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1 Introduction

Batir [1] presented a sharp double inequality

xxe−x
√

2π(x+ a) < Γ(x+ 1) < xxe−x
√

2π(x+ b) (1.1)

for the gamma function. He proved that the inequality (1.1) is valid for x > 1

with the best possible constant a = 1
6 and b = e2

2π − 1. His proof depended on
strictly decreasing monotone of the function

g(x) =
(Γ(x+ 1))2

2πx2xe−2x
− x, x > 1 (1.2)
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and the inequality

√
πxxe−x(8x3 + 4x2 + x+

1

100
)

1
6 < Γ(x+ 1)

<
√
πxxe−x(8x3 + 4x2 + x+

1

30
)

1
6 . (1.3)

One of the important aims of this paper is to extend the double inequality
(1.1) to the q-gamma function for all positive real numbers x and q under slightly
different conditions by means of studying the complete monotonicity property for
the function

Fa(x; q) = log Γq(x+ 1)− x log[x]q −
Li2(1− qx)

log q
− Cq̂

− 1

2
(1− a)H(q − 1) log q − 1

2
log[x+ a]q. (1.4)

where H(·) denotes the Heaviside step function, [x]q = (1− qx)/(1− q), Li2(z) is
the dilogarithm function defined for complex argument z as [2]

Li2(z) = −
∫ z

0

log(1− t)
t

dt, z 6∈ (1,∞) (1.5)

Γq(x) is the q-gamma function defined for all positive real variable x as

Γq(x) = (1− q)1−x
∞∏
n=0

1− qn+1

1− qn+x
, 0 < q < 1, (1.6)

= (q − 1)1−xq
x(x−1)

2

∞∏
n=0

1− q−(n+1)

1− q−(n+x)
, q > 1, (1.7)

q̂ =

{
q if 0 < q ≤ 1

q−1 if q ≥ 1

and

Cq =
1

2
log(2π) +

1

2
log

(
q − 1

log q

)
− 1

24
log q

+ log

( ∞∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

))
(1.8)

where r = exp(4π2/ log q).
From the previous definitions, for a positive x and q ≥ 1, we get

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x). (1.9)

Many of the classical facts about the ordinary gamma function have been
extended to the q-gamma function (see [3–6] and the references given therein). An
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important fact for gamma function in applied mathematics as well as in probability
is the Stirling formula that gives a pretty accurate idea about the size of gamma
function. With the Euler-Maclaurin formula, Moak [5] obtained the following
q-analogue of Stirling formula (see also [7])

log Γq(x) ∼
(
x− 1

2

)
log[x]q +

Li2(1− qx)

log q
+

1

2
H(q − 1) log q + Cq̂

+

∞∑
k=1

B2k

(2k)!

(
log q̂

q̂x − 1

)2k−1

q̂xP2k−3(q̂x), x→∞ (1.10)

where Bk, k ∈ N are the Bernoulli numbers and Pk is a polynomial of degree k
satisfying

Pk(z) = (z − z2)P ′k−1(z) + (kz + 1)Pk−1(z), P0 = P−1 = 1, k ∈ N. (1.11)

It is easy to see that

lim
q→1

Cq = C1 =
1

2
log(2π), lim

q→1

Li2(1− qx)

log q
= −x and Pk(1) = (k + 1)!

(1.12)

and so (1.4) when letting q → 1, tends to the ordinary Stirling formula [2]

log Γ(x) ∼
(
x− 1

2

)
log x− x+

1

2
log(2π) +

∞∑
k=1

B2k

2k(2k − 1)

1

x2k−1
, x→∞.

(1.13)

An important function related to q-gamma function is the so-called q-digamma
function ψq(x) which defined as the logarithmic derivative of the q-gamma function

ψq(x) =
d

dx
(log Γq(x)) =

Γ′q(x)

Γq(x)
(1.14)

The q-digamma function ψq(x) appeared in the work of Krattenthaler and Srivas-
tava [8], when they studied the summations for basic hypergeometric series. Some
of its properties have been presented and proved in their work. Also, in their
work, they proved that ψq(x) tends to the digamma function ψ(x) when letting
q → 1. Some inequalities involve the q-gamma function and some of its related
functions (q-beta, q-digamma and q-polygamma functions) have been introduced
in [9–21]. For more details on the q-digamma function (see [22] and the references
given therein).

For all positive real variable x, (1.6) gives

ψq(x) = − log(1− q) + log q

∞∑
k=1

qxk

1− qk
, 0 < q < 1 (1.15)
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and (1.7) gives

ψq(x) = − log(q − 1) + log q

[
x− 1

2
−
∞∑
k=1

q−xk

1− q−k

]
, q > 1. (1.16)

An important recursive formula that we need, obtained in [11] as

ψq(x+ 1) = ψq(x)− qx log q

1− qx
, q > 0; x > 0. (1.17)

2 The Complete Monotone Functions

In this section, the complete monotonicity property for the function Fa(x; q)
mentioned in (1.4) is proved by means of studying the complete monotonicity of its
derivative with respect to x. As a consequence of these results, some inequalities
for the q-gamma and the q-polygamma functions are established.

Theorem 2.1. Let x and q be positive real. Then, the function

Ga(x; q) = ψq(x+ 1)− log[x]q +
1

2

qx+a log q

1− qx+a
(2.1)

is strictly completely monotonic on (0,∞) if a ≥
√
259−7
42 ' 0.216511...; and the

function −Gb(x; q) is strictly completely monotonic on (−b,∞) if b ≤ 0.

Proof. When 0 < q < 1, (1.15), Taylor series for logarithm function and binomial
theorem give

Ga(x; q) =
1

2

∞∑
k=1

qxk

k(1− qk)
f(a, y), y = qk

where

f(a, y) = 2y log y + 2(1− y) + ya(1− y) log y.

It is obvious that the function a 7→ f(a, y) is increasing on R for all 0 < y < 1.
When a = 0, the function f(a, y) can be rewritten after simple calculations in the
form

f(0, y) = −y
∞∑
n=3

logn(1/y)

n!
(n− 2) < 0

which means that f(a, y) < 0 if a ≤ 0 for all 0 < y < 1.

When a > 0, the function f(a, y) can be rewritten in the form

f(a, y) = 2ya+1 log yea log(1/y) + 2ya+1ea log(1/y)(ea log(1/y) − 1)

+ ya+1 log y(ea log(1/y) − 1).
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Using the series expansion of the exponential function and Cauchy product rule
would yield

f(a, y) = ya+1
∞∑
n=3

logn(1/y)

n!

(
2

n−1∑
r=0

(
n

r

)
ar − 2nan−1 − n

)

= ya+1
∞∑
n=3

logn(1/y)

n!

(
2

n−2∑
r=0

(
n

r

)
ar − n

)

= ya+1
∞∑
n=3

logn(1/y)

n!
gn(a).

It is obvious that gn(a) is a polynomial of a with degree n − 2 and all its roots
depend on n. According to Descartes’ rules of sign, the polynomial gn(a) has only
one positive root, say a(n), depends on n for all n ≥ 3. It is very difficult to
determine this root due to that n has infinite values start with n = 3 and thus we
suffice to identify a suitable upper bound for a(n) to be close as much as possible
to the highest root of gn(a). Let us now rewrite gn(a) to be

gn(a) = 2

n−2∑
r=3

(
n

r

)
ar + n(n− 1)a2 + 2na+ 2− n.

It is clear that the quadratic polynomial n(n − 1)a2 + 2na + 2 − n has only one
positive root depends on n at

a(n) =
−n+

√
n3 − 2n2 + 2n

n(n− 1)
, for all n ≥ 3.

Therefore, the polynomial gn(a) is greater than zero if a ≥ a(n) for all n ≥ 3 and
so is the function f(a, y). By differentiating a(n), we get a′(n) > 0 if 3 ≤ n ≤ 6
and a′(n) < 0 if a ≥ 7 and thus a(n) is decreasing for all n ≥ 7 which reveals that

a(n) ≤ a(7) =

√
259− 7

42
' 0.216511... = α, for all n ≥ 7.

Since a(n) ≤ a(6) = (2
√

39 − 6)/30 ' 0.216333... < α for all 3 ≤ n ≤ 6, then
a(n) ≤ α for all n ≥ 3 which leads to gn(a) > 0 for all a > α with n ≥ 3 and so is
the function f(a, y). In view of the previous results, we conclude that Ga(x; q) < 0
if a ≤ 0 and Ga(x; q) > 0 if a ≥ α.

When q ≥ 1, (1.9) and (2.1) give

Ga(x; q) = ψq−1(x+ 1)− log[x]q−1 +
1

2

q−(x+a) log q−1

1− q−(x+a)
= Ga(x; q−1).

This completes the proof.
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Corollary 2.2. Let x and q be positive real with x > {0,−b}. Then, the double
inequalities

log[x]q +
qx log q

1− qx
− 1

2

qx+a log q

1− qx+a
< ψq(x) < log[x]q +

qx log q

1− qx
− 1

2

qx+b log q

1− qx+b
(2.2)

hold true for all a ≥
√
259−7
42 ' 0.216511... and b ≤ 0.

Moreover, for all positive integer n, the class of inequalities

(−1)n
(

log q

1− qx

)n+1

qxPn−1(qx)− (−1)n
(

log q

1− qx

)n
qxPn−2(qx)

− (−1)n
1

2

(
log q

1− qx+a

)n+1

qx+aPn−1(qx+a)

< (−1)nψ(n)
q (x)

< (−1)n
(

log q

1− qx

)n+1

qxPn−1(qx)− (−1)n
(

log q

1− qx

)n
qxPn−2(qx))

− (−1)n
1

2

(
log q

1− qx+b

)n+1

qx+bPn−1(qx+b) (2.3)

is valid for all a ≥
√
259−7
42 ' 0.216511... and b ≤ 0, where Pn is the polynomial

mentioned in Section 1.

Proof. Theorem 2.1 tells that Gb(x; q) < 0 < Ga(x; q) which is equivalent (2.2)
with using the identity (1.17), and

(−1)nG
(n)
b (x; q) < 0 < (−1)nG(n)

a (x; q), n ∈ N

which is equivalent (2.3) with using the identities (1.17) and

dn

dxn

[
qx log q

1− qx

]
=

(
log q

1− qx

)n+1

qxPn−1(qx), n = 0, 1, 2, · · ·

which was proved by Moak [5].

Remark 2.3. When letting q → 1, we have the two sided-inequality

log x− 1

x
+

1

2(x+ a)
< ψ(x) < log x− 1

2x
, x > 0 (2.4)

holds for a =
√
259−7
42 ' 0.216511.... The left hand side refines the inequality

log x− 1

x
< ψ(x) < log x− 1

2x
(2.5)

which obtained by Anderson and Qiu [23] for all x > 0.
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Theorem 2.4. Let x and q be positive real. Then, the function Fa(x; q) defined
as in (1.4) is strictly completely monotonic on (−a,∞) if a ≤ 0 and is strictly

increasing on (0,∞) if a ≥
√
259−7
42 ' 0.216511....

Proof. The function Fa(x; q) defined as in (1.4) can be read as

Fa(x; q) = µq(x) + νa(x; q) (2.6)

where

µq(x) = log Γq(x)−
(
x− 1

2

)
log[x]q −

Li2(1− qx)

log q
− Cq̂ −

1

2
H(q − 1) log q (2.7)

and

νa(x; q) =
1

2

(
log(1− qx)− log(1− qx+a) + aH(q − 1) log q

)
. (2.8)

Using Moak formula (1.10) yields limx→∞ µq(x) = 0 for all q > 0. Obviously,
limx→∞ νa(x; q) = 0 if 0 < q < 1 and when q > 1, we get

lim
x→∞

νa(x; q) =
1

2

(
x log q + log(1−q−x)− (x+a) log q − log(1−q−(x+a)) + a log q

)
= 0.

These conclude that limx→∞ Fa(x; q) = 0 for all q > 0 and consequently from
Theorem 2.1, we obtain the proof of this theorem.

Corollary 2.5. Let x and q be positive real. Then, the q-gamma function holds
the two-sided inequalities

[x]xq q
1
2 (1−b)H(q−1)Sq̂

√
2π[x+ b]q exp

(
Li2(1− qx)

log q

)
< Γq(x+ 1)

< [x]xq q
1
2 (1−a)H(q−1)Sq̂

√
2π[x+ a]q exp

(
Li2(1− qx)

log q

)
, x > max{0,−b} (2.9)

and the one-sided inequalities

Γq(x+ 1) ≥ [x]x

√
1− qx+a
1− qa

exp

(
Li2(1− qx)

log q

)
, x > 0 (2.10)

for all a ≥
√
259−7
42 ' 0.216511... and b ≤ 0 with the best possible constants a =

√
259−7
42 and b = 0, where

Sq = q
−1
24

√
q − 1

log q

∞∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

)
.
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Proof. The monotonicity properties of the function Fa(x; q) in Theorem 2.4 give
Fa(x; q) < 0 < Fb(x; q) which is equivalent (2.9) and

Fa(x; q) > Fa(0; q) = −Cq̂ −
1

2
H(q − 1) log q − 1

2
log[a]q

which is equivalent (2.10).

Remark 2.6. When letting q → 1, (2.9) tends to

xxe−x
√

2π(x+ b) < Γ(x+ 1) < xxe−x
√

2π(x+ a) (2.11)

which is valid for all x > 0 with the best possible constants a =
√
259−7
42 and b = 0.

Although the values of the constants a, b in (1.1) are better than here but we extend
the values of x to start with zero. Also, when letting q → 1, (2.10) tends to

Γ(x+ 1) ≥ xxe−x
√
x+ a

a
, x > 0 (2.12)

with the best possible constants a =
√
259−7
42 . The inequality (2.12) for the gamma

function appears to be a new.

3 Conclusion

In this paper, the Moak formula (1.10) is used to prove the complete mono-
tonicity property for the function Fa(x; q) for all positive real q. The inequalities
(2.2), (2.3), (2.9) and (2.10) come as an application of the complete monotonic-
ity property for the function Fa(x; q) and Ga(x; q). When letting q → 1, these
inequalities give the inequalities (2.4), (2.5), (2.11) and (2.12). Some of them are
considered refinement of existing inequalities and (2.12) is shown to be new.
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