THAI JOURNAL OF M ATHEMATICS @

VOLUME 16 (2018) NUMBER 3 : 733-744 ‘ 2

(@S]
http://thaijmath.in.cmu.ac.th &ﬂ\y
ISSN 1686-0209

On the Kernel of the Black-Scholes Equation
for the Option Price on Future Related
to the Black-Scholes Formula

Amnuay KananthaiT’ Somsak Chanaim? and Chongkolnee Rungruang§

tDepartment of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai 50200, Thailand
e-mail : malamnka@gmail.com

Hnternational College of Digital Innovation, Chiang Mai University
Chiang Mai 50200, Thailand
e-mail : somsak_ch@cmu.ac.th

$Faculty of Commerce and Management, Prince of Songkla University
Trang Campus, Trang 92000, Thailand
e-mail : chongkolnee.r@psu.ac.th

Abstract : In this paper, we studied the Kernel of of the Black-Scholes Equation
for the option price on the future and obtained the new results of the interest-
ing properties. Moreover such Kernel can be related to cover the Black-Scholes
Formula. However, we hope that such results of this paper may be useful in the
research area of Financial Mathematics.
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1 Introduction

It is concepted that the Black-Scholes Formula is useful for computing the
option price of the stock price, particularly the option price on future. Actually
the Black-Scholes Formula is the solution of the Black-Scholes Equation, see [I],
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pp. 637-659]. But unfortunately such Black-Scholes Formula is too complicated
to be derived directly from the Black-Scholes Equation. So many books only use
the variation method to show that such Black-Scholes Formula is the solution of
the Black-Scholes Equation. So in our work we try to find the other solutions
of the Black-scholes Equation and luckily we found such solution in the form of
kernel and can be related to cover the Black-Scholes formula for the option price
on future which is given by

B 1, , 8 -

see [2, pp. 118-119] with the payoff
C(Fr,T) = max(FPr —p,0) = (Fr —p)" (1.2)

where F' = se"(T=%) is the stock price on future, C'(F,t) is the option price on
future, o is the volatility of the stock, T is the expiration time, F7p is the stock
price at time T', r is the interest rate and p is the strike price.

In fact Fr = spe™T=T) = S1 then becomes C(s7,T) = (s — p)™ where
st is the price of stock at the expiration time 7.

Now the solution of is the Black-Scholes Formula which is given by

C(F,t) = e "= (FN(dy) — pN(d2) (1.3)
where
In <F> + %Oj(T —t)
dy = —2 (1.4)
ovT —t
and

1 ¥ v?
and denote N(z) = — e 7 dy.
V2T /_oo

Now let R=InF and 7 = T — ¢ and write C(F,t) = v(R,7) and substitute
into (L.1)). Then (1.1)) is transformed to the equation

0 1,0 0 B
EU(R, T)+ 50 @’U(R,T) — —0*=—=v(R,7) +rv(R,7) =0 (1.6)

with the Call payoff or the initial condition

v(R,0) = C(Fp,T) = (Fr —p)* = (" —p)*
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where 7 = 0 corresponds to t =T and let
v(R,0) = (" —p)* = f(R) (1.7)

where f is the continuous function of R. In this paper, we study the solution of
(1.6) and then relate to (1.1). By taking the Fourier transform to (1.6) and then
we obtain

2

o
e~ T [ee} (R - ?T — y)2
v(R,T) = \/ﬁ/ €xXp U S f(y)dy (1.8)
as the solution of (1.6]).
Or in the convolution form
V(R,7) = K(R,7) * f(R) (1.9)
where
2
T (R- %)2
K(R,T) = Wexp _T (110)

is the kernel of (|L.6]).
Moreover we can relate ([1.8) to cover the Black-Scholes Formula in (1.3)), (1.4

and .

2 Preliminaries

The following definitions and some lemmas are needed.

Definition 2.1. Let f be locally integrable function, then the Fourier transform
of f is defined by

Fiw) =@ = [ e s (21)
and the inverse Fourier transform is also defined by
@0 =7 @ =5 [ T (2:2)

Definition 2.2. (The Dirac-delta distribution)
The Dirac-delta distribution or the impluse function is denoted by § and also
defined by

< d(z),p(z) >= /jo d(x)p(x)dx = ¢(0) (2.3)

where ¢(x) is the testing function of infinitely differentiable with compact support.
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Lemma 2.3. Recall the equation in (1.6
0 1,0 1, 92
a—v(R7 )+ =0 —v(R,T) — z0® —=v(R,7) + rv(R,T) = 0
-

with the call payoff in (L.7))

Then (2.4) has

K(R e~ T (R—;T)Q
n) = T P | T 3

s the kernel.

(2.5)

(2.6)

(2.7)

Proof. Take the Fourier transform defined by (2.1) with respect to R to (2.4)).

Then
0 sl + ol m) + 50%Pilw ) + rifw ) = 0
—v(w,T) + zo%iwv(w, T) + 0w v(w,T) + rv(w, ) =
or 2 ’ 2 ’ ’
whose solution is
= L oo 1.
v(w,T) = C(w) exp (—EU W — i — )T

—_—

since from m) = f/(cj)7 hence v(w,0) = f(w) = C(w). Thus we have

- — 1 1
v(w,7) = f(w) exp {(—202w2 — iagiw — 7")7'} )
Now from ({2.2]),
1 * iwR
V(R,T)= - e“fo(w, 7)dw.
21 J_
Thus
1 > iwRF! N 1 2 9 1.
v(R,T) = — e f(w) exp (—50 w” — i — )T | dw

1

2

21 J_
2—/ / ewhte=iwy oxp {(20%)2 — —o%iw — 7“)7} f(y)dydw
™ —0o0 — 00
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where f/(\)_/oo e~ ™Y f(y)dy. Thus

,T) 27r exp [—a w T—( 0?7 — R+ y)iw| f(y)dydw
2
e~ TT [ 0 1 T R+y
2 2
=5 / / exp | —50 T(UJ—FZT) dw | x
o’r
(7 ~R+y)* p
€xXp I Y f(y)dy.
ot
1 5 Bty V2
Putu=4/=-027 |w+i—2——— | then dw = du. Thus
2 o2T Vo2t
—rr oo [ oo 1 /2
v(R,T) = 627_ /_Oo (/_Ooe_uza 7_du) X
2
(5~ R+y)?
exp | — Sy f(y)dy
e T 1 \/7 — — R+ y) p
=5 f/ exp |— 507 f(y)dy
(Note that / e~* du = /7). So we have
o?r
R < o d 2.8
U( 57—)*% exp 7T f(y)y ()
or v(R,7) = K(R,7) * f(R) where
o’r
K(R ¢ B 2.9
(B.7) = 2wo?T e 20T ’ (2.9)

Thus we obtain (2.6)) and (2.7)) as required. Moreover we can show that lin% K(R,T)
T—
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= 0(R), see [3, pp. 36-37]. It follows that
o(,0) = 8(R) * S(R) = [ 8 (R~ y)dy = F(R~0) = F(R)
By the definition of convolution and (2.3)) of Definition Thus (2.5) holds. O

Lemma 2.4. The solution v(R,7) in (2.8) can be computed as
v(R,T) = e " (e — p) (2.10)
and can be also related to cover the Black-Scholes formula in (1.3)), (1.4) and (1.5)).

Proof. Since we have in (2.8]) that

o°T

R e T o (R — 5 y)® p

v 77)—W/_MGXP R Y f(y)dy
o

e T e (R - 5 y)? vg

- \2ro?r [oo P 202t e"ay
o3
o0 (R— S ?J)2

where f(y) = eV — p from (1.7). Now consider the second integral. Put v =
1 o?r

M(R —5 = y) then dy = d(—y) = V2027du and thus
00 (R - 7027- _ y)2 0o

/ exp —2—22 dy = \/2027'/ e~ du = V20217 = V2ro?T.
oo o2r e

For the first integral

2 2

oo (B=——v) . o (y—R‘FT)Q ,
[m exp |— 502 eYdy = /Ooexp — 9577 eYdy
o’r 5 5 o’r
Put w = 53 (y—R—&—T) then dy = V20?7dw and y = V20 T’U)—I—R—T.
ot
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Thus
2
. (R—ZL )2 2
/ exp —22—2 eydy:/ v2027'exp [\/202 w—i—R—}
oo o2 _
= \/EGR*%T/ / e~ Wi V203w gy,
22z 12 o2t
2027e =37 ) 2" / (V=" g (w — 7)
= V2027 mel.
So we have
(R,7) e el 2ro2r 7T 21mo2Tp
v(R,T) = .

\V2ro?r B V2ro2r

It follows that v(R,7) = e~ #7(ef —p) thus we obtain (2.10)). To show that v(R, T)
in (2.8) can be related to cover the Black-Scholes Formula in (1.3)), (1.4) and (L.5).
Now from ([2.11])

e—TT o oo
Rr)— —— Ady — Bd
o(R,7) V2ro2r </_oo Y p/_oo y)

o’r ot
(B——~ )? (3—7—31)2
where A =exp |[—————=——|eYand B=exp |———=——|. Now
2021 2027
ider the integral [ Bdy. Put = = — (R~ 7" ) and choose
we consider the integra u -— -
8 v 3/5 2021 2
1 o°T
> Inp. Then —00 < u < ——=(R — —— —Inp) and d(y) = d(—y) = Vo27rdu.
y>Inp \/ﬁ( 5 ) 2 (y) = d(=y)
[e'e) a W2 R — E - lnp
Thus / Bdy = \/027'/ e~ du wherea = ——2
oo oo o\T
e 1 o3T

Next consider the integral / Ady. Put w =
8 —x V20?1

y > Inp then d(y) = d(—y) = V20%7dw and —o0 < w <

(R - - = y) and choose

1 o
R— — —Inp).
2027( 2 )




740 Thai J. Math. 16 (2018)/ A. Kananthai et al.

Thus

[e'S) b
/ Ady = / w2027 exp [R — — —V20?7Tw| dw

o2 [ 2l aaEr
20276l 2/ eTW V2TV gy
— 00

2

-
b
R——— 52, [o2r
=V2027e 2 ez / e (vt %)zdw
—o0

0'27'

R—— —Inp 2
2 « o°T 1
where b = ——~———. Now put —= = w + {/ —— then dw = —=da and
V2021 P V2 2 V2

1 2
a = V2w + Vo27. Since —oo < w < 53 (R— % —Inp) hence
o2T

F(R—T—lnp)vLF
(R+"T

Inp)

—oo<a<

27

Thus

2

o poe?e 222 1 (¢ a2 r ¢ _a
/ Ady = V202%Te _TeT—/ e~ 2da=VoiTe / e” 2 da
— 00 \/i — 00 —00

2
R+ 7T —1Inp
where ¢ = —— 2~ So we have

o\T

Vo p/ e_%du

(oo}

v(R,7) = ———Vo2rel / e Fda— — W

o’r o’r

—Inp R+

1 /T
al—-€e"p| —— e 7 du
\/ﬁ/_oo

V2rolr

R+

=e el L / ™ e
V2T J oo

—Inp

m‘gm

Since we write C(F,t) = v(R, 7) where C(F,t) is the solution of (1.1 with
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R=InF and 7 =T —t. Thus

C(F,t)=v(lnF,T —t)

ln( ) ‘7— —

1 o
_ —r(T—- t) 5 d
& — (0%
Var J-
n(E UT
(=0 Wors 7&22 do

It follows that C(F,t) = e " T~ (FN(d;) — pN(ds)) which is the Black-Scholes
Formula in (|1.3]) and d; is defined by (1.4) and ds is defined by ([1.5)). O

3 Main Results

Theorem 3.1. Recall the equation (L.1) that

8tC'(F t)+ —o°F 8F20(F t)—rC(F,t)=0 (3.1)
with the call payoff
C(Fr,T) = (Fr —p)* (3.2)

then (3.1) has C(F,t) as the solution in the forms
o2
o—T(T—1) S (lnF - ?(T —t)—y)?
V2w 02 T—1%) 202(T —t)
or the convolution form C(F,t) = K(In F,T —t) * f(In F') where
2

o= (1) (InF — %(T —t) —y)?

K(logF\T —t) = —— —
(logF; ) 2ro?T P 202(T —t)

(i) C(F,t) =

f(y)dy

is the kernel.
(ii) C(F,t) =e "T=YD(F —p).
(iti) C(F,t) can be related to cover the Black-Scholes Formula given by (L3)),

([1.4) and (1.5).
Proof. (i) From ([2.8]) of Lemma [2.3[ and
C(F,t)=v(R,7) =v(InF,T —t).
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Thus
52
e T o] (IHF - ?(T — t)) — y)2
C(Ft)=v(R,7) = \/ﬁ/_ exp | — 202(T — 1) f(y)dy.

Moreover C(F,t) = K(InF,T —t) % f(In F') and from (2.9)

2
o
K@FT—4) o~ (T—1) (InF — 7(T —1))?
nFT—t)=—————=exp |~
2102(T — t) P 202(T — 1)

(ii) From (2.10)) of Lemma [2.4]
C(F,t) =v(R,7) =v(InF,T —t) = e "T=(F — p).

(iii) From Lemma C(F,t) can be related to cover the Black-Scholes formula

given by (I3), (L4) and (L3).
]

Theorem 3.2. (The properties of K(In F,T — t))
The kernel K(In F,T —t) have the following properties

(i) K(lnF,T —t) satisfies the equation (3.1)).
(i) K(InF, T —t)>0 for0<t<T.

(i1i) K(InF,T —t) is the tempered distribution, that is K(In F,T —t) € S’"(R) is
the space of tempered distribution on the set of real number R.

(iv) e =D [* K(InF,T—t)d(InF)=1.

(v) im K(InF,T —t)=0(In F).
t—T
(vi) K(InF,T —t) is Gaussian function or Normal distribuition with mean
o2
e_T(T_t)g(T —t) and variance e~ 2" T=Dg2(T —t).

Proof. (i) Since K(In F,T —t) is the kernel of (3.1) which is the solution of
(3-1). So we can compute directly that K(In F,T — t) satisfies (3.1).
(i) K(InF,T —t) >0 for 0 <t < T is obvious.

(i) K(InF,T —t) € S'(R), sec [, pp. 135-136].
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(iv) Since
(=) / K(InF,T —t)d(In F) =
0'2 2
2 (T — 1) /,ooexp T 20T 1) (In F).
2
Putu=—o <lnF -2 r- t)) then d(In F) = \/202(T — t)du.
202(T —t) 2
Thus

202(T —t) [
V2mo?(T —t) J—oo
V202%(T —t) Jr=1.

er(T—1) / K(nF, T —t)d(InF) = e du

V2mo?(T —t)
(v) tlirr% K(InF, T —t)=0(InF), see [3, pp. 36-37].
—
(vi)
mean = E(K(ln F,T —t))
(InF — U—Q(T —1))?
T g 1 exp 2
2
2n0?(T —t) 202(T —t)

2
= eiT(T*t)%(T - t)

where FE is expectation and

variance =V (K(InF,T —t))
o2
(InF — —(T —1t))?
exp |— 2

—2r(T—t)
=e V
2a?(T —t) 202(T —t)

= 62T(T7t)02(T —t).

Where V is variance. )
Or shortly denote K(In F, T — t) is N(e"'(T_’”)%(T —1),0%(T —t)).
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4 Conclusion

At present many people are interested in investing the option price on future
of the stock prices and the Black-Schole Formula is needed for computing such
the option price on future. Unfortunately such Black-Scholes Formula is too com-
plicated and cannot be derived directly from the Black-Scholes Equation. So the
main purpose of this work is to find the another solution of the Black-Scholes
Equation and then we obtained such solution in the form of kernel which is simple
formula for the option price on future. Moreover we can related such solution to
cover the Black-Scholes Formula that shown in Theorem [B.11
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