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1 Introduction

The notion of locally symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. As a weaker version of local
symmetry, T. Takahasi [1] introduced the notion of locally ¢—symmetry, De et
al. |2] introduced the notion of ¢—recurrent Sasakian manifold. In the context of
contact geometry the notion of ¢—symmetry is introduced and studied by Boeckx,
Bueken and Vanhecke [3] with several examples. In a recent paper De and Gazi

! Corresponding author.

Copyright (© 2018 by the Mathematical Association of Thailand.
All rights reserved.



710 Thai J. Math. 16 (2018)/ A. De and Y. Matsuyama

[4] studied locally ¢p—recurrent N (k)—contact metric manifolds. Also De, Ozgiir
and Mondal [5] studied ¢—quasiconformally symmetric Sasakian manifolds. In
the present paper we study ¢—quasiconformally symmetric N (k)—contact metric
manifolds which generalizes the results of De, Ozgiir and Mondal [5] and also the
result of Blair, Koufogiorgos and Sharma [6].

Let (M, g) bea (2n+1), (n > 1)-dimensional Riemannian manifold. The notion
of the quasiconformal curvature tensor was introduced by Yano and Sawaki [7].
According to them a quasiconformal curvature tensor is defined by

C*(X,Y)Z = aR(X,Y)Z+0b[S(Y,2)X —S(X,2)Y
+9(Y, 2)QX — (X, 2)QY]
g rilen MV DX —g(X.2)Y], (1)

where a, b are constants, S is the Ricci tensor, @) is the Ricci operator defined by
S(X,Y) = g(QX,Y) and r is the scalar curvature of the manifold M. If a = 1
and b= —ﬁ, then || takes the form

C*(X,Y)Z = R(X,Y)Z- [S(Y,Z2)X — S(X, Z)Y

2n —1
(Y, 2)QX — (X, 2)QY) + 35S oY, 2)X
—g(X,2)Y] = C(X,Y)Z, (1.2)

where C' is the conformal curvature tensor. In [8], De and Matsuyama studied
quasiconformally flat Riemannian manifolds satisfying certain condition on the
Ricei tensor. From Theorem 5 of [§], it can be proved that a 4-dimensional qua-
siconformally flat semi-Riemannian manifold is the Robertson-Walker spacetime,
Robertson-Walker spacetime is the warped product I x  M*, where M* is a space
of constant curvature and I is an open interval [9]. From we obtain,

(VwC)(X,Y)Z = a(VwR)(X,Y)Z +b[(VwS)(Y,Z)X
- (Vw9S(X, 2)Y +9(Y, 2)(VwQ)X — g(X, Z)(VwQ)Y]
dr(W)

on 1l + 20V 2)X — (X, 2)Y ). (13)

2n

If the condition VC* = 0 holds on M, then M is called quasiconformally
symmetric, where V denotes the Levi-Civita connection on M. It is known [10]
that a quasiconformally symmetric N(k)—contact metric manifold for k # 0 is
a manifold of constant curvature k. This fact means that a quasiconformally
symmetric condition is too strong for a N(k)—contact metric manifold. In [1],
Takahashi introduced a weaker condition which is locally symmetry for a Sasakian
manifold that satisfies the condition

»*(VxR)Y,Z)W =0, (1.4)
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where X,Y, Z, W are horizontal vector fields which means that it is horizontal
with respect to the contact form 7 of the local fibering, namely, a horizontal vec-
tor is nothing but a vector which is orthogonal to &. In [6], Blair, Koufogirgos and
Sharma studied locally ¢—symmetric 3-dimensional N (k)—contact metric mani-
folds.

In , if X,Y,Z,W are not horizontal vectors, then we call the manifold
globally ¢p—symmetric.

In this paper we introduce a weaker condition than quasiconformally symmetry
that satisfies

P (Vi C*)(X,Y)Z =0, (1.5)

which is called globally ¢—quasiconformally symmetric for arbitrary vector fields
X Y. Z, W on M. If X|Y,Z W are horizontal vectors, then the manifold is called
locally ¢—quasiconformally symmetric.

The paper is organized as follows: After preliminaries in Section 3, we con-
sider globally ¢-quasiconformally symmetric N (k)—contact metric manifolds and
prove that such a N(k)-contact metric manifold is Sasakian. Section 4 deals with
3-dimensional locally ¢-quasiconformally symmetric N(k)-contact metric mani-
fold. We prove that a 3-dimensional N (k)-contact metric manifold is locally ¢-
quasiconformally symmetric if and only if it is locally ¢—symmetric. Finally we
construct an example of a 3-dimensional locally ¢—quasiconformally symmetric
N (k)—contact metric manifold.

2 Preliminaries

A (2n 4+ 1)-dimensional manifold M is said to admit an almost contact metric
structure if it admits a tensor field ¢ of type (1,1), a vector field £ and a 1-form
7 satisfying

(a) ¢*=—I+n®¢  (0) n€) =1 () ¢¢=0 and (d) nod=0. (2.1)

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M x R defined by

T J ) = (0% — fen(X) )

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth
function on M x R. Let g be a compatible Riemannian metric with almost contact
structure (¢,&,n), that is

9(6X, 9Y) = g(X,Y) = n(X)n(Y). (2.2)

Then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (¢, &, n, g). From (2.1)) and (2.2)) it can be easily seen that

(a) 9(X,9Y)=—g(¢X,Y),  (b) g(X,§)=n(X), (2.3)
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for all vector fields X, Y. An almost contact metric structure becomes a contact
metric structure if
9(X,9Y) = dn(X,Y), (2.4)

for all vector fields X, Y. The 1-form 7 is then called a contact form and £ is its
characteristic vector field. We define a (1,1) tensor field h by h = 3 £¢¢, where £
denotes the Lie derivative. Then h is symmetric and satisfies h¢p = —¢ph. We have
Tr.h =Tr.oh =0 and h§ = 0. Also

Vyé = —6X — ohX (2.5)

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian
manifold. An almost contact metric manifold is Sasakian if and only if

where V is the Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M (¢, &, n,g) for which £ is a Killing vector field is said to be a
K-contact metric manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [11]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric structure satisfying R(X,Y )¢ = 0 [12]. On the other hand on a Sasakian
manifold the following relation holds:

R(X,Y)E =n(Y)X —n(X)Y. (2.7)

As a generalisation of both R(X,Y)¢ = 0 and the Sasakian case : D. E. Blair, T.
Koufogiorgos and B. J. Papantoniou [13] introduced the (k, u)- nullity distribution
on a contact metric manifold and gave several reasons for studying it. The (k, u)-
nullity distribution N (k, ) [13] of a contact metric manifold M is defined by

N(k,pn) : p— Np(k,p)
— (W € T,M : R(X,Y)W = (kI + uh)(g(Y, W)X — g(X,W)Y)},

for all X,Y € TM, where (k,u) € R2. A contact metric manifold M with
& € N(k,p) is called a (k, u)-contact manifold. In particular on a (k, u)-contact
manifold, we have

R(X,Y) = k[n(Y)X —n(X)Y]+ pun(Y)hX —n(X)hY]. (2.8)

On a (k, u)-contact manifold k < 1. If k = 1, the structure is Sasakian (h = 0 and
1 is indeterminant) and if & < 1, then the (k, u)-nullity condition determines the
curvature of M completely [13]. Infact, for a (k, u)-contact manifold, the condition
of being Sasakian, a K-contact manifold , k =1 and h = 0 are all equivalent.
The k-nullity distribution N (k) of a Riemannian manifold M is defined by [14]

Nk):p— Ny(k)={Z € T,M : R(X,Y)Z =kl[g(Y,2)X — g(X, Z)Y]},
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k being a constant. If the characteristic vector field £ € N(k), then we call
the manifold an N(k)-contact metric manifold [14]. If £ = 1, then the manifold
is Sasakian and if k = 0, then the manifold is locally isometric to the product
E"T1(0) x S™(4) for n > 1 and flat for n = 1 [12]. In a (k, u)-contact manifold if
p = 0, then the manifold becomes an N (k)-contact manifold.

In [15], N(k)-contact metric manifold were studied in details. For more details
we refer to (6], |16]).

In a (2n 4 1)-dimensional N (k)-contact metric manifold M, the following re-
lations hold:

h? = (k—1)¢? k<1, (2.9)
(Vx¢)(Y) = g(X + hX,Y)§ —n(Y)(X + hX), (2.10)
R(& X)Y = k[g(X,Y)E —n(Y)X], (2.11)
S(X,€) = 2nkn(X), (2.12)
SX,)Y) = 2(n—-1)g(X,Y)+2(n—-1)g(hX,Y)

F2(1 = ) + 20E}(X)n(Y), m > 1, (
r=2n2n—-2+k), (
S(¢X,0Y) = S(X,Y) — 20kn(X)n(Y) — 4(n — 1)g(hX,Y), (2.15
(Van)(Y) = g(X + X, ¢Y), (
R(X,Y)§ = k[n(Y)X —n(X)Y], (
n(R(X,Y)2Z) = klg(Y, Z)n(X) — g(X, Z)n(Y)], (2.18

for any vector fields X, Y, Z where R is the Riemannian curvature tensor and S
is the Ricci tensor.

3 Globally ¢-Quasiconformally Symmetric
N (k)—Contact Metric Manifolds

Definition 3.1. A N(k)—contact metric manifold M is said to be globally ¢—qua-
siconformally symmetric if the quasiconformal curvature tensor C* satisfies

P (VwC)(X,Y)Z =0, (3.1)
for all vector fields X, Y, Z, W € x(M).

A contact metric manifold is said to be an n—Einstein manifold if the Ricci
tensor of the manifold is of the form

where a, b are smooth functions on M and X,Y € x(M).
Here we state the following Lemma due to Baikoussis and Koufogiorgos [17]:
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Lemma 3.2. Let M be an n-FEinstein manifold of dimension (2n+1),(n > 1). If
& belongs to the k-nullity distribution, then k =1 and the structure is Sasakian.

Let us suppose that the manifold M is globally ¢—quasiconformally symmetric
N (k)—contact metric manifold. Then by definition

(Vi CH(X,Y)Z = 0. (3.3)

Using (2.1))(a), we have
—(VwCH( X, Y)Z 4+ n((VwC")(X,Y)Z)¢ = 0. (3.4)

Using in , it follows that
—ag((VWR)(X, Y)Z, U) - bg(X, U)(VWS)(Y7 Z)
+bg(Y,U)(Vw S)(X, Z) — bg(Y, Z)g((VwQ) X, U)

+og(X, 2)9(VwQ)Y,U) + 2n1+ ldr(W)[% +20]

9(Y,2)g9(X,U) — g(X, Z)g(Y,U)| + an((Vw R)(X,Y) Z)n(U)
+0(Vw S)(Y, Z)n(U)n(X) — b(VwS)(X, Z)n(Y)n(U)
+bg(Y, Z)n((Vw Q) X)n(U) — bg(X, Z)n((Vw Q)Y )n(U)

S dr (W) o=+ 28] lg(Y, 200(X) = g(X, 2V () = 0. (3.5)

Put X =U = ¢, in (3.5), where {e;} is an orthonormal basis of the tangent space
at each point of the manifold and taking summation over i, we get

~fa+ (20— DE(VwS)(Y. 2) ~ {ba((VwQ)er. )
(W) + 26— b ((Vw Q) Y, 2)
Fhg(VwQ)Y. 2) + an(Vw R)(E.Y)Z) — b(Tw S)(€. Z)n(Y)

(VW QY )(Z) + 5 dr(W) = + (Y )u(Z) =0.  (36)

Putting Z = £ in (3.6) and using (2.1))(a) and (2.3])(b), we obtain

~fat (20— DV S)(¥,€) — {bdr(W) — S dr(W)[2- + 20
—n(VwQ)E)In(Y) + an((Vw R)(£,Y)E) — b(Vw S)(&, n(Y)

1 a
de(W)[% +20]n(Y) = 0. (3.7)

+

Now

n(VwQ)§) = g(VwQ¢&,§) — g(Q(VwE), &)
S(¢X,§) + S(phX,§)
= 0, (3.8)
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Again

g(VwR)(§,Y)EE) = g(VwR(EY)EE) — g(R(Vwe, Y)E )

From (2.11]), we get by using (2.1)(b)
9(R(&,Y)E, ) = 0.
Since Vg = 0, we obtain from above
9g(VwR(£,Y)E, &) + g(R(E,Y)E V) = 0.
Again using (2.11)), we have

g(R(E,VwY)E, ) = kgn(VwY)E — VY, §)
= k(VwY) —n(VwY)]
= 0.

By using (2.5)), [2.11) and (2.1)(d), we have

= —g(R(eW,Y)§, &) — g(R(ohW,Y)¢, €)

715

(3.9)

(3.10)

(3.11)

= —kg(Y)oW —n(¢W)Y, &) — kg(n(Y)phW — n(¢hW)Y,§)

= —kn(Y)g(eW.§) — kn(Y)g(ohW. €)
= 0 (since ¢ is skew symmetric and ¢€ = 0).

Using (B-10), and (B12) in B9) yields
9g(VwR)(§,Y)E,€) = 0.
From by using and ¢& = 0, we get
(VwS)(E,€) = VwS(£,8) —25(VwE,§) = —25(—gW — ohW,§) = 0.
By the use of , and , from , we obtain

(VwS)(Y,€) =

o 7 rWm(Y),if a+ (20— 1)b # 0.

(3.12)

(3.13)

(3.14)

(3.15)

Because a + (2n — 1)b = 0 will imply C* = aC, from (L.1). So, we can not take
a+ (2n—1)b = 0. Putting Y = ¢ in (3.15) we get dr(W) = 0. This implies r is

constant. So from (3.15[), we have
(VwS)(Y,€) = 0.
Now we have

(VwS)(Y,8) = VwS(Y,§) — S(VwY,§) — S(Y, Vwé).

(3.16)
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Using (2.12)) and (2.5]) in the above relation, it follows that

(VwS)(Y, &) = 2nk(Vwn)(Y) + S(Y, oW + ¢hW). (3.17)
In virtue of (3.17), and ([2.3)(a), we get
(VwS)(Y, &) = —2nkg(¢W + ¢hW,Y) + S(Y, oW + ¢ohW). (3.18)
By and (3.18), we have
2nkg(¢W + ¢hW,Y) — S(Y, oW + ¢hW) = 0. (3.19)

Replacing Y by ¢Y in (3.19) and using (2.1))(d), (2.2)) and (2.15]), we get
Mmkg(oW + GhW, ¢Y) — S(8Y, oW + dhW) = 0
or,

mklg(W + hW,Y) — n(W + hW)n(Y)] — S(Y, W + hW')
+2nkn(W + hW)n(Y) + 4(n — 1)g(hY, W + hW) = 0

or,

2nkg(Y, W) + 2nkg(Y,hW) — S(Y,W) — S(Y,hWW)
+4(n — D)g(Y,hW) + 4(n — 1)g(Y,h*W) =0

since g(X,hY) = g(hX,Y). Now by (2.9), (2.13) and (2.1)(a) this implies

S(Y, W)+ S(Y,hW) = 2nkg(Y,W) + [2nk + 4(n — 1)]g(Y, hW)
+4(n —1)(k = 1)g(Y, =W + n(W)¢)

or

S(Y,W) +2(n - 1)g(Y,hW) —2(n — 1)(k — 1)g(Y, W)
+2(n = 1)(k — )n(Y)n(W) = [2nk — 4(n — 1)(k — 1)]g(Y, W)
+2nk +4(n — 1)]g(Y,hW) + 4(n — 1)(k — )n(Y)n(W),

which implies,

SY,wW) = 2(n+k—1g(Y,W)+2(nk+n—1)g(Y,hW)
+2(n —1)(k — D)n(Y)n(W). (3.20)

Replacing W by hW and using , (2.9) and (a), we get from (3.20))
—2kg(Y,hW) = =2nk(k — 1)g(Y, W) + 2nk(k — 1)n(Y)n(W).
Since we may assume that k # 0, this implies

g(Y, hW) = n(k — 1)g(Y, W) = n(k — 1)n(Y)n(W). (3.21)
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From and (3:21)), we get

S(Y,W) = Ag(Y,W)+ Bn(Y)n(W), (3.22)
where A=2[(n+k—1)+n(k—1)(nk+n—1)]
and B =2[(n—1)(k—1)—n(k—1)(nk +n—1)]

are constants. So, the manifold is an n-Einstein manifold with constant coeflicients.
Thus we state the following:

Proposition 3.3. A (2n+ 1)-dimensional globally ¢-quasiconformally symmetric
N (k)-contact metric manifold is an n-FEinstein manifold with constant coefficients.

In view of Lemma 3.2 and Proposition 3.3 we have the following;:

Theorem 3.4. A (2n + 1)-dimensional(n > 1) globally ¢-quasiconformally sym-
metric N(k)-contact metric manifold is a Sasakian manifold.

If £ = 1, then the manifold reduces to a Sasakian manifold. In this case from
(13.22) it follows that the manifold is an Einstein manifold. Thus we obtain the
following:

Proposition 3.5. A (2n+ 1)-dimensional globally ¢-quasiconformally symmetric
Sasakian manifold is an Finstein manifold.

The above proposition have been proved by De, Ozgﬁr and Mondal [5].

4 3-Dimensional Locally ¢—Quasiconformally
Symmetric N(k)—Contact Metric Manifolds

In a 3-dimensional Riemannian manifold, we have

RIX,Y)Z = g(Y,2)QX — g(X,2)QY + S(Y, 2)X
~S(X,2)Y + 5lg(X, 2)Y = g(Y, 2)X], (4.1)
where @) is the Ricci-operator, that is, ¢(QX,Y) = S(X,Y) and r is the scalar

curvature of the manifold. Now putting Z = £ in (4.1) and using (2.1))(a), (2.3))(d)
and (2.12)) we get

RX,Y)E = n(Y)QX —n(X)QY
L2k )X = n(X)Y]+ Sn(X)Y —n(Y)X].  (42)



718 Thai J. Math. 16 (2018)/ A. De and Y. Matsuyama

Using ([ZT7) in (T2), we get

(k= )IY)X = n(X)¥] = n(X)QY —n(Y)QX. (4.3)
Putting Y = ¢ in and using , we get
QX = (g — k)X + (3k — g)n(X)f. (4.4)

Therefore it follows from (4.4)) that

S(X,Y) = <§ = R)g(X.Y) + 3k = Hn(X)n(¥). (4.5)

Using (4.1]),(4.4) and ( in (1.1) we get for n =3

cr(X\Y)z = [(5—2/€)+26(*—k)—7( +20)][g(Y, 2)X - g(X, 2)Y]

32
Ha(3k — 2) + (% — B)lg(Y, Z)n(X)E — g(X, Z)n(Y )¢
AV IDX — nXp()Z
= (a+b)(r - 20)[g(Y: 2)X — g(X, Z)Y]
2 (b= a) + k(3a — D)][g(Y; Z)n(X)E — 9(X, Z)n(¥ )¢
(Y I(2)X — n(X)n(Y) 2] (4.6)

Taking the covariant differentiation to the both sides of the equation (4.6)), we
have

(VwC)(X,Y)Z = dr(W)(a+b)[g(Y,2)X - g(X, 2)Y]

V) ) g(v, Zyn(X)E — g(X, Z)n(¥ )
C(x

* 2
+1(Y)(2)X = n(X)n(¥)Z]

+5(b—a) + k(3a — b)lg(Y. 2)(Vwn) (X)¢
+9(Y, Z)n(X)Vwé — g(X, Z)(Vwn)(Y)E

—g(X, Z)n(Y)Vwé + (Vwn) (Y )(2)X
n(Y)(Vun) (2)X = (Twn)(X)n(¥)Z

“n(X) (V) (V) Z]. (4.7)

)
(v,

+

Now, assume that X, Y and Z are horizontal vector fields. So, becomes
(VwCX.Y)Z = dr(W)(a+b)g(Y. 2)X - g(X, Z)Y]
+5(b—a) + k(3a = b)lg(¥. 2)(Vwn) (X)¢
—9(X, Z)(Vwn)(Y)E]. (4.8)
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Using (2.1))(c) we obtain from
S (VwC)(X,Y)Z = dr(W)(a+b)[g(X, 2)Y —g(Y, 2)X]. (4.9

Assume ¢?(ViyC*)(X,Y)Z = 0. If a + b = 0, then putting a = —b into we
find for n =3
C*(X,Y)Z = aC(X,Y)Z,

where C' is the weyl conformal curvature tensor. But for a 3-dimensional Rieman-
nian manifold since C' = 0, we obtain C* = 0. Therefore a + b # 0. Then the
equation (4.9)) implies dr(WW) = 0. Hence we conclude the following:

Theorem 4.1. A 3-dimensional N (k)-contact metric manifold is locally ¢-quasi-
conformally symmetric if and only if the scalar curvature r is constant.

In [6] Blair et al proved the following:
A 3-dimensional N (k)-contact metric manifold is locally ¢-symmetric if and only
if the scalar curvature is constant.

Using the above result of Blair et al and Theorem 4.1, we state the following:

Theorem 4.2. A 3-dimensional N (k)-contact metric manifold is locally ¢-quas-
iconformally symmetric if and only if it is locally ¢p-symmetric.

5 Example

In this section, we construct an example of a locally ¢-quasiconformally sym-
metric 3-dimensional N (k)-contact manifold. We consider 3-dimensional manifold
M = {(x,y,2z) € R3}, where (z,y,z) are the standard coordinate in R3. Let
{e1,e2,e3} be linearly independent global frame on M given by

3 1
le2, e3] = 2ey, les,eq] = 562 le1,e2] = 568

Let ¢g be the Riemannian metric defined by
gler,e3) = g(ez, e3) = gler, e2) =0, g(er, e1) = g(ez, e2) = g(es, e3) = 1.
Let n be the 1-form defined by
n(U) = g(U, e1)
for any U € x(M). Let ¢ be the (1,1)-tensor field defined by
per =0, des =e3, dez = —es.
Using the linearity of ¢ and g we have

77(61) =1,
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¢*(U) = —U +n(U)ex

and
9(oU, oW) = g(U, W) = n(U)n(W)
for any U, W € x(M). Moreover

1 1
he; =0, hey = —562 and hes = 563.

The Riemannian connection V of the metric tensor g is given by the Koszul’s
formulae as

29(VxY,Z) = Xg(Y,Z2)+Yg(Z,X)— Zg(X,Y)
—g(X, [Y, ZD - g(Y, [Xv Z]) +9<Z7 [X’ Y])

We have

29(Veye3,e1) = eagles,er) + esg(er,ea) — erg(ea, e3)
—g(ea, [es, e1]) — g(es, [e2, e1]) + gler, [e2, e3])

1
= 1= 2g(§€1,€1).

Similarly, we have

1
29(Ve,e3,e2) =0 = 29(561, €2)

and

1
29(Ve,e3,e3) =0 = 2g(§61,€3).

Therefore, we have V.,e3 = %61.
Similarly, we have

Ve,e1 =0,V e =0,V e3 =0,

1 1
Ve,e1 = —563,Ve262 =0,Vee3 = 2€n

3 3
V53€1 = ieg,ve?’eg = —561,V63€3 =0.

Therefore, the manifold satisfies the relation
Ve,e1 = —gea — ¢(hes)

and
Ve,e1 = —pesz — ¢(hes).

Hence we have
Vx§=—¢X — ¢hX,
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for any vector field X. Hence the manifold is a contact metric manifold for e; = £.
Now, we find the curvature tensors as

3 3
R(ez,e1)er = —ea, R(es,e1)er = —es, R(ez,e3)e1 =0,

4 4
3 3
R(ez,e3)es = ZeayR(ez,ﬁ)eg =0, R(ez,e3)e3 = it
3 3
R(@l, 62)62 = 161, R(el, 63)63 = 161, R(el, 63)62 =0.

From the expressions of R(es,e1)e; and R(es,e1)e; we conclude the manifold is a

N (2)-contact metric manifold.

The Ricci tensors of this manifold are given as follows:

3
S(elael) = 575(62362) = 0,5(63,63) =0.

Hence the scalar curvature is
3
r = B = constant.

Therefore, in view of the Theorem 4.1, we can say that the manifold is locally
¢-quasiconformally symmetric.
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