
we get (Tn2 x0, z0) ∈ E(G) and so (y0, z0) ∈ E(G) because E(G) is convex. Then,
since Tn1 is edge-preserving, n ≥ 1 and (y0, z0) ∈ E(G), we obtain (Tn1 y0, z0) ∈
E(G), we get (x1, z0) ∈ E(G). Thus, by edge-preserving of Tn2 , (Tn2 x1, z0) ∈ E(G).
Again, by the convexity of E(G) and (Tn2 x1, z0), (x1, z0) ∈ E(G), we have (y1, z0) ∈
E(G) and hence (Tn1 y1, z0) ∈ E(G). Next, we assume that (xk, z0) ∈ E(G). Since
Tn2 is edge-preserving, we get (Tn2 xk, z0) ∈ E(G) and hence (yk, z0) ∈ E(G).
Since Tn1 is edge-preserving, we have (Tn1 yk, z0) ∈ E(G). By the convexity of
E(G), we get (xk+1, z0) ∈ E(G). Hence, by edge-preserving of Tn2 , we obtain
(Tn2 xk+1, z0) ∈ E(G) and so (yk+1, z0) ∈ E(G). Therefore (xn, z0), (yn, z0) ∈ E(G)
for all n ≥ 1. Using a similar argument, we can show that (z0, xn), (z0, yn) ∈ E(G)
under the assumption that (z0, x0) ∈ E(G). By the transitivity of G, we obtain
(xn, yn), (xn, xn+1) ∈ E(G). This completes the proof.

Proposition 3.2. Let X be a Banach space with a directed graph G and let T :
C → C be G-asymptotically nonexpansive mapping. If X has the Property G, then
T is G-continuous.

Proof. Let {xn} be a sequence in X such that xn → x. We show that Txn →
Tx. To show this, let {Txnk

} be a subsequence of {Txn}. Since (xn, xn+1) ∈
E(G) and G is transitive, we obtain (xnk

, xnk+1
) ∈ E(G). Since xnk

→ x and
(xnk

, xnk+1
) ∈ E(G), by Property G, there is a subsequence {xn′

k
} of {xnk

} such

that (xn′
k
, x) ∈ E(G) for all k ∈ N. Since T is G-asymptotically nonexpansive

mapping and (xn′
k
, x) ∈ E(G), we obtain

||Txn′
k
− Tx|| ≤ k1||xn′

k
− x||

as k → ∞. Thus Txn′
k
→ Tx. By the double extract subsequence principle, we

include that Txn → Tx. Then T is G-continuous.
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Lemma 3.3. If X is a uniformly convex Banach space and (x0, z0), (z0, x0) ∈ E(G)
for arbitrary x0 ∈ C and z0 ∈ F, then

(i) lim
n→∞

||xn − z0|| exists.

(ii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, then lim
n→∞

||Tn1 yn − yn|| = 0.

(iii) If 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, then lim
n→∞

||Tn2 xn − xn|| = 0.

(iv) lim
n→∞

||Tn1 xn − xn|| = 0.

Proof. Let z0 ∈ F. By Proposition 3.1, (xn, z0), (yn, z0) ∈ E(G). Choose a number
r > 0 such that C ⊆ Br and C−C ⊆ Br. By Lemma 2.12, there exists a continuous,
strictly increasing and convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − w2(λ)g(||x− y||) (3.2)

for all x, y ∈ Br, λ ∈ [0, 1], where w2(λ) = λ(1 − λ)2 + λ2(1 − λ). It follows from
(3.2) and G-asymptotically nonexpansiveness of T2 that

||yn − z0||2 = ||(1− βn)(xn − z0) + βn(Tn2 xn − z0)||2

≤ (1− βn)||xn − z0||2 + βn||Tn2 xn − z0||2 − w2(βn)g(||Tn2 xn − xn||)
≤ (1− βn)||xn − z0||2 + βnk

2
n||xn − z0||2 − w2(βn)g(||Tn2 xn − xn||)

= (1− βn + βnk
2
n)||xn − z0||2 − w2(βn)g(||Tn2 xn − xn||). (3.3)

It follows from (3.2) and G-asymptotically nonexpansiveness of T1 that

||xn+1 − z0||2 = ||(1− αn)(yn − z0) + αn(Tn1 yn − z0)||2

≤ (1− αn)||yn − z0||2 + αn||Tn1 yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)
≤ (1− αn)||yn − z0||2 + αnk

2
n||yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)

= (1− αn + αnk
2
n)||yn − z0||2 − w2(αn)g(||Tn1 yn − yn||)

≤ (1− αn + αnk
2
n)((1− βn + βnk

2
n)||xn − z0||2

− w2(βn)g(||Tn2 xn − xn||))− w2(αn)g(||Tn1 yn − yn||)
≤ (1 + βn(k2n − 1) + αn(k2n − 1) + αnβnk

2
n(k2n − 1))||xn − z0||2

− (1− αn + αnk
2
n)w2(βn)g(||Tn2 xn − xn||)

− w2(αn)g(||Tn1 yn − yn||)
≤ ||xn − z0||2 + (βn(k2n − 1) + αn(k2n − 1) + αnβnk

2
n(k2n − 1))

||xn − z0||2 − (1− αn + αnk
2
n)w2(βn)g(||Tn2 xn − xn||)

− w2(αn)g(||Tn1 yn − yn||)
= ||xn − z0||2 + (k2n − 1)(βn + αn + αnβnk

2
n)||xn − z0||2

− (1− αn + αnk
2
n))w2(βn)g(||Tn2 xn − xn||)

− w2(αn)g(||Tn1 yn − yn||).
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Since {kn} and C are bounded, there exists a constant M > 0 such that

(βn + αn + αnβnk
2
n)||xn − z0||2 ≤M

for all n ≥ 1. It follows that

(1− αn(1− k2n))w2(βn)g(||Tn2 xn − xn||)) ≤ ||xn − z0||2 − ||xn+1 − z0||2

+M(k2n − 1) (3.4)

and

w2(αn)g(||Tn1 yn − yn||) ≤ ||xn − z0||2 − ||xn+1 − z0||2 +M(k2n − 1). (3.5)

(i) From (3.4), we get ||xn+1−z0||2 ≤ ||xn−z0||2+M(k2n−1). Since
∑∞
n=1(k2n − 1)

<∞, it follows from Lemma 2.11 that lim
n→∞

||xn − z0|| exists.

(ii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, there exist some real number δ > 0

and a positive integer n0 such that

w2(αn) = αn(1− αn)2 + α2
n(1− αn) ≥ δ > 0,

for all n ≥ n0. It follows from (3.5) that for any natural number m ≥ n0,
m∑

n=n0

g(||Tn1 yn − yn||) ≤
m∑

n=n0

w2(αn)g(||Tn1 yn − yn||)

≤ ||xn0
− z0||2 − ||xm+1 − z0||2 +M

m∑
n=n0

(k2n − 1)

≤ ||xn0
− z0||2 −M

m∑
n=n0

(k2n − 1). (3.6)

Since 0 ≤ t2 − 1 ≤ 2t(t − 1) for all t ≥ 1, the assumption
∑∞
n=1(kn − 1) < ∞

implies that
∑∞
n=1(k2n − 1) <∞. Let m→∞ in inequality (3.6). Then

∞∑
n=n0

g(||Tn1 yn − yn||) <∞,

and therefore lim
n→∞

g(||Tn1 yn−yn||) = 0. Since g is strictly increasing and continuous

at 0 with g(0) = 0, it follows that lim
n→∞

||Tn1 yn − yn|| = 0.

(iii) If 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and lim inf
n→∞

αn > 0, then by using a

similar method, together with inequality (3.4), it can be shown that lim
n→∞

||Tn2 xn−
xn|| = 0.

(iv) From yn = (1− βn)xn + βnT
n
2 xn, we have

||yn − xn|| = ||(1− βn)xn + βnT
n
2 xn − xn||

≤ βn||Tn2 xn − xn||. (3.7)
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By (iii) and (3.7), it follows that

lim
n→∞

||yn − xn|| = 0. (3.8)

Observe that

||Tn1 xn − xn|| ≤ ||Tn1 xn − Tn1 yn||+ ||Tn1 yn − yn||+ ||yn − xn||
≤ kn||xn − yn||+ ||Tn1 yn − yn||+ ||yn − xn||
= (kn + 1)||xn − yn||+ ||Tn1 yn − yn||.

This together with (3.8) and (ii) imply that

lim
n→∞

||Tn1 xn − xn|| = 0.

Lemma 3.4. Let X be a uniformly convex Banach space and (x0, z0), (z0, x0)∈E(G)
for arbitrary x0 ∈ C and z0 ∈ F. If

(i) lim
n→∞

||Tn1 xn − xn|| = 0

(ii) lim
n→∞

||Tn1 yn − yn|| = 0

(iii) lim
n→∞

||Tn2 xn − xn|| = 0,

then

lim
n→∞

||T1xn − xn|| = 0 = lim
n→∞

||T2xn − xn||.

Proof. Let z0 ∈ F be such that (x0, z0), (z0, x0) are in E(G). By Proposition 3.1,
we have (xn,xn+1) ∈ E(G). Observe that

||xn+1 − Tn1 xn+1|| ≤ ||xn+1 − xn||+ ||Tn1 xn − Tn1 xn+1||+ ||Tn1 xn − xn||
≤ ||xn+1 − xn||+ kn||xn − xn+1||+ ||Tn1 xn − xn||
= (1 + kn)||xn+1 − xn||+ ||Tn1 xn − xn||.

Since xn+1 − xn = (yn − xn) + αn(Tn1 yn − yn), we obtain

||xn+1 − Tn1 xn+1|| ≤ (1 + kn)||yn − xn||+(1+kn)αn||Tn1 yn − yn||+||Tn1 xn − xn||.

This together with (3.8) and the assumption that

lim
n→∞

||Tn1 yn − yn|| = 0 = lim
n→∞

||Tn1 xn − xn||

imply that

lim
n→∞

||xn+1 − Tn1 xn+1|| = 0.
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Since

||xn+1 − T1xn+1|| ≤ ||xn+1 − Tn+1
1 xn+1||+ ||T1xn+1 − Tn+1

1 xn+1||
≤ ||xn+1 − Tn+1

1 xn+1||+ k1||xn+1 − Tn1 xn+1||

as n→∞, we obtain
lim
n→∞

||T1xn − xn|| = 0.

Similarly,

||xn+1 − Tn2 xn+1|| ≤ ||xn+1 − xn||+ ||Tn2 xn − Tn2 xn+1||+ ||Tn2 xn − xn||
≤ ||xn+1 − xn||+ kn||xn − xn+1||+ ||Tn2 xn − xn||
≤ (1 + kn)||yn − xn||+(1 + kn)αn||Tn1 yn − yn||+||Tn2 xn − xn||.

Again, by (3.8) and lim
n→∞

||Tn1 yn − yn|| = 0 = lim
n→∞

||Tn2 xn − xn||, we have

lim
n→∞

||xn+1 − Tn2 xn+1|| = 0.

Thus

||xn+1 − T2xn+1|| ≤ ||xn+1 − Tn+1
2 xn+1||+ ||T2xn+1 − Tn+1

2 xn+1||
≤ ||xn+1 − Tn+1

2 xn+1||+ k1||xn+1 − Tn2 xn+1||

as n→∞, which implies

lim
n→∞

||T2xn − xn|| = 0.

Theorem 3.5. Let X be a uniformly convex Banach space satisfying the Opial’s
condition and let C be a nonempty closed and convex subset of X. Let T1, T2 be
two G-asymptotically nonexpansive mappings on C with the nonempty common
fixed point set F = F (T1) ∩ F (T2). Let {αn}, {βn} be sequences in [0, 1] satisfying

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, and

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Assume that C has the Property G. Let x0 ∈ C be fixed so that (x0, z0) and (z0, x0)
are in E(G) for some z0 ∈ F. If {xn} is a sequence defined by recursion (3.1),
then {xn} converges weakly to a common fixed point of T1 and T2.

Proof. Let z0 ∈ F (T1)∩F (T2) be such that (x0, z0), (z0, x0) ∈ E(G). It follows from
Lemma 3.3 (i) that lim

n→∞
||xn−z0|| exists. So {xn} is bounded, hence it has a weakly

convergent subsequence. We prove that {xn} has a unique weak subsequential
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limit in F (T1)∩ F (T2). For, let u and v be weak limits of the subsequences {xnk
}

and {xmk
} of {xn}, respectively. By Lemma 3.4, we have lim

n→∞
||T1xn − xn|| = 0

and I − T1 is G-demiclosed with respect to zero by Lemma 2.13, therefore we
obtain T1u = u. Similarly, T2u = u. Again in the same fashion, we can prove that
v ∈ F (T1) ∩ F (T2). By Lemma 2.14, we have u = v. Thus {xn} converges weakly
to a common fixed point in F (T1) ∩ F (T2).

Theorem 3.6. Let C be a nonempty closed and convex subset of a uniformly
convex Banach space X. Let T1, T2 be two G-asymptotically nonexpansive mappings
on C with the nonempty common fixed point set F = F (T1)∩F (T2). Let {αn}, {βn}
be sequences in [0, 1] satisfying

(i) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, and

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Assume that C has the Property G and one of T1 and T2 is G-semicompact. Let
x0 ∈ C be fixed so that (x0, z0) and (z0, x0) are in E(G) for some z0 ∈ F. If {xn}
is a sequence defined by recursion (3.1), then {xn} converges strongly to a common
fixed point of T1 and T2.

Proof. We may assume that T1 is G-semicompact. By Lemma 3.3, we obtain {xn}
is bounded. From Lemma 3.4, we get

lim
n→∞

||xn − T1xn|| = 0 = lim
n→∞

||xn − T2xn||.

Then, there exists a subsequence {xnk
} of {xn} such that xnk

→ z0 as k →∞.Thus

lim
k→∞

||xnk
− T1xnk

|| = 0 = lim
k→∞

||xnk
− T2xnk

||.

By Proposition 3.2, we obtain T1 and T2 are G-continuous. It follows that

||z0 − T1z0|| = lim
k→∞

||xnk
− T1xnk

|| = 0

and
||z0 − T2z0|| = lim

k→∞
||xnk

− T2xnk
|| = 0.

This yield z0 ∈ F so that {xnk
} converges strongly to z0 ∈ F. But again by Lemma

3.4, lim
n→∞

||xn−p|| exists for all p ∈ F therefore {xn}must itself converge to z0 ∈ F.
This completes the proof.

4 Numerical Example

In this section, we give an example and its numerical experiments for support-
ing our main theorem. In 1976, Rhoades [15] gave the idea of how to compare the
rate of convergence between two iterative methods as follows:
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Definition 4.1 ([15]). Let C be a nonempty closed convex subset of a Banach
space X and T : C → C be a mapping. Suppose {xn} and {mn} are two iterations
which converge to a fixed point q of T . Then {xn} is said to converge faster than
{mn} if

||xn − q|| ≤ ||mn − q||

for all n ≥ 1.

In order to study the order of convergence of a real sequence {an} converging
to a, we usually use the well-known terminology in numerical analysis, see [16],
for example.

Definition 4.2 ([16]). Suppose {an} is a sequence that converges to a, with an 6= a
for all n. If positive constants λ and α exist with

lim
n→∞

|an+1 − a|
|an − a|α

= λ,

then we say that {an} converges to a of order α, with asymptotic error constant
λ. If α = 1 (and λ < 1), the sequence is linearly convergent, and if α = 2, the
sequence is quadratically convergent.

In 2002, Berinde [17] employed the above concept for comparing the rate of
convergence between the two iterative methods as follows:

Definition 4.3 ([17]). Let {an} and {bn} be two sequences of positive numbers
that converge to a, b, respectively. Assume there exists

lim
n→∞

|an − a|
|bn − b|

= l.

(i) If l = 0, then it is said that the sequence {an} converges to a faster than the
sequence {bn} to b.

(ii) If 0 < l < ∞, then we say that the sequences {an} and {bn} have the same
rate of convergence.

Definition 4.4 ([17, 18]). Let C be a nonempty closed convex subset of a Banach
space X and T : C → C be a mapping. Suppose {xn} and {mn} are two iterations
which converge to a fixed point q of T . We say that {xn} converges faster than
{mn} to q if

lim
n→∞

||xn − q||
||mn − q||

= 0.

We now give an example which shows numerical experiment for supporting
our main results and comparing the rate of convergence of the studied method
and the modified Ishikawa iteration.
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Example 4.5. Let X = R and C = [0, 2]. Let G = (V (G), E(G)) be a directed
graph defined by V (G) = C and (x, y) ∈ E(G) if and only if 0.75 < x, y ≤ 1.70.
Define a mapping T1, T2 : C → C by

T1x =

{
5
8 arcsin(x− 1) + 1 if x 6=

√
3

0 if x =
√

3

and

T2x =

{
xlog(2x) if x 6=

√
2

2 if x =
√

2

for all x ∈ C. Let 1 ≤ kn ≤ 1.36. Then T1 and T2 are G-asymptotically nonexpan-
sive mappings. Let x =

√
3, u =

√
2 and y = 1 = v. Then ||Tn1 x−Tn1 y||> kn||x−y||

and ||Tn2 u − Tn2 v|| > kn||u − v|| for all n ∈ N. Let αn = n+1
5n+3 and βn = n+4

10n+7 .
Choose x0 = 1.4. Let {xn} be a sequence generated by (3.1) and {mn} be a
sequence generated by the modified Ishikawa iteration (1.1). We obtain the fol-
lowing numerical experiments for common fixed point of T1 and T2 and rate of
convergence of {xn} and {mn}.

We note that x = 1 is a common fixed point of T1 and T2.
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Table 1. Numerical experiments of Example 4.5
n Modified Ishikawa new itaretion Rate of convergence

mn xn |mn − 1| |xn − 1| |xn−1|
|mn−1|

1 1.3224 1.2318 0.3224 0.2318 0.7192
2 1.2836 1.1711 0.2836 0.1712 0.6036
3 1.2538 1.1339 0.2538 0.1339 0.5276
4 1.2287 1.1074 0.2287 0.1075 0.4699
5 1.2069 1.0875 0.2069 0.0875 0.4231
· · · · · · · · · · · · · · · · · ·
34 1.0146 1.0007 0.0146 0.0007 0.0416

Table 2. Numerical errors of modified Ishikawa and new iteration

n Modified Ishikawa new itaretion

mn |mn −mn−1| xn |xn − xn−1|
1 1.3224 0.0776 1.2318 0.1682

2 1.2836 0.0388 1.1711 0.0607

3 1.2538 0.0298 1.1339 0.0372

4 1.2287 0.0251 1.1074 0.0264

5 1.2069 0.0218 1.0875 0.0199

· · · · · · · · · · · · · · ·
34 1.0146 0.0014 1.0007 0.0001

From Tables 1 and 2, we see that both {mn} and {xn} converge to 1 ∈ F and

observe that |xn − 1| ≤ |mn − 1| and lim
n→∞

|xn − 1|
|mn − 1|

= 0, so the sequence {xn}

converges faster than {mn} generated by the modified Ishikawa iteration (Fig.1)
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