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Abstract : Kannan type mappings hold an important position in metric fixed
point theory. In this paper we define generalized multivalued Kannan type map-
pings and establish some coincidence point theorems for an arbitrary family of
multivalued mappings with another singlevalued self mapping in partially ordered
metric spaces. The corresponding singlevalued cases are discussed. One illus-
trative example is also given. The method of proofs here is a blending of order
theoretic and analytic methodologies.
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1 Introduction and Preliminaries

The purpose of this paper is to establish some coincidence point results for an
arbitrary family of multivalued mappings with another singlevalued self mapping
in partially ordered metric spaces. Weakening of contractive inequalities began
with the work of Alber et al. [1] where they established a weak version of the
Banach contraction mapping principle in Hilbert spaces. Later it was proved by
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Rhoades [2] that the weak contraction introduced in [1] has necessarily a unique
fixed point in any complete metric space. Many authors have created several
types of weak contraction inequalities following this result. Fixed point results of
functions satisfying these types of inequalities have been established in a number
of works [3–6].

A contractive condition different from that of Banach’s was given by Kan-
nan [7, 8] which, like that of Banach, implies a unique fixed point in a complete
metric space, but, unlike the Banach condition, there exist discontinuous functions
satisfying the definition of Kannan. Following their appearance in [7,8], many per-
sons created contractive conditions not requiring continuity of the mapping and
established fixed point results for them. There is another reason for which the Kan-
nan type mappings are considered to be important. Banach contraction principle
does not characterize completeness. In fact there are examples of noncomplete
spaces where every contraction has a fixed point [9]. It has been shown in [10,11]
that the necessary existence of fixed points for Kannan type mappings implies
that the corresponding metric space is complete. The above are some, but not all,
reasons for which the Kannan type mappings are considered important in mathe-
matical analysis. There are several extensions and generalizations of Kannan type
mappings in various spaces as, for instances, in the works noted in [12–15].

In the fixed point theory of setvalued maps, two types of distances are generally
used. One is the Hausdorff distance. Nadler [16] had proved a multivalued version
of the Banach contraction mapping principle by using the Hausdorff metric. There
are many other results using this Hausdorff metric, some instances being [13,14,17].
The another distance is the δ - distance. This is not metric like the Hausdorff
distance, but shares most of the properties of a metric.

In recent times, fixed point theory has developed rapidly in partially ordered
metric spaces; that is, metric spaces endowed with a partial ordering. Some of
these works are noted in [18–23]. A speciality of these problems is that they use
both analytic and order theoretic methods. It is also one of the main reasons why
they are considered interesting.

Khan et al. [24] initiated the use of a control function in metric fixed point
theory which they called alternating distance function. Several works on fixed
points have utilized this control function, some instances being [3, 4, 25].

We review below some essential concepts for our discussions in this paper. Let
(X, d) be a metric space. We denote the class of nonempty and bounded subsets
of X by B(X). For A, B ∈ B(X), functions D(A, B) and δ(A, B) are defined as
D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} and δ(A, B) = sup{d(a, b) : a ∈ A, b ∈
B}. If A = {a}, then we write D(A, B) = D(a, B) and δ(A, B) = δ(a, B). Also
in addition, if B = {b}, then D(A, B) = d(a, b) and δ(A, B) = d(a, b). For
all A, B, C ∈ B(X), the definition of δ(A, B) yields that δ(A, B) = δ(B, A),
δ(A, B) ≤ δ(A, C) + δ(C, B), δ(A, B) = 0 iff A = B = {a}, δ(A, A) = diam
A [26]. There are several works which have utilized δ - distance [26–32].

Lemma 1.1 ([26]). If {An} and {Bn} are sequences in B(X), where (X, d) is a
complete metric space and {An} → A and {Bn} → B where A,B ∈ B(X) then
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δ(An, Bn)→ δ(A,B) as n→∞.

Lemma 1.2 ([32]). If {An} is a sequence of bounded sets in a complete metric
space (X, d) and if lim

n→∞
δ(An, {y}) = 0 for some y ∈ X, then {An} → {y}.

Definition 1.3 ([29]). A setvalued mapping T : X → B(X), where (X, d) is a
metric space, is continuous at a point x ∈ X if {xn} is a sequence in X converging
to x, then the sequence {Txn} in B(X) converges to Tx. T is said to be continuous
in X if it is continuous at each point x ∈ X.

Definition 1.4 ([33]). Two self maps g and T of a metric space (X, d) are said to
be compatible mappings if lim

n→∞
d(gTxn, T gxn) = 0 whenever {xn} is a sequence

in X such that lim
n→∞

gxn = lim
n→∞

Txn = t, for some t ∈ X.

Definition 1.5 ([27]). The mappings g : X → X and T : X → B(X), where
(X, d) is a metric space, are δ- compatible if lim

n→∞
δ(Tgxn, gTxn) = 0 whenever

{xn} is a sequence in X such that gTxn ∈ B(X) and Txn → {t}, gxn → t, for
some t in X.

Definition 1.6 ([27]). Let (X, d) be a metric space and g : X → X and T : X →
B(X). Then u ∈ X is called a coincidence point of g and T if {gu} = Tu.

Definition 1.7 ([30]). Let A and B be two nonempty subsets of a partially ordered
set (X, �). The relation between A and B is denoted and defined as follows:

A ≺1 B, if for every a ∈ A there exists b ∈ B such that a � b.

Definition 1.8 ([24]). A function ψ : [0,∞) → [0,∞) is called an alternating
distance function if the following properties are satisfied:

(i) ψ is monotone increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

For (x, y), (u, v) ∈ R × R, where R denotes the set of real numbers, we say
(x, y) ≤ (u, v) if and only if x ≤ u and y ≤ v.

Definition 1.9. A function φ : [0,∞)2 → [0,∞) is said to be monotone nonde-
creasing if for (x, y), (u, v) ∈ [0,∞)2, (x, y) ≤ (u, v) =⇒ φ(x, y) ≤ φ(u, v).

As already mentioned, we introduce here the definition of generalized multval-
ued Kannan type mapping in the following.

Definition 1.10 ([7, 8]). A mapping T : X → X, where (X, d) is a metric space,
is called a Kannan type mapping if there exists 0 < k < 1

2 such that

d(Tx, Ty) ≤ k [d(x, Tx) + d(y, Ty)], for x, y ∈ X. (1.1)
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Definition 1.11. A mapping T : X → X, where (X, d) is a metric space, is said
to be a generalized Kannan type mapping if for all x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ
(1

2
[d(x, Tx) + d(y, Ty)]

)
− φ(d(x, Tx), d(y, Ty)), (1.2)

where ψ is an alternating distance function and φ : [0,∞)2 → [0,∞) is a continuous
function with φ(s, t) = 0 if and only if (s, t) = (0, 0).

If one takes ψ to be the identity function and φ(s, t) = ( 1
2 − k)(s+ t), where

0 < k < 1
2 , then (1.2) reduces to (1.1). Hence generalized Kannan type mappings

are generalizations of Kannan type mappings.

Definition 1.12. A multivalued mapping T : X → B(X), where (X, d) is a
metric space, is said to be a generalized multivalued Kannan type mapping if for
all x, y ∈ X,

ψ(δ(Tx, Ty)) ≤ ψ
(1

2
[D(x, Tx) +D(y, Ty)]

)
− φ(δ(x, Tx), δ(y, Ty)), (1.3)

where ψ is an alternating distance function and φ : [0,∞)2 → [0,∞) is a continuous
function with φ(s, t) = 0 if and only if (s, t) = (0, 0).

If one treats T as a multivalued mapping in which case Tx is a singleton set
for every x ∈ X, then (1.3) reduces to (1.2). Hence generalized Kannan type
mappings are special cases of generalized multivalued Kannan type mappings.

In this paper we have proved some coincidence point results for an arbitrary
family of multivalued mappings with another singlevalued self mapping using a
control function in metric spaces having a partial order. The corresponding singl-
evalued cases have been discussed. One supporting example is given.

2 Main Results

Theorem 2.1. Let (X,�) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Let φ : [0,∞)2 → [0,∞)
be a monotone nondecreasing and continuous function with φ(s, t) = 0 if and
only if (s, t) = (0, 0) and ψ is an alternating distance function. Let {Tα : X →
B(X) : α ∈ Λ} be a family of multivalued mappings. Let g : X → X be a
mapping such that g(X) is closed in X. Suppose that there exists α0 ∈ Λ such
that (i) Tα0 and g are continuous, (ii) Tα0x ⊆ g(X) and gTα0x ∈ B(X), for every
x ∈ X, (iii) there exists x0 ∈ X such that {gx0} ≺1 Tα0

x0, (iv) for x, y ∈ X,
gx � gy implies Tα0

x ≺1 Tα0
y, (v) the pair (g, Tα0

) is δ - compatible, (vi)
ψ(δ(Tα0

x, Tαy)) ≤ ψ( 1
2 [D(gx, Tα0

x) +D(gy, Tαy)])−φ(δ(gx, Tα0
x), δ(gy, Tαy)),

where x, y ∈ X such that gx and gy are comparable and α ∈ Λ. Then g and
{Tα : α ∈ Λ} have a coincidence point.
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Proof. First we establish that any coincidence point of g and Tα0 is a coincidence
point of g and {Tα : α ∈ Λ} and conversely. Suppose that p ∈ X be a coincidence
point of g and Tα0

. Then {gp} = Tα0
p. From (vi) and using the monotone property

of ψ, we have
ψ(δ(gp, Tαp)) ≤ ψ(δ(Tα0

p, Tαp))

≤ ψ
(

1
2 [D(gp, Tα0

p)+D(gp, Tαp)]
)
−φ(δ(gp, Tα0

p), δ(gp, Tαp))

≤ ψ
(

1
2 D(gp, Tαp)

)
( by a property of φ ).

Again using the monotone property of ψ, we have

δ(gp, Tαp) ≤
1

2
D(gp, Tαp) ≤

1

2
δ(gp, Tαp),

which implies that δ(gp, Tαp) = 0, that is, {gp} = Tαp, for all α ∈ Λ. Hence p is
a coincidence point of g and {Tα : α ∈ Λ}. Converse part is trivial.

Now it is sufficient to prove that g and Tα0
have coincidence point. Let x0 ∈ X

be such that {gx0} ≺1 Tα0x0. Then there exists u ∈ Tα0x0 such that gx0 � u.
Since Tα0x0 ⊆ g(X) and u ∈ Tα0x0, there exists x1 ∈ X such that gx1 = u. So
gx0 � gx1. Then by the assumption (iii), Tα0

x0 ≺1 Tα0
x1. Since u = gx1 ∈ Tα0

x0,
there exists v ∈ Tα0

x1 such that gx1 � v. As Tα0
x1 ⊆ g(X) and v ∈ Tα0

x1, there
exists x2 ∈ X such that gx2 = v. So gx1 � gx2. Continuing this process we
construct a sequence {xn} in X such that

gxn+1 ∈ Tα0xn, for all n ≥ 0 (2.1)

and
gx0 � gx1 � gx2 � . . . � gxn � gxn+1 . . . . (2.2)

Since gxn � gxn+1, putting α = α0, x = xn+1 and y = xn in (vi) and using the
monotone properties of ψ and φ, we have

ψ(d(gxn+2, gxn+1)) ≤ ψ(δ(Tα0
xn+1, Tα0

xn))

≤ ψ
(1

2
[D(gxn+1, Tα0xn+1) +D(gxn, Tα0xn)]

)
− φ(δ(gxn+1, Tα0xn+1), δ(gxn, Tα0xn))

≤ ψ
(1

2
[d(gxn+1, gxn+2) + d(gxn, gxn+1)]

)
− φ(d(gxn+1, gxn+2), d(gxn, gxn+1)), (2.3)

which, by a property of φ, implies that

ψ(d(gxn+2, gxn+1)) ≤ ψ
(1

2
[d(gxn+1, gxn+2) + d(gxn, gxn+1)]

)
.

Using the monotone property of ψ, we have

d(gxn+2, gxn+1) ≤ 1

2
[d(gxn+1, gxn+2) + d(gxn, gxn+1)],
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that is,
d(gxn+2, gxn+1) ≤ d(gxn+1, gxn).

Therefore, {d(gxn+1, gxn)} is a monotone decreasing sequence of non-negative
real numbers. Hence there exists an r ≥ 0 such that

lim
n→∞

d(gxn+1, gxn) = r. (2.4)

Taking limit as n → ∞ in (2.3), using (2.4) and the continuities of ψ and φ, we
have

ψ(r) ≤ ψ(r)− φ(r, r),

which is a contradiction unless r = 0. Hence

lim
n→∞

d(gxn+1, gxn) = 0. (2.5)

Next we show that {gxn} is a Cauchy sequence. If {gxn} is not a Cauchy
sequence, then there exists an ε > 0 for which we can find two sequences of positive
integers {m(k)} and {n(k)} such that for all positive integers k, n(k) > m(k) > k
and d(gxn(k), gxm(k)) ≥ ε. Assuming that n(k) is the smallest such positive
integer, we get

n(k) > m(k) > k, d(gxn(k), gxm(k)) ≥ ε and d(gxn(k)−1, gxm(k)) < ε.

Now, ε ≤ d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k)), that is,

ε ≤ d(gxn(k), gxm(k)) < d(gxn(k), gxn(k)−1) + ε.

Taking limit as k →∞ in the above inequality and using (2.5), we have

lim
k→∞

d(gxn(k), gxm(k)) = ε. (2.6)

Again,

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k)+1)

+ d(gxm(k)+1, gxm(k))

and

d(gxn(k)+1, gxm(k)+1) ≤ d(gxn(k)+1, gxn(k)) + d(gxn(k), gxm(k))

+ d(gxm(k), gxm(k)+1).

Taking limit as k →∞ in above inequalities, using (2.5) and (2.6), we have

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = ε. (2.7)

For each positive integer k, gxm(k) and gxn(k) are comparable. Then putting
α = α0, x = xn(k) and y = xm(k) in (vi) and using the monotone properties of ψ
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and φ, we have

ψ(d(xn(k)+1, xm(k)+1)) ≤ ψ(δ(Tα0
xn(k), Tα0

xm(k)))

≤ ψ
(1

2
[D(gxn(k), Tα0xn(k)) +D(gxm(k), Tα0xm(k))]

)
− φ(δ(gxn(k), Tα0xn(k)), δ(gxm(k), Tα0xm(k)))

≤ ψ
(1

2
[d(gxn(k), gxn(k)+1) + d(gxm(k), gxm(k)+1)]

)
− φ(d(gxn(k), gxn(k)+1), d(gxm(k), gxm(k)+1)).

Letting k → ∞ in the above inequality, using (2.5), (2.7) and the properties of
φ and ψ, we have ψ(ε) ≤ 0, which is a contradiction by virtue of a property of
ψ. Hence {gxn} is a Cauchy sequence in g(X). Since X is complete and g(X) is
closed in X, there exists u ∈ g(X) such that gxn → u as n→∞. Since u ∈ g(X),
there exists z ∈ X such that u = gz. Then

gxn → u = gz as n→∞. (2.8)

Using (2.3) and the properties of ψ and φ, we have

d(gxn+2, gxn+1) ≤ δ(Tα0xn+1, Tα0xn) ≤ 1

2
[d(gxn+1, gxn+2) + d(gxn, gxn+1)].

Taking n→∞ in the above inequality and using (2.8), we have

lim
n→∞

δ(Tα0
xn+1, Tα0

xn) = 0. (2.9)

Now,

δ(Tα0
xn, {u}) ≤ δ(Tα0

xn, gxn) + δ(gxn, {u})
≤ δ(Tα0

xn, Tα0
xn−1) + d(gxn, u).

Letting n→∞ in the above inequality using (2.8) and (2.9), we have

lim
n→∞

δ(Tα0
xn, {u}) = 0,

which, by Lemma 1.2, implies that

Tα0xn → {u}, as n→∞. (2.10)

Since the pair (g, Tα0
) is δ - compatible, from (2.8) and (2.10), we have

lim
n→∞

δ(Tα0gxn, gTα0xn) = 0.

As g and Tα0
are continuous, it follows that δ(Tα0

u, gu) = 0, that is, Tα0
u = {gu}.

Hence u ∈ g(X) ⊆ X is a coincidence point of g and Tα0 . By what we have already
proved, u is a coincidence point of g and {Tα : α ∈ Λ}.
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In our next theorem, we relax the continuity assumption on Tα0 and g by
imposing an order condition. We also relax the condition that gTα0

x ∈ B(X), for
every x ∈ X.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn → x
is a nondecreasing sequence in X, then xn � x, for all n. Let φ : [0,∞)2 → [0,∞)
be a monotone nondecreasing and continuous function with φ(s, t) = 0 if and only
if (s, t) = (0, 0) and ψ is an alternating distance function. Let {Tα : X → B(X) :
α ∈ Λ} be a family of multivalued mappings. Let g : X → X be a mapping
such that g(X) is closed in X. Suppose that there exists α0 ∈ Λ such that (i)
Tα0x ⊆ g(X) for every x ∈ X, (ii) there exists x0 ∈ X such that {gx0} ≺1 Tα0x0,
(iii) for x, y ∈ X, gx � gy implies Tα0x ≺1 Tα0y, (iv) ψ(δ(Tα0x, Tαy)) ≤
ψ( 1

2 [D(gx, Tα0x) + D(gy, Tαy)]) − φ(δ(gx, Tα0x), δ(gy, Tαy)), where x, y ∈ X
such that gx and gy are comparable and α ∈ Λ. Then g and {Tα : α ∈ Λ} have a
coincidence point.

Proof. We take the same sequence {gxn} as in the proof of Theorem 2.1. Then
we have gxn+1 ∈ Tα0xn, for all n ≥ 0, {gxn} is monotonic nondecreasing and
gxn → gz as n → ∞. By the order condition of the metric space, we have
gxn � gz, for all n. Using by the monotone properties of ψ and φ and the
condition (iv), we have

ψ(δ(gxn+1, Tαz)) ≤ ψ(δ(Tα0xn, Tαz))

≤ ψ
(1

2
[D(gxn, Tα0xn) +D(gz, Tαz)]

)
− φ(δ(gxn, Tα0xn), δ(gz, Tαz))

≤ ψ
(1

2
[d(gxn, gxn+1) +D(gz, Tαz)]

)
− φ(d(gxn, gxn+1), δ(gz, Tαz)).

Taking limit as n→∞ in the above inequality and using the continuities of φ and
ψ, we have

ψ(δ(gz, Tαz)) ≤ ψ
(1

2
D(gz, Tαz)

)
− φ(0, δ(gz, Tαz)),

which implies that

ψ(δ(gz, Tαz)) ≤ ψ
(1

2
D(gz, Tαz)

)
(by a property of φ).

Using the monotone property of ψ, we have

δ(gz, Tαz) ≤
1

2
D(gz, Tαz) ≤

1

2
δ(gz, Tαz),

which implies that δ(gz, Tαz) = 0, that is, {gz} = Tαz, for all α ∈ Λ. Hence z is
a coincidence point of g and {Tα : α ∈ Λ}.



Multivalued Coincidence Point Results in Partially Ordered Metric Spaces 753

Considering {Tα : X → B(X) : α ∈ Λ} = {T} in Theorem 2.1, we have the
following corollary.

Corollary 2.3. Let (X, �) be a partially ordered set and suppose that there exists
a metric d on X such that (X, d) is a complete metric space. Let φ : [0,∞)2 →
[0,∞) be a monotone nondecreasing and continuous function with φ(s, t) = 0 if
and only if (s, t) = (0, 0) and ψ is an alternating distance function. Let T : X →
B(X) be a multivalued mapping and g : X → X be a mapping such that (i) T
and g are continuous, (ii) Tx ⊆ g(X) and gTx ∈ B(X), for every x ∈ X, and
g(X) is closed in X, (iii) there exists x0 ∈ X such that {gx0} ≺1 Tx0, (iv) for
x, y ∈ X, gx � gy implies Tx ≺1 Ty, (v) the pair (g, T ) is δ - compatible, (vi)
ψ(δ(Tx, Ty)) ≤ ψ( 1

2 [D(gx, Tx) + D(gy, Ty)]) − φ(δ(gx, Tx), δ(gy, Ty)), where
x, y ∈ X such that gx and gy are comparable. Then g and T have a coincidence
point.

Considering {Tα : X → B(X) : α ∈ Λ} = {T} in Theorem 2.2, we have the
following corollary.

Corollary 2.4. Let (X, �) be a partially ordered set and suppose that there
exists a metric d on X such that (X, d) is a complete metric space. Assume
that if xn → x is a nondecreasing sequence in X, then xn � x, for all n. Let
φ : [0,∞)2 → [0,∞) be a monotone nondecreasing and continuous function with
φ(s, t) = 0 if and only if (s, t) = (0, 0) and ψ is an alternating distance function.
Let T : X −→ B(X) be a multivalued mapping and g : X → X be a mapping such
that (i) Tx ⊆ g(X) for every x ∈ X, and g(X) is closed in X, (ii) there exists
x0 ∈ X such that {gx0} ≺1 Tx0, (iii) for x, y ∈ X, gx � gy implies Tx ≺1 Ty,
(iv) ψ(δ(Tx, Ty)) ≤ ψ( 1

2 [D(gx, Tx) + D(gy, Ty)]) − φ(δ(gx, Tx), δ(gy, Ty)),
where x, y ∈ X such that gx and gy are comparable. Then g and T have a
coincidence point.

The following theorems are singlevalued cases of the Theorems 2.1 and 2.2
respectively. Here we treat T as a multivalued mapping in which case Tx is a
singleton set for every x ∈ X. For the following theorems function φ need not to
be monotone nondecreasing.

Theorem 2.5. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Let φ : [0,∞)2 → [0,∞)
be a continuous function with φ(s, t) = 0 if and only if (s, t) = (0, 0) and ψ is an
alternating distance function. Let {Tα : X → X : α ∈ Λ} be a family of mappings.
Let g : X → X be a mapping such that g(X) is closed in X. Suppose that
there exists α0 ∈ Λ such that (i) Tα0 and g are continuous, (ii) Tα0(X) ⊆ g(X),
(iii) there exists x0 ∈ X such that gx0 � Tα0

x0, (iv) for x, y ∈ X, gx � gy
implies Tα0

x � Tα0
y, (v) the pair (g, Tα0

) is compatible, (vi) ψ(d(Tα0
x, Tαy)) ≤

ψ( 1
2 [d(gx, Tα0

x)+d(gy, Tαy)])−φ(d(gx, Tα0
x), d(gy, Tαy)), where x, y ∈ X such

that gx and gy are comparable and α ∈ Λ. Then g and {Tα : α ∈ Λ} have a
coincidence point.
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Theorem 2.6. Let (X, �) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a complete metric space. Assume that if xn → x
is a nondecreasing sequence in X, then xn � x, for all n. Let φ : [0,∞)2 → [0,∞)
be a continuous function with φ(s, t) = 0 if and only if (s, t) = (0, 0) and ψ
is an alternating distance function. Let {Tα : X → X : α ∈ Λ} be a family of
mappings. Let g : X → X be a mapping such that g(X) is closed in X. Suppose
that there exists α0 ∈ Λ such that (i) Tα0(X) ⊆ g(X), (ii) there exists x0 ∈ X
such that gx0 � Tα0

x0, (iii) for x, y ∈ X, gx � gy implies Tα0
x � Tα0

y, (iv)
ψ(d(Tα0

x, Tαy)) ≤ ψ( 1
2 [d(gx, Tα0

x) + d(gy, Tαy)])− φ(d(gx, Tα0
x), d(gy, Tαy)),

where x, y ∈ X such that gx and gy are comparable and α ∈ Λ. Then g and
{Tα : α ∈ Λ} have a coincidence point.

Example 2.7. Let X = [0, ∞) be equipped with usual order ‘ ≤′ and usual metric
‘d’. Let g : X → X be defined as gx = 8x, for x ∈ X. Let Λ = {1, 2, 3, ...}.
Let the family of mappings {Tα : X → B(X) : α ∈ Λ} be defined as T1x = {0},

for x ∈ X, and for α ≥ 2, Tαx =

{
{0}, if 0 ≤ x ≤ 1,
{0, α

α+1}, if x > 1.
Let ψ : [0,∞) →

[0, ∞) and φ : [0,∞)2 → [0,∞) be respectively defined as ψ(t) = t2, for t ∈
[0,∞) and φ(x, y) = z

100 , for (x, y) ∈ [0,∞)2 with z = max{x, y}. Here all the
conditions of Theorems 2.1 and 2.2 are satisfied and 0 is a coincidence point of g
and {Tα : α ∈ Λ}.
Note. In the above example if one takes g : X → X as gx =

{
x
2 , if 0 ≤ x ≤ 1,
200, if x > 1.

Then the above example is still applicable to Theorem 2.2 but not applicable
to Theorem 2.1 because g is not continuous and hence does not satisfy required
conditions mentioned in Theorem 2.1.

Remark 2.8. In the above example {Tα : α ∈ Λ} contains infinitely many func-
tions and so Corollaries 2.3 and 2.4 can not be applied to it. This shows that
Theorems 2.1 and 2.2 properly contain their Corollaries 2.3 and 2.4 respectively.
Also, in the above example {Tα : α ∈ Λ} is a family of multivalued mappings and
hence Theorems 2.5 and 2.6 are not applicable to it.
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