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Abstract : In this paper, using m-th order difference operator ∆(m) and a se-
quence {αn}∞n=0 of strictly positive real numbers, sequence spaces ∆(m)lα{fn} =
{x ∈ s : (∆(m)x)j ∈ lα{fn}} and ∆(m)lα{gn} = {x ∈ s : (∆(m)x)j ∈ lα{gn}} are
introduced, where x = {ξj}∞j=0 ∈ s and {fn}∞n=0, {gn}∞n=0 are sequence of Orlicz
functions. It is shown that these are separable Banach spaces and dense Fσ-set of
the first Baire category in s, the space of all real sequences with the Frèchet met-
ric. Some earlier results related to Baire category are obtained when the sequence
{αn}∞n=0 is chosen specifically.
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1 Introduction

The geometric properties of Banach space such as H-property, uniform Opial
property, rotundity, uniform rotundity etc. are recent interest of study in mod-
ular function spaces or modular sequence spaces by many mathematicians and
researchers. For example, geometric properties like uniform rotundity, uniform
Opial property, H-property were discussed by Kamińska [1], Manna and Srivas-
tava [2], Mongkolkeha and Kumam [3, 4], Cui and Hudzik [5] and many others.
Similarly, the Baire category results on modular sequence spaces have received
attention in some of the recent papers. In the year of 1980, S̆alát [6] shown that
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the sequence space lq is a set of the first Baire category in lr, where 1 ≤ q < r.

In 1973, Woo [7] introduced and studied the modular sequence spaces. S̆alát &
Ewert [8] further extended the result of S̆alát [6] to modular sequence spaces.
The theory of difference sequence spaces was first introduced and studied by Kiz-
maz [9]. The results of Kizmaz were generalized to m-th order difference sequence
spaces by Malkowsky & Parashar [10]. In the present paper, an attempt has been
made to introduce and study the modular difference sequence spaces ∆(m)lα{fn}
and ∆(m)lα{gn} defined by using m-th order difference operator and a sequence
{αn}∞n=0 of strictly positive real numbers.

2 Preliminaries

Let X be a real vector space. A functional % : X → [0,∞] is said to be a
convex modular if for arbitrary x, y ∈ X, the following conditions hold:
(i) %(x) = 0 if and only if x = 0,
(ii) %(−x) = %(x),
(iii) %(αx+ βy) ≤ α%(x) + β%(y) for x, y ∈ X,α, β ≥ 0, α+ β = 1.
The set

X% = {x ∈ X : %(λx) <∞, for some λ > 0}

is a linear subspace of a real vector space X and it is called modular space deter-
mined by %. The relation

‖x‖ = inf
{
λ > 0 : %(xλ ) ≤ 1

}
defines a norm on X% [11, 12].

A function f : [0,∞)→ [0,∞) is said to be an Orlicz function if it is continuous,
non decreasing, convex and f(0) = 0 and lim

x→∞
f(x) = ∞. If f(x) = 0 for some

x > 0, then f is said to be a degenerate Orlicz function. Orlicz functions, which
are not degenerate called non-degenerate.

Remark 2.1. An Orlicz function can be represented as f(x) =
∫ x

0
p(t)dt, where

p(t) is called the kernel of f having the properties p(0) = 0, p(t) → ∞ as t → ∞
& is right differentiable for t ≥ 0.

A sequence space λ with a linear topology is called a K-space if each of the
projection maps Pi : λ→ K, given by Pi(x) = xi, i ≥ 1 is continuous where K = R
or C [13].
Let w be the class of all real sequences. For a sequence {fn}∞n=0 of Orlicz functions,
the modular sequence space is defined as below:

l{fn} =
{
x ∈ w :

∞∑
n=0

fn

( |xn|
λ

)
<∞, for some λ > 0

}
.

This is a Banach space with respect to the norm ‖.‖l{fn} defined as follows:
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‖x‖l{fn} = inf
{
λ > 0 :

∞∑
n=0

fn

( |xn|
λ

)
≤ 1
}

.

These spaces were introduced and studied by Woo [7].
For an arbitrary positive integer m, the operators ∆(m),Σ(m) : s→ s are continu-
ous, linear and defined by

(∆(1)x)k = ∆(1)ξk = ξk − ξk−1, (Σ
(1)x)k =

k∑
j=0

ξj , k = 0, 1, 2, . . .

∆(m) = ∆(1) ◦∆(m−1),Σ(m) = Σ(1) ◦ Σ(m−1).
Also Σ(m) ◦∆(m) = ∆(m) ◦ Σ(m) = id, the identity on s.

In general, them-th order difference sequence space (∆(m)x)k & its inverse (Σ(m)x)k
is defined by the finite sum given below:

(∆(m)x)k =

m∑
i=0

(−1)i
(
m

i

)
ξk−i & (Σ(m)x)k =

k∑
i=0

(
m+ k − i− 1

k − i

)
ξi

respectively, with all negative indices are assumed to be zero [10].
Malkowsky and Parashar [10] defined and studied the sequence spaces

∆(m)(X) = {x = (ξk) : (∆(m)x)k ∈ X} for sequence spaces X = l∞, c0, c.

Let s be the linear space of all real sequences with the Frèchet metric d defined by

d(x, y) =

∞∑
j=0

1

2j
|ξj − ηj |

1 + |ξj − ηj |

where x = {ξj}∞j=0 ∈ s and y = {ηj}∞j=0 ∈ s.

Definition 2.2. [14] A sequence {fn}∞n=0 of Orlicz function is said to satisfy
uniform ∆2-condition if there exists K > 0 and an integer n0 such that, for all

n ≥ n0 we have fn(2t)
fn(t) ≤ K for each t ∈ (0, 1

2 ].

Lemma 2.3. [7, Corollary 3.3.] If {fn}∞n=0 satisfies uniform ∆2-condition, then
∞∑
n=0

fn(|xn|) <∞ implies lim
n→∞

xn = 0.

3 Modular Difference Sequence Spaces ∆(m)lα{fn}
and ∆(m)lα{gn}

Let {fn}∞n=0 be a sequence of Orlicz functions and {αn}∞n=0 be a sequence of
strictly positive real numbers. The following sequence spaces lα{fn} and lα{gn}
are defined as



760 Thai J. Math. 16 (2018)/ P. D. Srivastava and A. Manna

lα{fn} =
{
x = {ξk}∞k=0 ∈ s :

∞∑
k=0

fk

( |ξk|
λαk

)
<∞, for some λ > 0

}
and

lα{gn} =
{
x = {ξk}∞k=0 ∈ s :

∞∑
k=0

gk

(αk|ξk|
λ

)
<∞, for some λ > 0

}
, respectively.

Construct a functional %α,∆(m) defined on s as %α,∆(m)(x) =

∞∑
k=0

fk

( |∆(m)ξk|
αk

)
.

Then it is easy to verify that %α,∆(m) satisfies all the properties of a convex modular.

Now for each x = {ξk}∞k=0 ∈ s the sequence spaces ∆(m)lα{fn} & ∆(m)hα{fn} are
defined as follows:

∆(m)lα{fn} = {x ∈ s : (∆(m)x)k ∈ lα{fn}} or equivalently

∆(m)lα{fn} = {x ∈ s : %α,∆(m)(xλ ) <∞ for some λ > 0}

and

∆(m)hα{fn} = {x ∈ s : %α,∆(m)(xλ ) <∞ for all λ > 0}.

Then ∆(m)lα{fn} is a modular space determined by %α,∆(m) and it will be called as

modular difference sequence space. For x ∈ ∆(m)lα{fn}, the corresponding norm
is defined as

‖x‖α,∆(m) = inf
{
λ > 0 : %α,∆(m)(xλ ) =

∞∑
k=0

fk

(
|∆(m)ξk|
λαk

)
≤ 1
}

.

Note: Since (∆(m)x)k = ∆(m)ξk, so the norm ‖x‖α,∆(m) can also be denoted by

‖(∆(m)x)k‖lα{fn}.
In a similar way, the modular difference sequence spaces ∆(m)lα{gn} are defined
as

∆(m)lα{gn} = {x ∈ s : (∆(m)x)k ∈ lα{gn}}

equipped with the norm ‖x‖α
∆(m) = ‖(∆(m)x)k‖lα{gn}.

4 Main Results

In the following theorem, a topological structure of the sequence space
∆(m)lα{fn} has been given.

Theorem 4.1. Let {fn}∞n=0 be a sequence of Orlicz functions. Then the followings
hold:
(a) ∆(m)lα{fn} is a Banach K-space endowed with the norm ‖ · ‖α,∆(m) .

(b) ∆(m)hα{fn} is a closed subspace of ∆(m)lα{fn}.
(c) If {fn}∞n=0 satisfies uniform ∆2-condition, then ∆(m)lα{fn} = ∆(m)hα{fn}.
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Proof. (a) For x ∈ ∆(m)lα{fn}, the following norm is defined in Section 3:

‖x‖α,∆(m) = inf
{
λ > 0 : %α,∆(m)(xλ ) ≤ 1

}
.

To show the completeness of the space, let x(q) = {ξ(q)
k }∞k=0, q = 0, 1, 2, . . . be a

Cauchy sequence in ∆(m)lα{fn} and ε > 0. Then there exists an N > 0 such that
for every ε > 0 there is an λε with λε < ε, one gets

%α,∆(m)(x
(q)−x(r)

λε
) ≤ 1 for q, r ≥ N .

So, by the definition of %α,∆(m) , one obtains

∞∑
k=0

fk

(
|∆(m)ξ

(q)
k −∆(m)ξ

(r)
k |

λεαk

)
≤ 1 for q, r ≥ N ,

which implies that

fk

(
|∆(m)ξ

(q)
k −∆(m)ξ

(r)
k |

λεαk

)
≤ 1 for each k = 0, 1, 2, . . . and for q, r ≥ N .

Let pk’s be the corresponding kernel of the Orlicz functions fk’s. Now one can
choose a constant s0 > 0 and γ > 1 such that γ s02 pk( s02 ) ≥ 1 (easily follows

from f( s02 ) =
∫ s0

2

0
p(t)dt and s0 > 0) for each k ∈ N0, the set of natural numbers

including 0. The notation N0 will be used wherever it will appear in the text.
Therefore by using integral representation of Orlicz function, above inequality
reduces to

|∆(m)ξ
(q)
k −∆(m)ξ

(r)
k | ≤ λεαkγs0 for each k ∈ N0 and for q, r ≥ N .

Otherwise, one can find a k with
|∆(m)ξ

(q)
k −∆(m)ξ

(r)
k |

λεαk
> γs0, so that the following

holds:

fk

(
|∆(m)ξ

(q)
k −∆(m)ξ

(r)
k |

λεαk

)
≥
∫ |∆(m)ξ

(q)
k
−∆(m)ξ

(r)
k
|

λεαk
γs0
2

pk(t)dt > γs0
2 pk(γs02 ) > γs0

2 pk( s02 )

and a contradiction is attained. Therefore for each k ∈ N0, {∆(m)ξ
(r)
k }∞r=0 forms

a Cauchy sequence of real numbers and hence converges.

Let lim
r→∞

∆(m)ξ
(r)
k = ∆(m)ξk. Since fk’s & the operator ∆(m) are continuous, so

from the above inequations, one obtains

∞∑
k=0

fk

(
|∆(m)ξ

(q)
k −∆(m)ξk|
λεαk

)
≤ 1 for q ≥ N as r →∞ (keeping m fixed)



762 Thai J. Math. 16 (2018)/ P. D. Srivastava and A. Manna

which implies ||x(q)− x||α,∆(m) ≤ λε < ε for q ≥ N . To show that x ∈ ∆(m)lα{fn}
for some λ = 2λ0 > 0, consider the following expression:

i∑
k=0

fk
( |∆(m)ξk|

2λ0αk

)
=

i∑
k=0

fk

( |∆(m){(ξk − ξ(q)
k ) + ξ

(q)
k }|

2λ0αk

)
≤ 1

2

i∑
k=0

fk

( |∆(m)(ξk − ξ(q)
k )|

λ0αk

)
+

1

2

i∑
k=0

fk

( |∆(m)ξ
(q)
k |

λ0αk

)
. (4.1)

Using the continuity of the operator ∆(m) one may choose a δ > 0 with |ξ(q)
k − ξk|

< δ such that for each k = 0, 1, 2, . . . , i and for a given ε > 0 the following holds:

|∆(m)ξ
(q)
k −∆(m)ξk| <

εαkλ0f
−1
k (1)

2(k+1) .

Applying the nondecreasing property of fk’s, one gets

i∑
k=0

fk

( |∆(m)ξ
(q)
k −∆(m)ξk|
λ0αk

)
< ε

i∑
k=0

1

2(k+1)
. (4.2)

Since x(q) ∈ ∆(m)lα{fn} choosing i → ∞ in Eqn. (4.1) & Eqn. (4.2), it follows

that

∞∑
k=0

fk
( |∆(m)ξk|

2λ0αk

)
<∞, i.e., x ∈ ∆(m)lα{fn}. Hence ∆(m)lα{fn} is a Banach

space.
Now the space ∆(m)lα{fn} is a K space will be presented next. Choose x(q) → x
in the norm ‖.‖α,∆(m) for large q. Then by definition of ‖.‖α,∆(m) , for every ε > 0
there exists a natural number q0 such that

‖x(q) − x‖α,∆(m) = inf
{
λ > 0 :

∞∑
k=0

fk

( |∆(m)(ξ
(q)
k − ξk)|
λαk

)
≤ 1
}
< ε for q ≥ q0,

i.e, x(q)−x→ 0 as q →∞ in the norm ‖.‖α,∆(m) , i.e, ε→ 0 as q →∞. Using the
similar techniques used as above, there exists a λε with λε < ε such that

|∆(m)(ξ
(q)
k − ξk)| ≤ λεαkγs0 for q ≥ q0 and for each k ∈ N0,

which gives |∆(m)(ξ
(q)
k − ξk)| → 0 as q →∞, which in turn implies that (ξ

(q)
k − ξk)

∈ ∆(m)c0 for each k ∈ N0.
It is known that ∆(m)c0 is isometrically isomorphic to c0, which can be viewed by
the mapping T : ∆(m)c0 → c0 defined by Tx = ∆(m)x with the norm defined by
‖x‖∆(m)c0 = sup

k
|∆(m)ξk|, where x = {ξk}∞k=0. Hence ∆(m)lα{fn} is a K-space.

(b) It is clear that ∆(m)hα{fn} is a subspace of ∆(m)lα{fn}. Let for each i ∈ N0,

x(i) = {ξ(i)
k }∞k=0 ∈ ∆(m)hα{fn} be a sequence such that lim

i→∞
||x(i)− x||α,∆(m) = 0,
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where x ∈ ∆(m)lα{fn}. Let λ > 0 be arbitrary. Corresponding to this λ, one can
choose a positive integer i0 such that ‖x(i0) − x‖α,∆(m) < λ

2 . Now it follows that

∞∑
k=0

fk

( |∆(m)ξk|
λαk

)
=

∞∑
k=0

fk

( |∆(m)(ξ
(i0)
k + ξk − ξ(i0)

k )|
λαk

)
≤ 1

2

∞∑
k=0

fk

(2|∆(m)ξ
(i0)
k |

λαk

)
+

1

2

∞∑
k=0

fk

( |∆(m)(ξ
(i0)
k − ξk)|

αk‖x(i0) − x‖α,∆(m)

)
< ∞.

Thus x ∈ ∆(m)hα{fn}.

(c) Let x ∈ ∆(m)lα{fn} be a sequence. Then there exists an r > 0 such that
%α,∆(m)(xr ) is finite. For an arbitrary λ such that λ ≥ r > 0, one gets %α,∆(m)(xλ ) ≤
%α,∆(m)(xr ), which is finite. If λ < r, i.e., when r

λ > 1 then one can find an integer

l ≥ 1 such that r ≤ 2lλ. Now by Lemma 2.3, it follows that lim
k→∞

∆(m)ξk
rαk

= 0.

Hence there exist natural numbers k1, k2 and a constant K > 0 such that

|∆(m)ξk|
rαk

≤ 1
2 for all k ≥ k1

and fk(2t) ≤ Kfk(t) for all k ≥ k2, t ∈ (0, 1
2 ].

Let k0 = max{k1, k2}. Then for k ≥ k0, one gets

∞∑
k=0

fk

( |∆(m)ξk|
λαk

)
=

k0−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+

∞∑
k=k0

fk

( r
λ

|∆(m)ξk|
rαk

)

≤
k0−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+

∞∑
k=k0

fk

(
2l
|∆(m)ξk|
rαk

)

≤
k0−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+Kl

∞∑
k=k0

fk

( |∆(m)ξk|
rαk

)
< ∞

that is, %α,∆(m)(xλ ) <∞ and hence x ∈ ∆(m)hα{fn}. This completes the proof of
the theorem.

Theorem 4.2. The modular difference sequence space ∆(m)lα{gn} is a BK-space
equipped with the norm ‖ · ‖α

∆(m) defined by

‖x‖α
∆(m) = inf

{
λ > 0 :

∞∑
k=0

gk

(
αk|∆(m)ξk|

λ

)
≤ 1
}

.

Proof. The proof runs on the parallel lines of Theorem 4.1 and hence omitted.
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Proposition 4.3. Let {fk}∞k=0 be a sequence of non degenerate Orlicz functions.

(i) If α = {αk}∞k=0 ∈ l∞ and

∞∑
k=0

fk
( L

λαk

)
<∞, L = sup

k
|∆(m)ξk| for some λ > 0,

then ∆(m)lα{fn} = ∆(m)l∞.
(ii) If α ∈ lp, p ≥ 1 then ∆(m)lα{fn} ⊂ ∆(m)lp. Similarly, if 1

α ∈ lp then

∆(m)lα{fn} ⊂ ∆(m)lp.

Proof. (i) Let x ∈ ∆(m)lα{fn} be a sequence. Then by the definition of norm, it
follows that

fk

(
|∆(m)ξk|

αk‖x‖α,∆(m)

)
≤ 1 for each k ∈ N0.

It is known that for each k ∈ N0, there is a constant s0 > 0 and γ > 1 such that
γ s02 pk( s02 ) ≥ 1 holds. Using it and the integral representation of Orlicz function,
one gets

|∆(m)ξk| ≤ αkγs0‖x‖α,∆(m) .

Since α ∈ l∞, so the above implies that (∆(m)ξk) ∈ l∞ which gives {ξk}∞k=0 ∈
∆(m)l∞.
To establish the converse inclusion, suppose that x ∈ ∆(m)l∞. Then there exists
a constant L > 0 such that |∆(m)ξk| ≤ L. The nondecreasing property of fk’s
implies that

∞∑
k=0

fk

( |∆(m)ξk|
λαk

)
≤
∞∑
k=0

fk

( L

λαk

)
<∞ for some λ > 0,

which gives x ∈ ∆(m)lα{fn}, which in turn implies that ∆(m)lα{fn} = ∆(m)l∞.

(ii) Using the similar characteristics of Orlicz functions one can easily obtains the
inclusions. Therefore it is omitted.

Remark 4.4. The inclusions in (ii) are strict. Indeed, for the first inclusion,
choose α = {αk}∞k=0 =

{
1

(k+1)3

}∞
k=0

and x = {ξk}∞k=0 =
{

Σ(m) 1
(k+1)2

}∞
k=0

, then

x ∈ ∆(m)lp but x /∈ ∆(m)lα{fn}. For the second inclusion, choose α = {αk}∞k=0 ={
(k + 1)3

}∞
k=0

and x is same as above then it follows that x ∈ ∆(m)lp but x /∈
∆(m)lα{fn}.

In the following, the sequence of vectors whose (n+ 1)-th coordinate is 1 and
others are zero will be denoted by {en}∞n=0.

Theorem 4.5. (Schauder Basis) Let {fn}∞n=0 be a sequence of Orlicz functions
satisfying the uniform ∆2-condition. Then
(a) ∆(m)lα{fn} has Schauder basis {Σ(m)ek}∞k=0 and for each x = {ξk}∞k=0 ∈

∆(m)lα{fn}, the expression for x =

∞∑
k=0

(∆(m)x)k(Σ(m)ek) is unique,

(b) ∆(m)lα{fn} is separable.
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Proof. (a) It is evident that for each k ∈ N0 one gets ek ∈ lα{fn} which implies
that {Σ(m)ek}∞k=0 is a sequence of elements of ∆(m)lα{fn}. The authors claim that
{Σ(m)ek}∞k=0 is a Schauder basis of ∆(m)lα{fn}. To prove our claim, choosing x ∈

∆(m)lα{fn} and putting x[j] =

j∑
k=0

(∆(m)x)k(Σ(m)ek) =

j∑
k=0

Σ(m)((∆(m)x)kek).

Since the sequence {fn}∞n=0 of Orlicz functions satisfies the uniform ∆2-condition,

so by Theorem 4.1(c), one obtains

∞∑
k=0

fk

( |∆(m)ξk|
λαk

)
< ∞ for every λ > 0.

Therefore for each ε ∈ (0, 1) there exists a j0 ∈ N such that∑
k≥j0

fk

( |∆(m)ξk|
εαk

)
≤ 1 holds.

Now for j ≥ j0, the following expression is obtained:

‖x− x[j]‖α,∆(m) = ‖∆(m)x−∆(m)x[j]‖lα{fn}

= inf
{
λ > 0 :

∞∑
k=j+1

fk

(
|∆(m)ξk|
λαk

)
≤ 1
}

≤ inf
{
λ > 0 :

∞∑
k=j0

fk

(
|∆(m)ξk|
λαk

)
≤ 1
}
≤ ε,

which gives x =

∞∑
k=0

(∆(m)x)k(Σ(m)ek) =

∞∑
k=0

Σ(m)((∆(m)x)kek).

To show uniqueness of x, if possible let x ∈ ∆(m)lα{fn} has another representation

as x =

∞∑
k=0

σk(Σ(m)ek) =

∞∑
k=0

Σ(m)(σkek). Then ∆(m)x =

∞∑
k=0

σkek. On the other

hand, ∆(m)x =

∞∑
k=0

(∆(m)x)kek which gives σk = (∆(m)x)k and therefore the

expression for x is unique.

(b) Let us define the set S =
{ k0∑
k=0

tk(Σ(m)ek) : t0, t1, . . . , tk0
∈ Q

}
. It is required

to show that S is a countable dense subset of ∆(m)lα{fn}. Clearly S is countable
as the coefficients tk ∈ Q for each k = 0, 1, . . . , k0.
Let x = {ξk}∞k=0 ∈ ∆(m)lα{fn}. So for every ε > 0, %α,∆(m)(xε ) < ∞, i.e.,
∞∑
k=0

fk

( |∆(m)ξk|
εαk

)
< ∞, which implies that there exists a k0 ∈ N such that the

following holds:

∞∑
k=k0+1

fk

( |∆(m)ξk|
εαk

)
<

1

2
. (4.3)
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Since the operator ∆(m) is continuous, ξk’s are real numbers, tk’s are rational
numbers for each k = 0, 1, . . . , k0 and Q is a dense subset of R, so one gets

|∆(m)ξk −∆(m)tk| <
εαkf

−1
k (1)

2(k0+1) for k = 0, 1, 2, . . . , k0.

Using the nondecreasing property of fk’s, one obtains

k0∑
k=0

fk

( |∆(m)ξk −∆(m)tk|
εαk

)
<

1

2
.

Note that the element u = ∆(m)t0(Σ(m)e0) + ∆(m)t1(Σ(m)e1) + ∆(m)t2(Σ(m)e2) +
. . . . . .+ ∆(m)tk0(Σ(m)ek0) ∈ S.
Now using Eqn. (4.3), one gets

%α,∆(m)(x−uε ) =

k0∑
k=0

fk

( |∆(m)ξk −∆(m)tk|
εαk

)
+

∞∑
k=k0+1

fk

( |∆(m)ξk|
εαk

)
< 1.

Therefore ||x− u||α,∆(m) < ε, which says that the space ∆(m)lα{fn} is separable.

Corollary 4.6. Let {gn}∞n=0 be a sequence of Orlicz functions satisfying the uni-
form ∆2-condition. Then the space ∆(m)lα{gn} is separable and has Schauder
basis {Σ(m)ek}∞k=0. Also for each x = {ξk}∞k=0 ∈ ∆(m)lα{gn} one gets an unique

expression for x =

∞∑
k=0

(∆(m)x)k(Σ(m)ek).

Proof. Applying the similar approach presented in Theorem 4.5, one can achieve
this result. So the proof is omitted.

5 Category Results on ∆(m)lα{fn} & ∆(m)lα{gn}
In this section, it is contemplated to establish certain results related to Baire

category for the sequence spaces ∆(m)lα{fn} and ∆(m)lα{gn}. Firstly, the follow-
ing theorem will be presented:

Theorem 5.1. For a sequence {fn}∞n=0 of non degenerate Orlicz functions, the
sequence space ∆(m)lα{fn} is a dense Fσ-set of the first Baire category in s.

Proof. In Section 4, it is proved that ∆(m)lα{fn} is a Banach space equipped with
the norm ‖.‖α,∆(m) defined below:

‖x‖α,∆(m) = inf
{
λ > 0 :

∞∑
k=0

fk

(
|∆(m)ξk|
λαk

)
≤ 1
}

.

Let us consider the set At as

At =
{
x = {ξk}∞k=0 ∈ ∆(m)lα{fn} : ‖x‖α,∆(m) ≤ t

}
, t = 1, 2, 3, . . ..
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Since each element of ∆(m)lα{fn} is in some At, so clearly ∆(m)lα{fn} =

∞⋃
t=1

At.

Now, it will be shown that for each t ∈ N, At’s are nowhere dense sets in s, the
space of all real sequences with the Frèchet metric d. For this, At’s for each t ∈ N
are closed sets in s will be proved first. Let a = {a(i)}∞i=0 ∈ Āt, the closure of At

and ak = {a(i)
k }∞i=0 ∈ At with ak → a as k →∞ in s. Then, one gets

d(ak, a)→ 0 as k →∞ which implies |a(i)
k − a

(i)| → 0 as k →∞, for each i ∈ N0.

Denote lim
k→∞

a
(i)
k = a(i) for each i ∈ N0. Since ak ∈ At, i.e., {a(i)

k }∞i=0 ∈ ∆(m)lα{fn},
so for each k ∈ N0, one obtains

∞∑
i=0

fi

( |∆(m)a
(i)
k |

λαi

)
<∞ for some λ > 0 and ‖{a(i)

k }∞i=0‖α,∆(m) ≤ t, t = 1, 2, . . ..

Let ‖{a(i)
k }∞i=0‖α,∆(m) = λ0 (say), then for each k ∈ N0, the followings hold:

∞∑
i=0

fi

( |∆(m)a
(i)
k |

λ0αi

)
≤ 1 and λ0 ≤ t.

The continuity of fi’s and ∆(m)’s implies that

∞∑
i=0

fi

( |∆(m)a(i)|
λαi

)
<∞, for some λ > 0 and

∞∑
i=0

fi

( |∆(m)a(i)|
λ0αi

)
≤ 1,

because a
(i)
k → a(i) as k →∞, i.e., a = {a(i)}∞i=0 ∈ ∆(m)lα{fn} and

‖{a(i)}∞i=0‖α,∆(m) ≤ λ0 ≤ t.

Hence a ∈ At and so At’s are closed sets in s. Therefore ∆(m)lα{fn} is an Fσ-set
in s.
Now At is a nowhere dense set in s will be proved. A well known result is that
a closed set in a metric space is nowhere dense if and only if its complement is
everywhere dense (see [15, p. 75]). Denote the complement of At by Bt, where Bt
has the following expression

Bt =
{
x = {ξk}∞k=0 ∈ ∆(m)lα{fn} : ‖x‖α,∆(m) > t

}
, t = 1, 2, 3, . . ..

Indeed, the set Bt is everywhere dense in s will be proved now.
Firstly, Bt is nonempty as for fixed t as the element v = {ζk}∞k=0 is in Bt, where

ζk = Σ(m)
[
λαkf

−1
k {

6(t+1)
π2λ(k+1)2 }

]
for some λ > 0. To show that Bt = s, first it is

to be noted that Bt 6= φ and hence one can choose a sequence y = {ηk}∞k=0 ∈ Bt.
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For a given ε > 0 there exists p ∈ N such that

∞∑
k=p

2−k < ε.

Let us construct the sequence z = {τk}∞k=0 as

τk = ξk 0 ≤ k ≤ p− 1

= τp k = p

= τp+r, k = p+ r, r = 1, 2, 3, . . . ,

where τp will be determined from the relation
∆(m)τp
λαp

= f−1
p

{ p∑
k=0

fk

( |∆(m)ηk|
λαk

)}
and τp+r has the following expression

τp+r = ηp+r −
(
m
1

)
(ηp+r−1 − τp+r−1) +

(
m
2

)
(ηp+r−2 − τp+r−2) + · · ·+

(−1)m(ηp+r−m − τp+r−m).

Then one gets

∞∑
k=0

fk

( |∆(m)τk|
λαk

)
=

p−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+ fp

(
f−1
p

{ p∑
k=0

fk

( |∆(m)ηk|
λαk

)})
+

∞∑
k=p+1

fk

( |∆(m)ηk|
λαk

)

=

p−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+

∞∑
k=0

fk

( |∆(m)ηk|
λαk

)
<∞

and

‖z‖α,∆(m) = inf
{
λ > 0 :

∞∑
k=0

fk

(
|∆(m)τk|
λαk

)
≤ 1
}

= inf
{
λ > 0 :

p−1∑
k=0

fk

( |∆(m)ξk|
λαk

)
+

∞∑
k=0

fk

( |∆(m)ηk|
λαk

)
≤ 1
}

≥ inf
{
λ > 0 :

∞∑
k=0

fk

( |∆(m)ηk|
λαk

)
≤ 1
}

= ‖y‖α,∆(m) > t.

So, the sequence z = {τk}∞k=0 ∈ Bt. Therefore for arbitrary x ∈ s, one obtains

d(x, z) =

∞∑
k=0

1

2k
|ξk − τk|

1 + |ξk − τk|
≤
∞∑
k=p

2−k < ε.

Hence for every ε-ball in s contains an element from Bt. Therefore Bt is everywhere
dense in s and hence it’s complement At is nowhere dense in s. So, ∆(m)lα{fn} is
a set of the first Baire category in s.
It remains to be showed that ∆(m)lα{fn} is dense in s. To show this, suppose that
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x = {ξk}∞k=0 ∈ s is arbitrary. For a given ε > 0, there exists a p0 ∈ N such that
∞∑

k=p0+1

1

2k
< ε. Define the sequence w = {wk}∞k=0 as wk = ξk, for k = 0, 1, 2, . . . , p0

and wp0+r =
(
m
1

)
wp0+r−1 −

(
m
2

)
wp0+r−2 + · · ·+ (−1)m+1wp0+r−m, r=1, 2, 3, . . . .

Then it is easy to verify that w ∈ ∆(m)lα{fn} and

d(x,w) =

∞∑
k=p0+1

1

2k
|ξk − wk|

1 + |ξk − wk|
≤

∞∑
k=p0+1

1

2k
< ε.

Therefore ∆(m)lα{fn} is a dense set in s. Combining all the results discussed
above, it is concluded that ∆(m)lα{fn} is a dense Fσ-set of the first Baire category
in s.

Corollary 5.2. (i) The sequence space ∆(m)lα{gn} is a dense Fσ-set of the first
Baire category in s.
(ii) If {fn}∞n=0 satisfies uniform ∆2-condition, then by Theorem 4.1(c), ∆(m)hα{fn}
is a dense Fσ-set of the first Baire category in s.
(iii) If α = {αn}∞n=0 = {1, 1, . . . , 1, . . .} and fn(x) = xp, 1 ≤ p < ∞ for each n,
then one gets that the sequence space lp(∆

(m)) [16], which has this property.
(iv) The union ∆(m)lα{fn} ∪ ∆(m)lα{gn} is a dense Fσ-set of the first Baire
category in s. Also, since the symmetric difference ∆(m)lα{fn} 	 ∆(m)lα{gn} ⊂
∆(m)lα{fn} ∪∆(m)lα{gn}, so ∆(m)lα{fn}	∆(m)lα{gn} is a set of the first Baire
category in s.

Remark 5.3. Using the Cauchy criterion of convergence of a series of real num-
bers, for some λ = λ0 one can write

∆(m)lα{fn} =

∞⋂
p=1

⋃
N≥1

⋂
N≤i<j

{
x ∈ s :

∣∣∣ j∑
k=i

fk

( |∆(m)ξk|
λ0αk

)∣∣∣ ≤ 1

p

}
.

Then it is easy to show that the set in second bracket is a closed set in s and hence
∆(m)lα{fn} is an Fσδ-set (countable intersection of Fσ- sets) in s.

In the next theorem, intersection of two sequence spaces ∆(m)lα{fn} and
∆(m)lα{gn} in ∆(m)lα{fn} is characterized in respect of Baire category. The fol-
lowing additional assumptions on sequences {fn}∞n=0 and {gn}∞n=0 are considered
to establish the theorem:
The sequence of non degenerate Orlicz functions {fn}∞n=0 and {gn}∞n=0 are said to
satisfy condition (T ), if the following two conditions hold:
(i) both functions satisfy the uniform ∆2-condition and

(ii)

∞∑
k=0

gk
(
αkt
)

= ∞ &

∞∑
k=0

fk

( t

αk

)
= ∞ for some t > 0, where {αn}∞n=0 is a

sequence of strictly positive real numbers.
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Theorem 5.4. Let {fn}∞n=0 and {gn}∞n=0 be two sequences of non degenerate
Orlicz functions satisfying the condition (T ). If ∆(m)lα{fn}

⋂
∆(m)lα{gn} 6=

∆(m)lα{fn}, then the set ∆(m)lα{fn}
⋂

∆(m)lα{gn} is a dense Fσ-set of the first
Baire category in ∆(m)lα{fn}.

Proof. Since {fn}∞n=0 satisfies uniform ∆2-condition, so for every ε ∈ (0, 1) there
exists j ∈ N such that

∞∑
k=j+1

fk

( |∆(m)ξk|
εαk

)
≤ 1.

Note that the element u[j] =

j∑
k=0

(∆(m)x)k(Σ(m)ek) ∈ ∆(m)lα{fn}
⋂

∆(m)lα{gn}

as the sequence ∆(m)u[j] ∈ lα{fn}
⋂
lα{gn}.

Let x ∈ ∆(m)lα{fn} be an arbitrary sequence. Then by the definition of norm on
the space ∆(m)lα{fn}, one gets

%α,∆(m)(x−u
[j]

ε )=
∑
k≥j+1

fk

( |∆(m)ξk|
εαk

)
≤ 1,

which implies that ||x− u[j]||α,∆(m) ≤ ε.
Therefore the set ∆(m)lα{fn}

⋂
∆(m)lα{gn} is dense in ∆(m)lα{fn}.

An equivalent expression for the set ∆(m)lα{fn}
⋂

∆(m)lα{gn} is given below:

∆(m)lα{fn}
⋂

∆(m)lα{gn}

=
{
x ∈ ∆(m)lα{fn} :

∞∑
k=0

gk

(
αk|∆(m)ξk|

)
<∞

}

=

∞⋃
i=1

∞⋂
j=0

{
x ∈ ∆(m)lα{fn} :

j∑
k=0

gk

(
αk|∆(m)ξk|

)
≤ i
}

=
∞⋃
i=1

M(i),

where M(i) =

∞⋂
j=0

{
x ∈ ∆(m)lα{fn} :

j∑
k=0

gk

(
αk|∆(m)ξk|

)
≤ i
}

.

Our aim is to establish that M(i) is a nowhere dense set in ∆(m)lα{fn}. To estab-
lish this, first M(i) is a closed set in ∆(m)lα{fn} will be proved and later applying
‘a closed set in a metric space is nowhere dense if and only if its complement is
everywhere dense’ (see [15, p. 75]) the result will be concluded.

Let x(l) = {ξ(l)
k }∞k=0 ∈ M(i) be a sequence with x(l) → x = {ξk}∞k=0 as l → ∞,

where x ∈ M(i). Since ∆(m)lα{fn} is a K-space (see Theorem 4.1(a)), so the
convergence in this space is equivalent to the coordinate-wise convergence.
Using the continuity of gn for each n ∈ N0 and operator ∆(m), one obtains
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j∑
k=0

gk

(
αk|∆(m)ξk|

)
=

j∑
k=0

gk

(
αk|∆(m) lim

l→∞
ξ

(l)
k |
)

= lim
l→∞

j∑
k=0

gk

(
αk|∆(m)ξ

(l)
k |
)
≤ i,

whence x ∈ M(i). Therefore M(i) = M(i), i.e., M(i) is closed and hence
∆(m)lα{fn}

⋂
∆(m)lα{gn} is an Fσ set.

Now it will be shown that the set N(i) = ∆(m)lα{fn} \ M(i) = ∆(m)lα{fn} \
M(i) (say and \ denotes the difference between two sets) is everywhere dense in
∆(m)lα{fn}, where N(i) is defined as follows

N(i) =

∞⋃
j=0

{
x ∈ ∆(m)lα{fn} :

j∑
k=0

gk

(
αk|∆(m)ξk|

)
> i
}

.

By assumption, ∆(m)lα{fn}
⋂

∆(m)lα{gn} 6= ∆(m)lα{fn}. Hence there exists
some x ∈ ∆(m)lα{fn} for which x /∈ ∆(m)lα{gn}. Therefore by definition

∞∑
k=0

gk

(
αk|∆(m)ξk|

)
is diverges,

which in turn gives N(i) 6= ∅, for each i ∈ N.
Let y = {ηk}∞k=0 ∈ N(i) be a sequence. Then there exists p0(< j) ∈ N, one gets

lim
j→∞

j∑
k=0

gk

(
αk|∆(m)ηk|

)
=∞ and

∞∑
k=p0+1

fk

(2|∆(m)ηk|
εαk

)
≤ 1.

Further since x = {ξk}∞k=0 ∈ ∆(m)lα{fn}, so for every ε > 0 there exists p0 ∈ N,
one obtains

∞∑
k=p0+1

fk

(2|∆(m)ξk|
εαk

)
≤ 1.

Now the following sequence u = {uk}∞k=0 is constructed:

uk = ξk, k = 0, 1, 2, . . . , p0

= up0+r, k = p0 + r, r = 1, 2, 3, . . . ,

where

up0+r = ηp0+r −
(
m
1

)
(ηp0+r−1 − up0+r−1) +

(
m
2

)
(ηp0+r−2 − up0+r−2) + · · ·+

(−1)m(ηp0+r−m − up0+r−m).

Then for j > p0, one gets

j∑
k=0

gk

(
αk|∆(m)uk|

)
=

p0∑
k=0

gk

(
αk|∆(m)ξk|

)
+

j∑
k=p0+1

gk

(
αk|∆(m)ηk|

)
> i.
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That is the sequence u = {uk}∞k=0 ∈ N(i) and

%α,∆(m)

(x− u
ε

)
=

∞∑
k=0

fk

( |∆(m)(ξk − uk)|
εαk

)
=

∞∑
k=p0+1

fk

( |∆(m)ξk −∆(m)ηk|
εαk

)
≤ 1

2

∞∑
k=p0+1

fk

(2|∆(m)ξk|
εαk

)
+

1

2

∞∑
k=p0+1

fk

(2|∆(m)ηk|
εαk

)
≤ 1,

which gives ‖x− u‖α,∆(m) ≤ ε. Thus N(i) is everywhere dense in ∆(m)lα{fn} for

each i = 1, 2, . . . and hence its complement M(i) is nowhere dense in ∆(m)lα{fn}.
Therefore ∆(m)lα{fn}

⋂
∆(m)lα{gn} is a dense Fσ-set of the first Baire category

in ∆(m)lα{fn}.

Let {fn}∞n=0 and {gn}∞n=0 be two sequences of non degenerate Orlicz functions
satisfying the condition (T ). Then from Theorem 5.4, the following results hold:

Corollary 5.5. (i) If ∆(m)lα{fn}
⋂

∆(m)lα{gn} 6= ∆(m)lα{gn}, then the set
∆(m)lα{fn}

⋂
∆(m)lα{gn} is a dense Fσ-set of the first Baire category in ∆(m)lα{gn}.

(ii) If m = 0, α = {αn}∞n=0 = {1, 1, . . . , 1, . . .}, then l{fn} ∩ l{gn} is a dense Fσ-
set of the first Baire category in l{fn} [8].
(iii) If m = 0, fn = f and gn = g for each n, then lfα ∩ lαg is a dense Fσ-set of

the first Baire category in lfα. These spaces lfα and lαg were defined by Gupta &
Pradhan [17].
(iv) If m = 0, α ∈ l∞ , {α−1} is unbounded and fn = f = gn for each n, then
lfα ⊂ lαf [17, Theorem 3.1(ii)]. Hence lfα is a dense Fσ-set of the first Baire category
in lαf .
(v) It is immediate from Proposition 4.3(ii) that the given assumption on α, both
the spaces ∆(m)lα{fn} and ∆(m)lα{gn} are dense Fσ-set of the first Baire category
in ∆(m)lp.

(vi) Further if m = 0, fn = f for each n and α
1
n
n → ∞, then it is easy to show

that lαf ⊂ δ, the space of all entire sequences defined as δ = {x = {ξn}∞n=0 ∈ w :

lim
n→∞

|ξn|
1
n = 0}. The inclusion is strict for α = {αn}∞n=0 = {(n + 1)n}∞n=0 and

x = {ξn}∞n=0 =
{

1
(n+1)n

}∞
n=0

. Then lαf is a dense Fσ-set of the first Baire category

in δ.

Remark 5.6. By the Cauchy criterion of a series of real numbers the set ∆(m)lα{fn}⋂
∆(m)lα{gn} can be written as

∆(m)lα{fn}
⋂

∆(m)lα{gn} =

∞⋂
p=1

⋃
N≥1

⋂
N≤i<j

{
x ∈ ∆(m)lα{fn} :



On Modular Difference Sequence Spaces 773

∣∣ j∑
k=i

gk

(
αk|∆(m)ξk|

)∣∣ ≤ 1

p

}
.

Hence the set ∆(m)lα{fn}
⋂

∆(m)lα{gn} is an Fσδ-set in ∆(m)lα{fn}.

6 Conclusion

The application of the Baire category results in sequence spaces were studied
by S̆alát [6], Ewert and S̆alát [8] and others. In the present paper, the Baire
category results in modular sequence spaces ∆(m)lα{fn} & ∆(m)lα{gn} defined
by using difference sequences and a sequence {αn}∞n=0(> 0) of real numbers are
studied. For distinct choices of the sequence {αn}∞n=0 and the difference operator
∆(m), the results related to dense Fσ-set of the first Baire category in s of the
spaces introduced by Gupta and Pradhan [17], Altay [16] are obtained. The work
of Ewert and S̆alát [8] has also been generalized.
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