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1 Introduction

The purpose of this paper is to obtain sufficient conditions for the Ψ-(uniform)
stability of trivial solution of nonlinear difference equation

x(n+ 1) = A(n)x(n) + f(n, x(n)) (1.1)

and the linear difference equation

x(n+ 1) = A(n)x(n) +B(n)x(n), (1.2)
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as a perturbed equation of

x(n+ 1) = A(n)x(n), (1.3)

where A(n), B(n) are m ×m matrix-valued functions and f(n, x(n)) is a vector-
valued function of order m on N = {0, 1, 2, . . .}. Also, we develop new difference
equations corresponding to (1.1)-(1.3) which are (uniformly)stable on N, provided
(1.1)-(1.3) are Ψ-(uniformly)stable on N. We investigate conditions on the fun-
damental matrix Y (n) for the linear equation (1.3) and on the function f(n, x)
under which the trivial solution of (1.1) is Ψ-(uniformly)stable on N. Here, Ψ is a
matrix function.

Difference equations play an important role in many scientific fields such as
numerical analysis, finite element techniques, control theory, discrete mathemati-
cal structures and several problems of mathematical modeling [1–3]. The theory
of difference equations is of immense use in the construction of discrete mathe-
matical models, which can explain better when compared to continuous models.
Marchalo [4] introduced the notions of Ψ-(uniform)stability for trivial solution of
the nonlinear system x′ = f(t, x) and also obtained new sufficient conditions for the
linear system x′ = A(t)x. Recently, Han and Hong [5], Diamandescu [6,7], Suresh
Kumar, Rao and Murty [8, 9] extended the concept of Ψ-bounded solutions of
differential equations to difference equations. The Ψ-(uniformly)stability for non-
linear difference equations are not yet studied. With the motivation of the above
works, in this paper we obtain sufficient conditions for the Ψ-(uniformly)stable for
the trivial solution of nonlinear difference equations.

2 Preliminaries

Let Rm denote them-dimensional Euclidean space. For x=(x1, x2, x3, ..., xm)T

in Rm, let ‖x‖ = max{|x1|, |x2|, . . . , |xm|} be the norm of x. For an m×m matrix
A = [aij ], we define the norm |A| = sup

‖x‖≤1

‖Ax‖.

For the existence of solution of (1.1), we assume that A is an invertible m×m
matrix on N and f : N×Rm → Rm, is a m-vector such that f(n, 0) = 0 for n ∈ N.

Let Ψ be a diagonal matrix of order m defined by

Ψ = diag[Ψ1,Ψ2, . . .Ψm],

where Ψi : N→ (0,∞), i = 1, 2 . . .m.

Definition 2.1. If the vector valued function u(n) ∈ Rm satiesfies difference
equation (1.1), then u(n) is called a solution of (1.1). It is clear that u(n) = 0
(zero vector) is always a solution of (1.1) and is called a trivial solution of (1.1).
And also u(n) = 0 is the trivial solution of (1.2) and (1.3).

Definition 2.2. [1] Any m×m matrix Y (n) whose columns are linearly indepen-
dent solutions of the difference equation (1.3) is called a fundamental matrix of
(1.3).
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It is obvious that, Y (n) is the solution of (1.3) and is nonsingular.

Definition 2.3. [1] The solution u(n) of x(n+ 1) = f(n, x(n)) is said to be

(i) stable, if for each ε > 0, there exists a δ = δ(ε, n0) > 0 such that any solution
ū(n) of x(n + 1) = f(n, x(n)), the inequality ‖u(n0) − ū(n0)‖ < δ, implies
‖ū(n)− u(n)‖ < ε for all n ≥ n0, where n, n0 ∈ N.

(ii) uniformly stable, if it is stable and δ independent of n0.

Now, we define Ψ-stability and Ψ-uniform stability for trivial solutions of (1.1).

Definition 2.4. The trivial solution of (1.1) is said to be Ψ-stable on N if for every
ε > 0 and every n0 in N, there exists δ = δ(ε, n0) > 0 such that any solution x(n)
of (1.1) which satisfies the inequality ‖Ψ(n0)x(n0)‖ < δ, also exists and satisfies
the inequality ‖Ψ(n)x(n)‖ < ε for all n ≥ n0.

Definition 2.5. The trivial solution of (1.1) is said to be Ψ-uniformly stable on
N if it is Ψ-stable on N and in Definition 2.4 δ is independent of n0.

Remark 2.6. For Ψi = 1, i = 1, 2 . . . n, we obtain the notions of classical stability
and uniform stability.

Now, we generate a difference equation, by multiplying Ψ(n+ 1) on both sides
of (1.1)

Ψ(n+ 1)x(n+ 1) = Ψ(n+ 1)A(n)x(n) + Ψ(n+ 1)f(n, x(n))

Ψ(n+1)x(n+1) = Ψ(n+1)A(n)Ψ−1(n)Ψ(n)x(n)+Ψ(n+1)f(n,Ψ−1(n)Ψ(n)x(n)).

Taking z(n) = Ψ(n)x(n), the above equation can be written as

z(n+ 1) = AΨ(n)z(n) + FΨ(n, z(n)), (2.1)

where AΨ(n) = Ψ(n+1)A(n)Ψ−1(n) and FΨ(n, z(n)) = Ψ(n+1)f(n,Ψ−1(n)z(n)).
The corresponding linear equation of (2.1) is

z(n+ 1) = AΨ(n)z(n). (2.2)

From Definitions 2.4, 2.5 and Remark 2.6, we have the following lemma.

Lemma 2.7. The trivial solution of (1.1) is Ψ-(uniformly)stable on N if and only
if the trivial solution of (2.1) is (uniformly)stable on N.

Remark 2.8. From Lemma 2.7, we infer that if the difference equation (1.1) is
not (uniformly)stable on N, we can generate (uniformly)stable difference equation
(2.1) from (1.1) with the help of Ψ-(uniform)stability of (1.1).

The following lemma represent the relationship between fundamental matrices
of (1.3) and (2.2).
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Lemma 2.9. Let Y (n) be the fundamental matrix of (1.3), then Z(n) = Ψ(n)Y (n)
is the fundamental matrix of (2.2).

Proof. Since Y (n) is the fundamental matrix of (1.3), then Y (n) satisfies (1.3)
and nonsingular. Consider

Z(n+ 1) = Ψ(n+ 1)Y (n+ 1)

= Ψ(n+ 1)A(n)Y (n)

= Ψ(n+ 1)A(n)Ψ−1(n)Ψ(n)Y (n)

= AΨ(n)Z(n)

Since Ψ(n) and Y (n) are nonsingular matrices, then Z(n) also nonsingular. There-
fore, Z(n) = Ψ(n)Y (n) is the fundamental matrix of (2.2).

3 Ψ-Stability for Linear Difference Equations

The purpose of this section is to obtain sufficient conditions for Ψ-(uniform)
stability of trivial solution of linear difference equations (1.2) and (1.3). These
conditions can be expressed in terms of the fundamental matrix of (1.3).

In the following theorem we obtain necessary and sufficient condition for Ψ-
(uniform)stability of trivial solution of linear systems (1.2).

Theorem 3.1. Let Y (n) be a fundamental matrix for (1.3). Then

(i) The trivial solution of (1.3) is Ψ-stable on N if and only if there exists a
positive constant M such that |Ψ(n)Y (n)| ≤M for all n ∈ N.

(ii) The trivial solution of (1.3) is Ψ-uniformly stable on N if and only if there
exists a positive constant M such that |Ψ(n)Y (n)Y −1(k)Ψ−1(k)| ≤ M , for
all k ≤ n and k, n ∈ N.

Proof. The solution of (1.3) with x(n0) = x0 is x(n) = Y (n)Y −1(n0)x0 for n ∈ N.
Suppose that there exist M > 0 such that |Ψ(n)Y (n)| ≤ M for n ∈ N. For

ε > 0 and n0 ∈ N, let δ(ε, n0) =
ε

2M |Y −1(n0)Ψ−1(n0)|
. For ‖Ψ(n0)x(n0)‖ < δ

and n ≥ n0, we get

‖Ψ(n)x(n)‖ = ‖Ψ(n)Y (n)Y −1(n0)Ψ−1(n0)Ψ(n0)x(n0)‖
= M |Y −1(n0)Ψ−1(n0)|δ < ε,

which implies that the trivial solution of (1.3) is Ψ-stable on N.
Conversely suppose that the trivial solution of (1.3) is Ψ-stable on N. Then,

for ε = 1 and n0 = 0, there exists δ > 0 such that any solution x(n) of (1.3) which
satisfies the inequality ‖Ψ(0)x(0)‖ < δ and

‖Ψ(n)Y (n)(Ψ(0)Y (0))−1Ψ(0)x(0)‖ < 1 for n ∈ N.
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Let v ∈ Rn be such that ‖v‖ ≤ 1. If we take x(0) = δ
2Ψ−1(0)v, then we have

‖Ψ(0)x(0)‖ < δ. Hence, ‖Ψ(n)Y (n)(Ψ(0)Y (0))−1 δ
2v‖ < 1 for n ∈ N. Therefore,

|Ψ(n)Y (n)(Ψ(0)Y (0))−1| ≤ 2/δ for n ∈ N. Hence, |Ψ(n)Y (n)| ≤ M , a positive
constant, for n ∈ N.

Part (ii) is proved similarly.

The following example illustrate Theorem 3.1.

Example 3.2. Consider the linear difference equation (1.3) with

A(n) =

[
0 1

− 2
n+1 − 1 0

]
.

Then its fundamental matrix is

Y (n) =

[
(n+ 1) cos nπ2 (n+ 1) sin nπ

2
−(n+ 2) sin nπ

2 (n+ 2) cos nπ2

]
.

Clearly Y (n) is unbounded on N, it follows that the equation (1.3) is not stable
on N.

Now, we construct a difference equation (2.2) from (1.3), which is uniformly
stable on N with the help of Theorem 3.1 and Lemma 2.7. Consider

Ψ(n) =

[ 1
n+1 0

0 1
n+2

]
.

Then for all k ≤ n, k, n ∈ N, we get

Ψ(n)Y (n)Y −1(k)Ψ−1(k) =

[
cos (n−k)π

2 sin (n−k)π
2

− sin (n−k)π
2 cos (n−k)π

2

]

and |Ψ(n)Y (n)Y −1(k)Ψ−1(k)| ≤ 2. From Theorem 3.1, the trivial solution of
linear difference equation (1.3) is Ψ-uniformly stable on N.

By Lemma 2.7, the difference equation (2.2) with

AΨ(n) =

[
0 1
−1 0

]
is uniformly stable on N.

Remark 3.3. Ψ-uniform stability implies Ψ-stability but the converse need not
be true. It is shown by the following example.

Example 3.4. Consider the linear difference equation (1.3) with

A(n) =


(
n+ 2

n+ 1

)2

−
(
n+ 2

n+ 1

)2

(2n+ 3)en

0

(
n+ 2

n

)2

e−1

 .
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Then the fundamental matrix of (1.3) is

Y (n) =

(n+ 1)2 1

0
e−n

(n+ 2)2

 .
If

Ψ(n) =

[ 1
(n+1)2 0

0 (n+ 2)2

]
, for all n ∈ N,

then

Ψ(n)Y (n) =

1
1

(n+ 1)2

0 e−n

 , for all n ∈ N.

Clearly |Ψ(n)Y (n)| ≤ 2, for all n ∈ N. From Theorem 3.1, the equation (1.3) is
Ψ-stable on N. On the other hand

Ψ(n)Y (n)Y −1(k)Ψ−1(k) =

1 ek
(

1

(n+ 1)2
− 1

(k + 1)2

)
0 ek−n

 .
is unbounded for 0 ≤ k ≤ n, n, k ∈ N. Again from Theorem 3.1, the equation
(1.3) is not Ψ-uniformly stable on N.

Now, we consider various Ψ-stability problems connected with the linear dif-
ference equation (1.2) as a perturbed equation of (1.3). We seek conditions under
which the Ψ-(uniform) stability of (1.3) implies the Ψ-(uniform)stability of (1.2).

Theorem 3.5. Suppose that B(n) is an m×m matrix function for n ∈ N. If the
linear difference equation (1.3) is Ψ-uniformly stable on N and

∞∑
k=0

|Ψ(k + 1)B(k)Ψ−1(k)| < +∞,

then the perturbed linear difference equation (1.2) is also Ψ-uniformly stable on N.

Proof. Let Y (n) be a fundamental matrix for the linear difference equation (1.3).
Since the equation (1.3) is Ψ-uniformly stable on N, there exists a positive constant
M such that

|Ψ(n)Y (n)Y −1(k)Ψ−1(k)| ≤M for 0 ≤ k ≤ n, k, n ∈ N.

The solution of (1.2) with initial condition x(n0) = x0 is unique and defined for
all n ∈ N. Therefore, by the variation of constants formula,

x(n) = Y (n)Y −1(n0)x0 +

n∑
k=n0+1

Y (n)Y −1(k)B(k − 1)x(k − 1).
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For n0 ≤ n, n, n0 ∈ N,

Ψ(n)x(n) = Ψ(n)Y (n)Y −1(n0)Ψ−1(n0)Ψ(n0)x0

+

n∑
k=n0+1

Ψ(n)Y (n)Y −1(k)Ψ−1(k)Ψ(k)B(k − 1)Ψ−1(k − 1)Ψ(k − 1)x(k − 1).

From the above conditions, it results that

‖Ψ(n)x(n)‖ ≤M‖Ψ(n0)x(n0)‖+M

n−1∑
k=n0

|Ψ(k + 1)B(k)Ψ−1(k)|||Ψ(k)x(k)||.

Therefore, by Gronwall’s inequality,

‖Ψ(n)x(n)‖ ≤M‖Ψ(n0)x0‖
n−1

Π
k=n0

(
1 +M |Ψ(k + 1)B(k)Ψ−1(k)|

)
≤M‖Ψ(n0)x0‖e

M
n−1∑
k=n0

|Ψ(k+1)B(k)Ψ−1(k)|
.

The above inequality shows that the linear difference equation (1.2) is Ψ-uniformly
stable on N.

If the linear difference equation (1.3) is only Ψ-stable, then its perturbed equa-
tion (1.2) need not be Ψ-stable. This is shown by the following example.

Example 3.6. Consider the linear difference equation (1.2) with A(n) as in Ex-
ample 3.4 and

B(n) =

0

(
(2n+ 1)(n+ 2)2

4
+

2n+ 3

(n+ 1)2

)
(n+ 2)2en

0 0

 .
From Example 3.4, equation (1.3) is Ψ-stable on N. The fundamental matrix of
(1.2) is

Ỹ (n) =

(n+ 1)2 n2(n+ 1)2

4

0
e−n

(n+ 2)2

 .

Let Ψ(n) =

 1

(n+ 1)2
0

0 (n+ 2)2

. Then, we have

Ψ(n)Ỹ (n) =

1
n2

4
0 e−n

 .
Because |Ψ(n)Ỹ (n)| is unbounded on N, it follows that the equation (1.2) is not
Ψ-stable on N.
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Remark 3.7. Theorem 3.5 is no longer true if we require that

Ψ(k + 1)B(k)Ψ−1(k)→ 0

as k →∞, instead of the condition

∞∑
k=0

|Ψ(k + 1)B(k)Ψ−1(k)| < +∞.

This is shown by the following example.

Example 3.8. Consider the equation (1.2) with

A(n) =

[
0 n+1

n+2

−n+1
n+2 0

]
, B(n) =

[
0 2

n+2

− 2
n+2 0

]
.

Then

Y (n) =
1

n+ 1

[
cos
(
nπ
2

)
sin
(
nπ
2

)
− sin

(
nπ
2

)
cos
(
nπ
2

)] and Ỹ (n) = (n+2)

[
cos
(
nπ
2

)
sin
(
nπ
2

)
− sin

(
nπ
2

)
cos
(
nπ
2

)]
are fundamental matrices for the systems (1.3) and (1.2) respectively.

If Ψ(n) =

[
n+ 1 0

0 n+ 1

]
, then

Ψ(n)Y (n)Y −1(k)Ψ−1(k) =

 cos
(

(n−k)π
2

)
sin
(

(n−k)π
2

)
− sin

(
(n−k)π

2

)
cos
(

(n−k)π
2

) ,
for 0 ≤ k ≤ n <∞. It is easily seen that the equation (1.3) is Ψ-uniformly stable
on N. And also

Ψ(n)Ỹ (n) = (n+ 1)(n+ 2)

[
cos
(
nπ
2

)
sin
(
nπ
2

)
− sin

(
nπ
2

)
cos
(
nπ
2

)] .
It follows that the equation (1.2) is not Ψ-uniformly stable on N. Finally, we have

∞∑
n=0

|Ψ(n+ 1)B(n)Ψ−1(n)| =
∞∑
n=0

2

n+ 1
=∞

and

lim
n→∞

|Ψ(n+ 1)B(n)Ψ−1(n)| = 0.

Theorem 3.9. Suppose that:

1. The linear equation (1.3) is Ψ-stable on N.
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2. There exist a sequence ϕ : N → (0,∞) and a positive constant L such that
the fundamental matrix Y (n) of (1.3) satisfies the condition

n−1∑
k=0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)| ≤ L, n ∈ N. (3.1)

3. B(n) is a m×m matrix function on N such that

b = sup
n∈N

ϕ−1(n)|Ψ(n+ 1)B(n)Ψ−1(n)| (3.2)

is a sufficiently small number and Lb < 1.

Then the linear perturbed equation (1.2) is Ψ-stable on N.

Proof. From the assumption (1) and Theorem 3.1, there exists a constant M such
that |Ψ(n)Y (n)| ≤ M , for all n ∈ N. By using variation of constant formula the
solution of (1.2) with x(n0) = x0 is given by

x(n) = Y (n)Y −1(n0)x0 +

n−1∑
k=n0

Y (n)Y −1(k + 1)B(k)x(k), n ∈ N.

For a given ε > 0, n0 ∈ N, we choose δ(n0, ε) =
(1− Lb)ε

2M |Y −1(n0)Ψ−1(n0)|
such that

‖Ψ(n0)x0‖ < δ. Consider

‖Ψ(n)x(n)‖ ≤|Ψ(n)Y (n)| |Y −1(n0)Ψ−1(n0)| ‖Ψ(n0)x(n0)‖

+

n−1∑
k=n0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)|ϕ−1(k)

|Ψ(k + 1)B(k)Ψ−1(k)|‖Ψ(k)x(k)‖

≤M |Y −1(n0)Ψ−1(n0)|δ +

n−1∑
k=n0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)|(
sup
k∈N

ϕ−1(k)|Ψ(k + 1)B(k)Ψ−1(k)|
)
‖Ψ(k)x(k)‖.

From the hypothesis b = supk∈N ϕ
−1(k)|Ψ(k + 1)B(k)Ψ−1(k)| is sufficently small

and Lb < 1.

Therefore, for n0 ≤ n, n0 ∈ N, we get

‖Ψ(n)x(n)‖ ≤M |Y −1(n0)Ψ−1(n0)|δ + Lb‖Ψ(n)x(n)‖.
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It implies that

sup
n0≤n

‖Ψ(n)x(n)‖ ≤ (1− Lb)−1M |Y −1(n0)Ψ−1(n0)|δ

=
M

1− Lb
|Y −1(n0)Ψ−1(n0)|δ

=
ε

2
< ε.

Hence the equation (1.2) is Ψ-stable on N.

Example 3.10. Consider the linear perturbed difference equation (1.2) with

A(n) =

[
n+2
n+1 0

0 2

]
, B(n) =

[
0 0
0 1

2(n+1)

]
.

Then the fundamental matrix of (1.3) is

Y (n) =

[
n+ 1 0

0 2n

]
.

If

Ψ(n) =

[
1

n+1 0

0 3−n

]
, ϕ(n) = 1,∀ n ∈ N,

then

Ψ(n)Y (n) =

[
1 0

0
(

2
3

)n] , |Ψ(n)Y (n)| =
(

2

3

)n
≤ 1,∀ n ∈ N.

From Theorem 3.1, the linear difference equation (1.3) is Ψ-stable on N. And also

Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1) =

[
1 0

0
(

2
3

)n ( 3
2

)k+1

]
,

n−1∑
k=0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)| =
(

2

3

)n n−1∑
k=0

(
3

2

)k+1

= 3

(
1−

(
2

3

)n)
≤ 3,

for n ∈ N.
Consider

Ψ(n+ 1)B(n)Ψ(n) =

[
0 0
0 1

6(n+1)

]
,

we have

b = sup
n∈Z+

ϕ−1(n)|Ψ(n+ 1)B(n)Ψ−1(n)| = 1

6(n+ 1)
≤ 1

6
.

All conditions of Theorem 3.9 are satisfied with M = 1, L = 3 and b = 1
6 .

Therefore, the linear perturbed equation (1.2) is Ψ-stable on N.
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4 Ψ-Stability for Nonlinear Difference Equations

In this section, we consider the difference equation (1.1) as the perturbed equa-
tion of (1.3) and provide sufficient conditions on the nonlinear function f(n, x(n)),
we obtain Ψ-(uniform)stability of the trivial solution of (1.1).

Theorem 4.1. Suppose that

(i) The linear equation (1.3) is Ψ-stable on N.

(ii) There exist a sequence ϕ : N → (0,∞) and a positive constant L such that
the fundamental matrix Y (n) of the equation (1.3) satisfies the condition
(3.1).

(iii) The nonlinear function f satisfies the condition

|Ψ(n+ 1)f(n, x(n))| ≤ α(n)

ϕ(n)
‖Ψ(n)x(n)‖, (4.1)

where α(n) is a nonnegative sequence such that

sup
n≥n0

α(n)

ϕ(n)
<

1

L
, (4.2)

for all n, n0 ∈ N and x(n) ∈ Rn.

Then, the trivial solution of nonlinear difference equation (1.1) is Ψ-stable on N.

Proof. From condition (i) and Threorem 3.1, it follows that there exists a positive
constant M such that |Ψ(n)Y (n)| ≤M , for all n ∈ N.

From (4.2), there exists β such that

α(n)

ϕ(n)
≤ β < 1

L
, for all n ∈ N.

For a given ε > 0 and n0 ≤ n, n0 ∈ N, we choose

δ = min

{
ε

2
,

1− βL
2M |Y −1(n0)Ψ−1(n0)|

}
such that ‖Ψ(n0)x0‖ < δ. By variation of constants formula, the solution of (1.1)
with x(n0) = x0 is given by

x(n) = Y (n)Y −1(n0)x(n0) +

n−1∑
k=n0

Y (n)Y −1(k + 1)f(k, x(k)), (4.3)
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for all n0 ≤ n ∈ N. Consider

‖Ψ(n)x(n)‖ ≤ |Ψ(n)Y (n)||Y −1(n0)Ψ−1(n0)|‖Ψ(n0)x(n0)‖

+

n−1∑
k=n0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)||Ψ(k + 1)f(k, x(k))|

≤M |Y −1(n0)Ψ−1(n0)|δ +

n−1∑
k=n0

ϕ(k)|Ψ(n)Y (n)Y −1(k + 1)Ψ−1(k + 1)|(
sup
k∈N

α(k)

ϕ(k)

)
‖Ψ(k)x(k)‖

≤M |Y −1(n0)Ψ−1(n0)|δ + βL‖Ψ(n)x(n)‖.

It implies that

‖Ψ(n)x(n)‖ ≤ M

1− βL
|Y −1(n0)Ψ−1(n0)|δ

≤ ε

2
< ε.

From Definition 2.4, the trivial solution of nonlinear difference equation (1.1) is
Ψ-stable on N.

The following example illustrate above theorem.

Remark 4.2. Theorem 3.9 is the particular case of Theorem 4.1.

Example 4.3. Consider the nonlinear difference equation (1.1) with

A(n) =

[
n+2
n+1 0

0 2

]
, f(n, x(n)) =

[
5−n

(
n+2
n+1

)
sin(x1(n))

3(5−n)x2(n)

]
.

If

Ψ(n) =

[
1

n+1 0

0 3−n

]
, φ(n) = 1,∀ n ∈ N

then from Example 3.10, conditions (i) and (ii) of Theorem 4.1 are satisfied. Con-
sider

Ψ(n+ 1)f(n, x(n)) = 5−n
[

sin(x1(n))
n+1

3−nx2(n)

]
,

we have

‖Ψ(n+ 1)f(n, x(n))‖ ≤ 5−n‖Ψ(n)x(n)‖,

for all n ∈ N. If α(n) = 5−n, then (4.1) and (4.2)are satisfied. Therefore, all
conditions of Theorem 4.1 are satisfied. Thus, the nonlinear equation (1.1) is
Ψ-stable on N.
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From Lemma 2.7, the difference equation (2.1) with

AΨ =

[
1 0
0 2/3

]
and FΨ(n, z(n)) =

1

5n


sin((n+ 1)z1(n))

n+ 1

z2(n)


is stable on N.

Theorem 4.4. Suppose that :

(i) The fundamental matrix Y (n) of the equation (1.3) satisfies

|Ψ(n)Y (n)Y −1(k)Ψ−1(k)| ≤M,

for all n0 ≤ k ≤ n, where M is a positive constant.

(ii) The nonlinear function f satisfies the condition

‖Ψ(n+ 1)f(n, x(n))‖ ≤ α(n)‖Ψ(n)x(n)‖,

where α(n) is a nonnegative sequence on N such that N =
∑∞
k=0 α(n) <∞.

Then, the trivial solution of the nonlinear difference equation (1.1) is Ψ-uniformly
stable on N.

Proof. Let n0 ∈ N and x(n0) = x0 ∈ N. Then the solution of (1.1) with x(n0) = x0

is given by (4.3). Let ε > 0 and δ(ε) =
e−MN

2M
ε > 0 such that ‖Ψ(n0)x0‖ < δ.

Consider

‖Ψ(n)x(n)‖ ≤|Ψ(n)Y (n)Y −1(n0)Ψ−1(n0)|‖Ψ(n0)x0‖

+

n∑
k=n0+1

|Ψ(n)Y (n)Y −1(k)Ψ−1(k)|‖Ψ(k)f(k − 1, x(k − 1))‖

≤Mδ +M

n−1∑
k=n0

‖Ψ(k + 1)f(k, x(k))‖

≤Mδ +M

n−1∑
k=n0

α(k)‖Ψ(k)x(k)‖.

By Grownwall’s inequality

‖Ψ(n)x(n)‖ ≤Mδ +
n−1

Π
k=n0

(1 +Mα(n))

≤Mδe
M

n−1∑
k=n0

α(n)

< MδeMN ≤ ε

2
< ε.

From Definition 2.5, the trivial solution of nonlinear difference equation (1.1) is
Ψ-uniformly stable on N.
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Remark 4.5. Theorem 3.5 is the particular case of Theorem 4.4.

Example 4.6. Consider the nonlinear difference system (1.1) with

A(n) =

[
0 1

−n+3
n+1 0

]
and f(n, x(n)) =

 2−n
(
n+2
n+1

)
x1(n)

2−n
(
n+3
n+2

)
sin(x2(n))

 , for all n ∈ N.

The fundamental matrix of (1.3) is

Y (n) =

[
(n+ 1) cos nπ2 (n+ 1) sin nπ

2
−(n+ 2) sin nπ

2 (n+ 2) cos nπ2

]
.

If

Ψ(n) =

[ 1
n+1 0

0 1
n+2

]
for n ∈ N,

then from Example 3.2, we have

|Ψ(n)Y (n)Y −1(k)Ψ−1(k)| ≤ 2,

for n0 ≤ k ≤ n. Consider

Ψ(n+ 1)f(n, x(n)) = 2−n

[
x1

n+1
sin(x2(n))
n+2

]
,

it follows that, condition (ii) of Theorem 4.4 satisfied with α(n) = 2−n (nonnega-
tive sequence) and

N =

∞∑
k=0

α(k) =

∞∑
k=0

2−n = 2 <∞.

Therefore, from Theorem 4.4 the trivial solution of (1.1) is Ψ-uniformly stable on
N.

From Lemma 2.7, the difference equation (2.1) with

AΨ =

[
0 1
−1 0

]
and FΨ(n, z(n)) =

1

2n

 z1(n)

sin((n+ 2)z2(n))

n+ 2


is uniformly stable on N.
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s. I - a, Matematicã 4 (1990) 353-360.

[5] Y. Han, J. Hong, Existence of Ψ-bounded solutions for linear difference equa-
tions, Appl. Math. Lett. 20 (2007) 301-305.

[6] A. Diamandescu, Existence of Ψ-bounded solutions for linear difference equa-
tions on Z, Electron. J. Qual. Theory Differ. Equ. 2008 (26) (2008) 1-13.

[7] A. Diamandescu, Existence of Ψ-bounded solutions for nonhomogeneous lin-
ear difference equations, Appl. Math. E-Notes 10 (2010) 94-102.

[8] G. Suresh Kumar, B.V. Appa Rao, M.S.N. Murty, Ψ-Bounded solutions for
non-homogeneous matrix difference equations on Z, Journal of Advanced Re-
search in Applied Mathematics 3 (3) (2011) 21-31.

[9] G. Suresh Kumar, T. Srinivasa Rao, M.S.N. Murty, A note on Ψ-bounded
solutions for non-homogeneous matrix difference equations, Bull. Math. Anal.
Appl. 5 (1) (2013) 1-9.

(Received 26 September 2013)
(Accepted 4 March 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	-Stability for Linear Difference Equations
	-Stability for Nonlinear Difference Equations

