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1 Introduction

The notion of locally symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. As a weaker version of local
symmetry, T. Takahasi [1] introduced the notion of locally φ−symmetry, De et
al. [2] introduced the notion of φ−recurrent Sasakian manifold. In the context of
contact geometry the notion of φ−symmetry is introduced and studied by Boeckx,
Bueken and Vanhecke [3] with several examples. In a recent paper De and Gazi
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[4] studied locally φ−recurrent N(k)−contact metric manifolds. Also De, Özgür
and Mondal [5] studied φ−quasiconformally symmetric Sasakian manifolds. In
the present paper we study φ−quasiconformally symmetric N(k)−contact metric
manifolds which generalizes the results of De, Özgür and Mondal [5] and also the
result of Blair, Koufogiorgos and Sharma [6].

Let (M, g) be a (2n+1), (n ≥ 1)-dimensional Riemannian manifold. The notion
of the quasiconformal curvature tensor was introduced by Yano and Sawaki [7].
According to them a quasiconformal curvature tensor is defined by

C∗(X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ]

− r

2n+ 1
[
a

2n
+ 2b][g(Y,Z)X − g(X,Z)Y ], (1.1)

where a, b are constants, S is the Ricci tensor, Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ) and r is the scalar curvature of the manifold M . If a = 1
and b = − 1

2n−1 , then (1.1) takes the form

C∗(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ] +
r

2n(2n− 1)
[g(Y,Z)X

−g(X,Z)Y ] = C(X,Y )Z, (1.2)

where C is the conformal curvature tensor. In [8], De and Matsuyama studied
quasiconformally flat Riemannian manifolds satisfying certain condition on the
Ricci tensor. From Theorem 5 of [8], it can be proved that a 4-dimensional qua-
siconformally flat semi-Riemannian manifold is the Robertson-Walker spacetime,
Robertson-Walker spacetime is the warped product I×fM∗, where M∗ is a space
of constant curvature and I is an open interval [9]. From (1.1) we obtain,

(∇WC∗)(X,Y )Z = a(∇WR)(X,Y )Z + b[(∇WS)(Y, Z)X

− (∇WS)(X,Z)Y + g(Y,Z)(∇WQ)X − g(X,Z)(∇WQ)Y ]

− dr(W )

2n+ 1
[
a

2n
+ 2b][g(Y, Z)X − g(X,Z)Y ]. (1.3)

If the condition ∇C∗ = 0 holds on M , then M is called quasiconformally
symmetric, where ∇ denotes the Levi-Civita connection on M . It is known [10]
that a quasiconformally symmetric N(k)−contact metric manifold for k 6= 0 is
a manifold of constant curvature k. This fact means that a quasiconformally
symmetric condition is too strong for a N(k)−contact metric manifold. In [1],
Takahashi introduced a weaker condition which is locally symmetry for a Sasakian
manifold that satisfies the condition

φ2(∇XR)(Y, Z)W = 0, (1.4)
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where X,Y, Z,W are horizontal vector fields which means that it is horizontal
with respect to the contact form η of the local fibering, namely, a horizontal vec-
tor is nothing but a vector which is orthogonal to ξ. In [6], Blair, Koufogirgos and
Sharma studied locally φ−symmetric 3-dimensional N(k)−contact metric mani-
folds.

In (1.4), if X,Y, Z,W are not horizontal vectors, then we call the manifold
globally φ−symmetric.

In this paper we introduce a weaker condition than quasiconformally symmetry
that satisfies

φ2(∇WC∗)(X,Y )Z = 0, (1.5)

which is called globally φ−quasiconformally symmetric for arbitrary vector fields
X,Y, Z,W on M . If X,Y, Z,W are horizontal vectors, then the manifold is called
locally φ−quasiconformally symmetric.

The paper is organized as follows: After preliminaries in Section 3, we con-
sider globally φ-quasiconformally symmetric N(k)−contact metric manifolds and
prove that such a N(k)-contact metric manifold is Sasakian. Section 4 deals with
3-dimensional locally φ-quasiconformally symmetric N(k)-contact metric mani-
fold. We prove that a 3-dimensional N(k)-contact metric manifold is locally φ-
quasiconformally symmetric if and only if it is locally φ−symmetric. Finally we
construct an example of a 3-dimensional locally φ−quasiconformally symmetric
N(k)−contact metric manifold.

2 Preliminaries

A (2n+ 1)-dimensional manifold M is said to admit an almost contact metric
structure if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form
η satisfying

(a) φ2 = −I+η⊗ξ, (b) η(ξ) = 1, (c) φξ = 0 and (d) η◦φ = 0. (2.1)

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M ×R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth
function on M×R. Let g be a compatible Riemannian metric with almost contact
structure (φ, ξ, η), that is

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2.2)

Then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). From (2.1) and (2.2) it can be easily seen that

(a) g(X,φY ) = −g(φX, Y ), (b) g(X, ξ) = η(X), (2.3)
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for all vector fields X, Y . An almost contact metric structure becomes a contact
metric structure if

g(X,φY ) = dη(X,Y ), (2.4)

for all vector fields X, Y . The 1-form η is then called a contact form and ξ is its
characteristic vector field. We define a (1, 1) tensor field h by h = 1

2£ξφ, where £
denotes the Lie derivative. Then h is symmetric and satisfies hφ = −φh. We have
Tr.h = Tr.φh = 0 and hξ = 0. Also

∇Xξ = −φX − φhX (2.5)

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian
manifold. An almost contact metric manifold is Sasakian if and only if

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X, X, Y ∈ TM, (2.6)

where ∇ is the Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M(φ, ξ, η, g) for which ξ is a Killing vector field is said to be a
K-contact metric manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [11]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric structure satisfying R(X,Y )ξ = 0 [12]. On the other hand on a Sasakian
manifold the following relation holds:

R(X,Y )ξ = η(Y )X − η(X)Y. (2.7)

As a generalisation of both R(X,Y )ξ = 0 and the Sasakian case : D. E. Blair, T.
Koufogiorgos and B. J. Papantoniou [13] introduced the (k, µ)- nullity distribution
on a contact metric manifold and gave several reasons for studying it. The (k, µ)-
nullity distribution N(k, µ) [13] of a contact metric manifold M is defined by

N(k, µ) : p −→ Np(k, µ)

= {W ∈ TpM : R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )},

for all X,Y ∈ TM, where (k, µ) ∈ R2. A contact metric manifold M with
ξ ∈ N(k, µ) is called a (k, µ)-contact manifold. In particular on a (k, µ)-contact
manifold, we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.8)

On a (k, µ)-contact manifold k ≤ 1. If k = 1, the structure is Sasakian (h = 0 and
µ is indeterminant) and if k < 1, then the (k, µ)-nullity condition determines the
curvature of M completely [13]. Infact, for a (k, µ)-contact manifold, the condition
of being Sasakian, a K-contact manifold , k = 1 and h = 0 are all equivalent.

The k-nullity distribution N(k) of a Riemannian manifold M is defined by [14]

N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]},
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k being a constant. If the characteristic vector field ξ ∈ N(k), then we call
the manifold an N(k)-contact metric manifold [14]. If k = 1, then the manifold
is Sasakian and if k = 0, then the manifold is locally isometric to the product
En+1(0)× Sn(4) for n > 1 and flat for n = 1 [12]. In a (k, µ)-contact manifold if
µ = 0, then the manifold becomes an N(k)-contact manifold.

In [15], N(k)-contact metric manifold were studied in details. For more details
we refer to ([6], [16]).

In a (2n + 1)-dimensional N(k)-contact metric manifold M , the following re-
lations hold:

h2 = (k − 1)φ2, k ≤ 1, (2.9)

(∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX), (2.10)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X], (2.11)

S(X, ξ) = 2nkη(X), (2.12)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+[2(1− n) + 2nk]η(X)η(Y ), m ≥ 1, (2.13)

r = 2n(2n− 2 + k), (2.14)

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 4(n− 1)g(hX, Y ), (2.15)

(∇Xη)(Y ) = g(X + hX, φY ), (2.16)

R(X,Y )ξ = k[η(Y )X − η(X)Y ], (2.17)

η(R(X,Y )Z) = k[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.18)

for any vector fields X, Y , Z where R is the Riemannian curvature tensor and S
is the Ricci tensor.

3 Globally φ-Quasiconformally Symmetric
N(k)−Contact Metric Manifolds

Definition 3.1. A N(k)−contact metric manifold M is said to be globally φ−qua-
siconformally symmetric if the quasiconformal curvature tensor C∗ satisfies

φ2(∇WC∗)(X,Y )Z = 0, (3.1)

for all vector fields X,Y, Z,W ∈ χ(M).

A contact metric manifold is said to be an η−Einstein manifold if the Ricci
tensor of the manifold is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (3.2)

where a, b are smooth functions on M and X,Y ∈ χ(M).
Here we state the following Lemma due to Baikoussis and Koufogiorgos [17]:
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Lemma 3.2. Let M be an η-Einstein manifold of dimension (2n+ 1), (n ≥ 1). If
ξ belongs to the k-nullity distribution, then k = 1 and the structure is Sasakian.

Let us suppose that the manifold M is globally φ−quasiconformally symmetric
N(k)−contact metric manifold. Then by definition

φ2(∇WC∗)(X,Y )Z = 0. (3.3)

Using (2.1)(a), we have

− (∇WC∗)(X,Y )Z + η((∇WC∗)(X,Y )Z)ξ = 0. (3.4)

Using (1.3) in (3.4), it follows that

−ag((∇WR)(X,Y )Z,U)− bg(X,U)(∇WS)(Y,Z)

+bg(Y,U)(∇WS)(X,Z)− bg(Y, Z)g((∇WQ)X,U)

+bg(X,Z)g((∇WQ)Y,U) +
1

2n+ 1
dr(W )[

a

2n
+ 2b]

[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)] + aη((∇WR)(X,Y )Z)η(U)

+b(∇WS)(Y, Z)η(U)η(X)− b(∇WS)(X,Z)η(Y )η(U)

+bg(Y,Z)η((∇WQ)X)η(U)− bg(X,Z)η((∇WQ)Y )η(U)

− 1

2n+ 1
dr(W )[

a

2n
+ 2b][g(Y,Z)η(X)− g(X,Z)η(Y )]η(U) = 0. (3.5)

Put X = U = ei, in (3.5), where {ei} is an orthonormal basis of the tangent space
at each point of the manifold and taking summation over i, we get

−[a+ (2n− 1)b](∇WS)(Y,Z)− {bg((∇WQ)ei, ei)

−2n− 1

2n+ 1
dr(W )[

a

2n
+ 2b]− bη((∇WQ)ξ)}g(Y,Z)

+bg((∇WQ)Y,Z) + aη((∇WR)(ξ, Y )Z)− b(∇WS)(ξ, Z)η(Y )

−bη((∇WQ)Y )η(Z) +
1

2n+ 1
dr(W )[

a

2n
+ 2b]η(Y )η(Z) = 0. (3.6)

Putting Z = ξ in (3.6) and using (2.1)(a) and (2.3)(b), we obtain

−[a+ (2n− 1)b](∇WS)(Y, ξ)− {bdr(W )− 2n− 1

2n+ 1
dr(W )[

a

2n
+ 2b]

−bη((∇WQ)ξ)}η(Y ) + aη((∇WR)(ξ, Y )ξ)− b(∇WS)(ξ, ξ)η(Y )

+
1

2n+ 1
dr(W )[

a

2n
+ 2b]η(Y ) = 0. (3.7)

Now

η((∇WQ)ξ) = g(∇WQξ, ξ)− g(Q(∇W ξ), ξ)
= S(φX, ξ) + S(φhX, ξ)

= 0, (3.8)



On φ−Quasiconformally Symmetric N(k)−Contact Metric Manifolds 715

Again

g((∇WR)(ξ, Y )ξ, ξ) = g(∇WR(ξ, Y )ξ, ξ)− g(R(∇W ξ, Y )ξ, ξ)

− g(R(ξ,∇WY )ξ, ξ)− g(R(ξ, Y )∇W ξ, ξ). (3.9)

From (2.11), we get by using (2.1)(b)

g(R(ξ, Y )ξ, ξ) = 0.

Since ∇g = 0, we obtain from above

g(∇WR(ξ, Y )ξ, ξ) + g(R(ξ, Y )ξ,∇W ξ) = 0. (3.10)

Again using (2.11), we have

g(R(ξ,∇WY )ξ, ξ) = kg(η(∇WY )ξ −∇WY, ξ)
= k[η(∇WY )− η(∇WY )]

= 0. (3.11)

By using (2.5), 2.11) and (2.1)(d), we have

g(R(∇W ξ, Y )ξ, ξ) = g(R(−φW − φhW, Y )ξ, ξ)

= −g(R(φW, Y )ξ, ξ)− g(R(φhW, Y )ξ, ξ)

= −kg(η(Y )φW − η(φW )Y, ξ)− kg(η(Y )φhW − η(φhW )Y, ξ)

= −kη(Y )g(φW, ξ)− kη(Y )g(φhW, ξ)

= 0 (since φ is skew symmetric and φξ = 0). (3.12)

Using (3.10), (3.11) and (3.12) in (3.9) yields

g((∇WR)(ξ, Y )ξ, ξ) = 0. (3.13)

From (2.11) by using (2.5) and φξ = 0, we get

(∇WS)(ξ, ξ) = ∇WS(ξ, ξ)− 2S(∇W ξ, ξ) = −2S(−φW − φhW, ξ) = 0. (3.14)

By the use of (3.8), (3.13) and (3.14), from (3.7), we obtain

(∇WS)(Y, ξ) =
1

2n+ 1
dr(W )η(Y ), if a+ (2n− 1)b 6= 0. (3.15)

Because a + (2n − 1)b = 0 will imply C∗ = aC, from (1.1). So, we can not take
a + (2n − 1)b = 0. Putting Y = ξ in (3.15) we get dr(W ) = 0. This implies r is
constant. So from (3.15), we have

(∇WS)(Y, ξ) = 0. (3.16)

Now we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).
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Using (2.12) and (2.5) in the above relation, it follows that

(∇WS)(Y, ξ) = 2nk(∇W η)(Y ) + S(Y, φW + φhW ). (3.17)

In virtue of (3.17), (2.16) and (2.3)(a), we get

(∇WS)(Y, ξ) = −2nkg(φW + φhW, Y ) + S(Y, φW + φhW ). (3.18)

By (3.16) and (3.18), we have

2nkg(φW + φhW, Y )− S(Y, φW + φhW ) = 0. (3.19)

Replacing Y by φY in (3.19) and using (2.1)(d), (2.2) and (2.15), we get

2nkg(φW + φhW,φY )− S(φY, φW + φhW ) = 0

or,

2nk[g(W + hW, Y )− η(W + hW )η(Y )]− S(Y,W + hW )

+2nkη(W + hW )η(Y ) + 4(n− 1)g(hY,W + hW ) = 0

or,

2nkg(Y,W ) + 2nkg(Y, hW )− S(Y,W )− S(Y, hW )

+4(n− 1)g(Y, hW ) + 4(n− 1)g(Y, h2W ) = 0

since g(X,hY ) = g(hX, Y ). Now by (2.9), (2.13) and (2.1)(a) this implies

S(Y,W ) + S(Y, hW ) = 2nkg(Y,W ) + [2nk + 4(n− 1)]g(Y, hW )

+4(n− 1)(k − 1)g(Y,−W + η(W )ξ)

or,

S(Y,W ) + 2(n− 1)g(Y, hW )− 2(n− 1)(k − 1)g(Y,W )

+2(n− 1)(k − 1)η(Y )η(W ) = [2nk − 4(n− 1)(k − 1)]g(Y,W )

+[2nk + 4(n− 1)]g(Y, hW ) + 4(n− 1)(k − 1)η(Y )η(W ),

which implies,

S(Y,W ) = 2(n+ k − 1)g(Y,W ) + 2(nk + n− 1)g(Y, hW )

+2(n− 1)(k − 1)η(Y )η(W ). (3.20)

Replacing W by hW and using (2.13), (2.9) and (2.1)(a), we get from (3.20)

−2kg(Y, hW ) = −2nk(k − 1)g(Y,W ) + 2nk(k − 1)η(Y )η(W ).

Since we may assume that k 6= 0, this implies

g(Y, hW ) = n(k − 1)g(Y,W )− n(k − 1)η(Y )η(W ). (3.21)
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From (3.20) and (3.21), we get

S(Y,W ) = Ag(Y,W ) +Bη(Y )η(W ), (3.22)

where A = 2[(n+ k − 1) + n(k − 1)(nk + n− 1)]

and B = 2[(n− 1)(k − 1)− n(k − 1)(nk + n− 1)]

are constants. So, the manifold is an η-Einstein manifold with constant coefficients.
Thus we state the following:

Proposition 3.3. A (2n+ 1)-dimensional globally φ-quasiconformally symmetric
N(k)-contact metric manifold is an η-Einstein manifold with constant coefficients.

In view of Lemma 3.2 and Proposition 3.3 we have the following:

Theorem 3.4. A (2n + 1)-dimensional(n ≥ 1) globally φ-quasiconformally sym-
metric N(k)-contact metric manifold is a Sasakian manifold.

If k = 1, then the manifold reduces to a Sasakian manifold. In this case from
(3.22) it follows that the manifold is an Einstein manifold. Thus we obtain the
following:

Proposition 3.5. A (2n+ 1)-dimensional globally φ-quasiconformally symmetric
Sasakian manifold is an Einstein manifold.

The above proposition have been proved by De, Özgür and Mondal [5].

4 3-Dimensional Locally φ−Quasiconformally
Symmetric N(k)−Contact Metric Manifolds

In a 3-dimensional Riemannian manifold, we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X

−S(X,Z)Y +
r

2
[g(X,Z)Y − g(Y,Z)X], (4.1)

where Q is the Ricci-operator, that is, g(QX,Y ) = S(X,Y ) and r is the scalar
curvature of the manifold. Now putting Z = ξ in (4.1) and using (2.1)(a), (2.3)(b)
and (2.12) we get

R(X,Y )ξ = η(Y )QX − η(X)QY

+2k[η(Y )X − η(X)Y ] +
r

2
[η(X)Y − η(Y )X]. (4.2)
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Using (2.17) in (4.2), we get

(k − r

2
)[η(Y )X − η(X)Y ] = η(X)QY − η(Y )QX. (4.3)

Putting Y = ξ in (4.3) and using (2.12), we get

QX = (
r

2
− k)X + (3k − r

2
)η(X)ξ. (4.4)

Therefore it follows from (4.4) that

S(X,Y ) = (
r

2
− k)g(X,Y ) + (3k − r

2
)η(X)η(Y ). (4.5)

Using (4.1),(4.4) and (4.5) in (1.1) we get for n = 3

C∗(X,Y )Z = [a(
r

2
− 2k) + 2b(

r

2
− k)− r

3
(
a

2
+ 2b)][g(Y, Z)X − g(X,Z)Y ]

+[a(3k − r

2
) + b(

r

2
− k)][g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ]

+η(Y )η(Z)X − η(X)η(Y )Z

= (a+ b)(r − 2k)[g(Y, Z)X − g(X,Z)Y ]

+[
r

2
(b− a) + k(3a− b)][g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Y )Z]. (4.6)

Taking the covariant differentiation to the both sides of the equation (4.6), we
have

(∇WC∗)(X,Y )Z = dr(W )(a+ b)[g(Y, Z)X − g(X,Z)Y ]

+
dr(W )

2
(b− a)[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Y )Z]

+[
r

2
(b− a) + k(3a− b)][g(Y,Z)(∇W η)(X)ξ

+g(Y, Z)η(X)∇W ξ − g(X,Z)(∇W η)(Y )ξ

−g(X,Z)η(Y )∇W ξ + (∇W η)(Y )η(Z)X

+η(Y )(∇W η)(Z)X − (∇W η)(X)η(Y )Z

−η(X)(∇W η)(Y )Z]. (4.7)

Now, assume that X, Y and Z are horizontal vector fields. So, (4.7) becomes

(∇WC∗)(X,Y )Z = dr(W )(a+ b)[g(Y,Z)X − g(X,Z)Y ]

+[
r

2
(b− a) + k(3a− b)][g(Y, Z)(∇W η)(X)ξ

−g(X,Z)(∇W η)(Y )ξ]. (4.8)
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Using (2.1)(c) we obtain from (4.8)

φ2(∇WC∗)(X,Y )Z = dr(W )(a+ b)[g(X,Z)Y − g(Y,Z)X]. (4.9)

Assume φ2(∇WC∗)(X,Y )Z = 0. If a + b = 0, then putting a = −b into (1.1) we
find for n = 3

C∗(X,Y )Z = aC(X,Y )Z,

where C is the weyl conformal curvature tensor. But for a 3-dimensional Rieman-
nian manifold since C = 0, we obtain C∗ = 0. Therefore a + b 6= 0. Then the
equation (4.9) implies dr(W ) = 0. Hence we conclude the following:

Theorem 4.1. A 3-dimensional N(k)-contact metric manifold is locally φ-quasi-
conformally symmetric if and only if the scalar curvature r is constant.

In [6] Blair et al proved the following:
A 3-dimensional N(k)-contact metric manifold is locally φ-symmetric if and only
if the scalar curvature is constant.

Using the above result of Blair et al and Theorem 4.1, we state the following:

Theorem 4.2. A 3-dimensional N(k)-contact metric manifold is locally φ-quas-
iconformally symmetric if and only if it is locally φ-symmetric.

5 Example

In this section, we construct an example of a locally φ-quasiconformally sym-
metric 3-dimensional N(k)-contact manifold. We consider 3-dimensional manifold
M = {(x, y, z) ∈ R3}, where (x, y, z) are the standard coordinate in R3. Let
{e1, e2, e3} be linearly independent global frame on M given by

[e2, e3] = 2e1, [e3, e1] =
3

2
e2, [e1, e2] =

1

2
e3.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by

η(U) = g(U, e1)

for any U ∈ χ(M). Let φ be the (1, 1)-tensor field defined by

φe1 = 0, φe2 = e3, φe3 = −e2.

Using the linearity of φ and g we have

η(e1) = 1,
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φ2(U) = −U + η(U)e1

and

g(φU, φW ) = g(U,W )− η(U)η(W )

for any U,W ∈ χ(M). Moreover

he1 = 0, he2 = −1

2
e2 and he3 =

1

2
e3.

The Riemannian connection ∇ of the metric tensor g is given by the Koszul’s
formulae as

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

We have

2g(∇e2e3, e1) = e2g(e3, e1) + e3g(e1, e2)− e1g(e2, e3)

−g(e2, [e3, e1])− g(e3, [e2, e1]) + g(e1, [e2, e3])

= 1 = 2g(
1

2
e1, e1).

Similarly, we have

2g(∇e2e3, e2) = 0 = 2g(
1

2
e1, e2)

and

2g(∇e2e3, e3) = 0 = 2g(
1

2
e1, e3).

Therefore, we have ∇e2e3 = 1
2e1.

Similarly, we have

∇e1e1 = 0,∇e1e2 = 0,∇e1e3 = 0,

∇e2e1 = −1

2
e3,∇e2e2 = 0,∇e2e3 =

1

2
e1,

∇e3e1 =
3

2
e2,∇e3e2 = −3

2
e1,∇e3e3 = 0.

Therefore, the manifold satisfies the relation

∇e2e1 = −φe2 − φ(he2)

and

∇e3e1 = −φe3 − φ(he3).

Hence we have

∇Xξ = −φX − φhX,



On φ−Quasiconformally Symmetric N(k)−Contact Metric Manifolds 721

for any vector field X. Hence the manifold is a contact metric manifold for e1 = ξ.
Now, we find the curvature tensors as

R(e2, e1)e1 =
3

4
e2, R(e3, e1)e1 =

3

4
e3, R(e2, e3)e1 = 0,

R(e2, e3)e2 =
3

4
e3, R(e2, e1)e3 = 0, R(e2, e3)e3 = −3

4
e2,

R(e1, e2)e2 =
3

4
e1, R(e1, e3)e3 =

3

4
e1, R(e1, e3)e2 = 0.

From the expressions of R(e2, e1)e1 and R(e3, e1)e1 we conclude the manifold is a
N( 3

4 )-contact metric manifold.
The Ricci tensors of this manifold are given as follows:

S(e1, e1) =
3

2
, S(e2, e2) = 0, S(e3, e3) = 0.

Hence the scalar curvature is

r =
3

2
= constant.

Therefore, in view of the Theorem 4.1, we can say that the manifold is locally
φ-quasiconformally symmetric.
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