Thai Journal of Mathematics
Volume 16 (2018) Number 3 : 683-692
http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

Some Inequalities for the q-Gamma and the q-Polygamma Functions

Ahmed Salem
Department of Mathematics, Faculty of Science, King Abdulaziz University
P.O. Box 80203, Jeddah 21589, Saudi Arabia
e-mail : ahmedsalem74@hotmail.com

Abstract

In this paper, the complete monotonicity property for functions related to the q-gamma and the q-polygamma functions, where q is a positive real number, is proved and exploited to establish some inequalities for the q-gamma and the q-polygamma functions.

Keywords : inequalities; q-gamma function; q-polygamma functions; completely monotonic function.
2010 Mathematics Subject Classification : 33D05; 26D07; 26A48.]

1 Introduction

Batir (1] presented a sharp double inequality

$$
\begin{equation*}
x^{x} e^{-x} \sqrt{2 \pi(x+a)}<\Gamma(x+1)<x^{x} e^{-x} \sqrt{2 \pi(x+b)} \tag{1.1}
\end{equation*}
$$

for the gamma function. He proved that the inequality (1.1) is valid for $x>1$ with the best possible constant $a=\frac{1}{6}$ and $b=\frac{e^{2}}{2 \pi}-1$. His proof depended on strictly decreasing monotone of the function

$$
\begin{equation*}
g(x)=\frac{(\Gamma(x+1))^{2}}{2 \pi x^{2 x} e^{-2 x}}-x, \quad x>1 \tag{1.2}
\end{equation*}
$$

Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

and the inequality

$$
\begin{array}{r}
\sqrt{\pi} x^{x} e^{-x}\left(8 x^{3}+4 x^{2}+x+\frac{1}{100}\right)^{\frac{1}{6}}<\Gamma(x+1) \\
<\sqrt{\pi} x^{x} e^{-x}\left(8 x^{3}+4 x^{2}+x+\frac{1}{30}\right)^{\frac{1}{6}} \tag{1.3}
\end{array}
$$

One of the important aims of this paper is to extend the double inequality (1.1) to the q-gamma function for all positive real numbers x and q under slightly different conditions by means of studying the complete monotonicity property for the function

$$
\begin{align*}
F_{a}(x ; q)= & \log \Gamma_{q}(x+1)-x \log [x]_{q}-\frac{\operatorname{Li}_{2}\left(1-q^{x}\right)}{\log q}-C_{\hat{q}} \\
& -\frac{1}{2}(1-a) H(q-1) \log q-\frac{1}{2} \log [x+a]_{q} \tag{1.4}
\end{align*}
$$

where $H(\cdot)$ denotes the Heaviside step function, $[x]_{q}=\left(1-q^{x}\right) /(1-q), \operatorname{Li}_{2}(z)$ is the dilogarithm function defined for complex argument z as 2

$$
\begin{equation*}
\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{\log (1-t)}{t} d t, \quad z \notin(1, \infty) \tag{1.5}
\end{equation*}
$$

$\Gamma_{q}(x)$ is the q-gamma function defined for all positive real variable x as

$$
\begin{gather*}
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q^{n+x}}, \quad 0<q<1, \tag{1.6}\\
=(q-1)^{1-x} q^{\frac{x(x-1)}{2}} \prod_{n=0}^{\infty} \frac{1-q^{-(n+1)}}{1-q^{-(n+x)}}, \quad q>1, \tag{1.7}\\
\hat{q}= \begin{cases}q & \text { if } 0<q \leq 1 \\
q^{-1} & \text { if } \quad q \geq 1\end{cases}
\end{gather*}
$$

and

$$
\begin{align*}
C_{q}= & \frac{1}{2} \log (2 \pi)+\frac{1}{2} \log \left(\frac{q-1}{\log q}\right)-\frac{1}{24} \log q \\
& +\log \left(\sum_{m=-\infty}^{\infty}\left(r^{m(6 m+1)}-r^{(2 m+1)(3 m+1)}\right)\right) \tag{1.8}
\end{align*}
$$

where $r=\exp \left(4 \pi^{2} / \log q\right)$.
From the previous definitions, for a positive x and $q \geq 1$, we get

$$
\begin{equation*}
\Gamma_{q}(x)=q^{\frac{(x-1)(x-2)}{2}} \Gamma_{q^{-1}}(x) . \tag{1.9}
\end{equation*}
$$

Many of the classical facts about the ordinary gamma function have been extended to the q-gamma function (see $[3-6]$ and the references given therein). An
important fact for gamma function in applied mathematics as well as in probability is the Stirling formula that gives a pretty accurate idea about the size of gamma function. With the Euler-Maclaurin formula, Moak [5 obtained the following q-analogue of Stirling formula (see also [7])

$$
\begin{align*}
\log \Gamma_{q}(x) & \sim\left(x-\frac{1}{2}\right) \log [x]_{q}+\frac{\operatorname{Li}_{2}\left(1-q^{x}\right)}{\log q}+\frac{1}{2} H(q-1) \log q+C_{\hat{q}} \\
& +\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left(\frac{\log \hat{q}}{\hat{q}^{x}-1}\right)^{2 k-1} \hat{q}^{x} P_{2 k-3}\left(\hat{q}^{x}\right), \quad x \rightarrow \infty \tag{1.10}
\end{align*}
$$

where $B_{k}, k \in \mathbb{N}$ are the Bernoulli numbers and P_{k} is a polynomial of degree k satisfying

$$
\begin{equation*}
P_{k}(z)=\left(z-z^{2}\right) P_{k-1}^{\prime}(z)+(k z+1) P_{k-1}(z), \quad P_{0}=P_{-1}=1, \quad k \in \mathbb{N} \tag{1.11}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\lim _{q \rightarrow 1} C_{q}=C_{1}=\frac{1}{2} \log (2 \pi), \quad \lim _{q \rightarrow 1} \frac{\operatorname{Li}_{2}\left(1-q^{x}\right)}{\log q}=-x \quad \text { and } \quad P_{k}(1)=(k+1)! \tag{1.12}
\end{equation*}
$$

and so $\sqrt{1.4}$ when letting $q \rightarrow 1$, tends to the ordinary Stirling formula 2

$$
\begin{equation*}
\log \Gamma(x) \sim\left(x-\frac{1}{2}\right) \log x-x+\frac{1}{2} \log (2 \pi)+\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k(2 k-1)} \frac{1}{x^{2 k-1}}, \quad x \rightarrow \infty \tag{1.13}
\end{equation*}
$$

An important function related to q-gamma function is the so-called q-digamma function $\psi_{q}(x)$ which defined as the logarithmic derivative of the q-gamma function

$$
\begin{equation*}
\psi_{q}(x)=\frac{d}{d x}\left(\log \Gamma_{q}(x)\right)=\frac{\Gamma_{q}^{\prime}(x)}{\Gamma_{q}(x)} \tag{1.14}
\end{equation*}
$$

The q-digamma function $\psi_{q}(x)$ appeared in the work of Krattenthaler and Srivastava 8], when they studied the summations for basic hypergeometric series. Some of its properties have been presented and proved in their work. Also, in their work, they proved that $\psi_{q}(x)$ tends to the digamma function $\psi(x)$ when letting $q \rightarrow 1$. Some inequalities involve the q-gamma function and some of its related functions (q-beta, q-digamma and q-polygamma functions) have been introduced in [9-21]. For more details on the q-digamma function (see 22 and the references given therein).

For all positive real variable $x, 1.6$ gives

$$
\begin{equation*}
\psi_{q}(x)=-\log (1-q)+\log q \sum_{k=1}^{\infty} \frac{q^{x k}}{1-q^{k}}, \quad 0<q<1 \tag{1.15}
\end{equation*}
$$

and (1.7) gives

$$
\begin{equation*}
\psi_{q}(x)=-\log (q-1)+\log q\left[x-\frac{1}{2}-\sum_{k=1}^{\infty} \frac{q^{-x k}}{1-q^{-k}}\right], \quad q>1 . \tag{1.16}
\end{equation*}
$$

An important recursive formula that we need, obtained in [11] as

$$
\begin{equation*}
\psi_{q}(x+1)=\psi_{q}(x)-\frac{q^{x} \log q}{1-q^{x}}, \quad q>0 ; x>0 . \tag{1.17}
\end{equation*}
$$

2 The Complete Monotone Functions

In this section, the complete monotonicity property for the function $F_{a}(x ; q)$ mentioned in (1.4) is proved by means of studying the complete monotonicity of its derivative with respect to x. As a consequence of these results, some inequalities for the q-gamma and the q-polygamma functions are established.

Theorem 2.1. Let x and q be positive real. Then, the function

$$
\begin{equation*}
G_{a}(x ; q)=\psi_{q}(x+1)-\log [x]_{q}+\frac{1}{2} \frac{q^{x+a} \log q}{1-q^{x+a}} \tag{2.1}
\end{equation*}
$$

is strictly completely monotonic on $(0, \infty)$ if $a \geq \frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$; and the function $-G_{b}(x ; q)$ is strictly completely monotonic on $(-b, \infty)$ if $b \leq 0$.

Proof. When $0<q<1$, 1.15, Taylor series for logarithm function and binomial theorem give

$$
G_{a}(x ; q)=\frac{1}{2} \sum_{k=1}^{\infty} \frac{q^{x k}}{k\left(1-q^{k}\right)} f(a, y), \quad y=q^{k}
$$

where

$$
f(a, y)=2 y \log y+2(1-y)+y^{a}(1-y) \log y .
$$

It is obvious that the function $a \mapsto f(a, y)$ is increasing on \mathbb{R} for all $0<y<1$. When $a=0$, the function $f(a, y)$ can be rewritten after simple calculations in the form

$$
f(0, y)=-y \sum_{n=3}^{\infty} \frac{\log ^{n}(1 / y)}{n!}(n-2)<0
$$

which means that $f(a, y)<0$ if $a \leq 0$ for all $0<y<1$.
When $a>0$, the function $f(a, y)$ can be rewritten in the form

$$
\begin{aligned}
f(a, y)= & 2 y^{a+1} \log y e^{a \log (1 / y)}+2 y^{a+1} e^{a \log (1 / y)}\left(e^{a \log (1 / y)}-1\right) \\
& +y^{a+1} \log y\left(e^{a \log (1 / y)}-1\right)
\end{aligned}
$$

Using the series expansion of the exponential function and Cauchy product rule would yield

$$
\begin{aligned}
f(a, y) & =y^{a+1} \sum_{n=3}^{\infty} \frac{\log ^{n}(1 / y)}{n!}\left(2 \sum_{r=0}^{n-1}\binom{n}{r} a^{r}-2 n a^{n-1}-n\right) \\
& =y^{a+1} \sum_{n=3}^{\infty} \frac{\log ^{n}(1 / y)}{n!}\left(2 \sum_{r=0}^{n-2}\binom{n}{r} a^{r}-n\right) \\
& =y^{a+1} \sum_{n=3}^{\infty} \frac{\log ^{n}(1 / y)}{n!} g_{n}(a) .
\end{aligned}
$$

It is obvious that $g_{n}(a)$ is a polynomial of a with degree $n-2$ and all its roots depend on n. According to Descartes' rules of sign, the polynomial $g_{n}(a)$ has only one positive root, say $a(n)$, depends on n for all $n \geq 3$. It is very difficult to determine this root due to that n has infinite values start with $n=3$ and thus we suffice to identify a suitable upper bound for $a(n)$ to be close as much as possible to the highest root of $g_{n}(a)$. Let us now rewrite $g_{n}(a)$ to be

$$
g_{n}(a)=2 \sum_{r=3}^{n-2}\binom{n}{r} a^{r}+n(n-1) a^{2}+2 n a+2-n .
$$

It is clear that the quadratic polynomial $n(n-1) a^{2}+2 n a+2-n$ has only one positive root depends on n at

$$
a(n)=\frac{-n+\sqrt{n^{3}-2 n^{2}+2 n}}{n(n-1)}, \quad \text { for all } \quad n \geq 3
$$

Therefore, the polynomial $g_{n}(a)$ is greater than zero if $a \geq a(n)$ for all $n \geq 3$ and so is the function $f(a, y)$. By differentiating $a(n)$, we get $a^{\prime}(n)>0$ if $3 \leq n \leq 6$ and $a^{\prime}(n)<0$ if $a \geq 7$ and thus $a(n)$ is decreasing for all $n \geq 7$ which reveals that

$$
a(n) \leq a(7)=\frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots=\alpha, \quad \text { for all } \quad n \geq 7
$$

Since $a(n) \leq a(6)=(2 \sqrt{39}-6) / 30 \simeq 0.216333 \ldots<\alpha$ for all $3 \leq n \leq 6$, then $a(n) \leq \alpha$ for all $n \geq 3$ which leads to $g_{n}(a)>0$ for all $a>\alpha$ with $n \geq 3$ and so is the function $f(a, y)$. In view of the previous results, we conclude that $G_{a}(x ; q)<0$ if $a \leq 0$ and $G_{a}(x ; q)>0$ if $a \geq \alpha$.

When $q \geq 1$, 1.9 and 2.1 give

$$
G_{a}(x ; q)=\psi_{q^{-1}}(x+1)-\log [x]_{q^{-1}}+\frac{1}{2} \frac{q^{-(x+a)} \log q^{-1}}{1-q^{-(x+a)}}=G_{a}\left(x ; q^{-1}\right)
$$

This completes the proof.

Corollary 2.2. Let x and q be positive real with $x>\{0,-b\}$. Then, the double inequalities

$$
\begin{equation*}
\log [x]_{q}+\frac{q^{x} \log q}{1-q^{x}}-\frac{1}{2} \frac{q^{x+a} \log q}{1-q^{x+a}}<\psi_{q}(x)<\log [x]_{q}+\frac{q^{x} \log q}{1-q^{x}}-\frac{1}{2} \frac{q^{x+b} \log q}{1-q^{x+b}} \tag{2.2}
\end{equation*}
$$

hold true for all $a \geq \frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$ and $b \leq 0$.
Moreover, for all positive integer n, the class of inequalities

$$
\begin{align*}
& (-1)^{n}\left(\frac{\log q}{1-q^{x}}\right)^{n+1} q^{x} P_{n-1}\left(q^{x}\right)-(-1)^{n}\left(\frac{\log q}{1-q^{x}}\right)^{n} q^{x} P_{n-2}\left(q^{x}\right) \\
& -(-1)^{n} \frac{1}{2}\left(\frac{\log q}{1-q^{x+a}}\right)^{n+1} q^{x+a} P_{n-1}\left(q^{x+a}\right) \\
< & (-1)^{n} \psi_{q}^{(n)}(x) \\
< & \left.(-1)^{n}\left(\frac{\log q}{1-q^{x}}\right)^{n+1} q^{x} P_{n-1}\left(q^{x}\right)-(-1)^{n}\left(\frac{\log q}{1-q^{x}}\right)^{n} q^{x} P_{n-2}\left(q^{x}\right)\right) \\
& -(-1)^{n} \frac{1}{2}\left(\frac{\log q}{1-q^{x+b}}\right)^{n+1} q^{x+b} P_{n-1}\left(q^{x+b}\right) \tag{2.3}
\end{align*}
$$

is valid for all $a \geq \frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$ and $b \leq 0$, where P_{n} is the polynomial mentioned in Section 1.

Proof. Theorem 2.1 tells that $G_{b}(x ; q)<0<G_{a}(x ; q)$ which is equivalent 2.2) with using the identity 1.17), and

$$
(-1)^{n} G_{b}^{(n)}(x ; q)<0<(-1)^{n} G_{a}^{(n)}(x ; q), \quad n \in \mathbb{N}
$$

which is equivalent (2.3) with using the identities 1.17 and

$$
\frac{d^{n}}{d x^{n}}\left[\frac{q^{x} \log q}{1-q^{x}}\right]=\left(\frac{\log q}{1-q^{x}}\right)^{n+1} q^{x} P_{n-1}\left(q^{x}\right), \quad n=0,1,2, \cdots
$$

which was proved by Moak [5].
Remark 2.3. When letting $q \rightarrow 1$, we have the two sided-inequality

$$
\begin{equation*}
\log x-\frac{1}{x}+\frac{1}{2(x+a)}<\psi(x)<\log x-\frac{1}{2 x}, \quad x>0 \tag{2.4}
\end{equation*}
$$

holds for $a=\frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$. The left hand side refines the inequality

$$
\begin{equation*}
\log x-\frac{1}{x}<\psi(x)<\log x-\frac{1}{2 x} \tag{2.5}
\end{equation*}
$$

which obtained by Anderson and Qiu 23] for all $x>0$.

Theorem 2.4. Let x and q be positive real. Then, the function $F_{a}(x ; q)$ defined as in (1.4) is strictly completely monotonic on $(-a, \infty)$ if $a \leq 0$ and is strictly increasing on $(0, \infty)$ if $a \geq \frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$.

Proof. The function $F_{a}(x ; q)$ defined as in (1.4) can be read as

$$
\begin{equation*}
F_{a}(x ; q)=\mu_{q}(x)+\nu_{a}(x ; q) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{q}(x)=\log \Gamma_{q}(x)-\left(x-\frac{1}{2}\right) \log [x]_{q}-\frac{\operatorname{Li}_{2}\left(1-q^{x}\right)}{\log q}-C_{\hat{q}}-\frac{1}{2} H(q-1) \log q \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{a}(x ; q)=\frac{1}{2}\left(\log \left(1-q^{x}\right)-\log \left(1-q^{x+a}\right)+a H(q-1) \log q\right) \tag{2.8}
\end{equation*}
$$

Using Moak formula 1.10 yields $\lim _{x \rightarrow \infty} \mu_{q}(x)=0$ for all $q>0$. Obviously, $\lim _{x \rightarrow \infty} \nu_{a}(x ; q)=0$ if $0<q<1$ and when $q>1$, we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \nu_{a}(x ; q) & =\frac{1}{2}\left(x \log q+\log \left(1-q^{-x}\right)-(x+a) \log q-\log \left(1-q^{-(x+a)}\right)+a \log q\right) \\
& =0
\end{aligned}
$$

These conclude that $\lim _{x \rightarrow \infty} F_{a}(x ; q)=0$ for all $q>0$ and consequently from Theorem 2.1] we obtain the proof of this theorem.

Corollary 2.5. Let x and q be positive real. Then, the q-gamma function holds the two-sided inequalities

$$
\begin{align*}
& {[x]_{q}^{x} q^{\frac{1}{2}(1-b) H(q-1)} S_{\hat{q}} \sqrt{2 \pi[x+b]_{q}} \exp \left(\frac{L i_{2}\left(1-q^{x}\right)}{\log q}\right)<\Gamma_{q}(x+1)} \\
& <[x]_{q}^{x} q^{\frac{1}{2}(1-a) H(q-1)} S_{\hat{q}} \sqrt{2 \pi[x+a]_{q}} \exp \left(\frac{L i_{2}\left(1-q^{x}\right)}{\log q}\right), \quad x>\max \{0,-b\} \tag{2.9}
\end{align*}
$$

and the one-sided inequalities

$$
\begin{equation*}
\Gamma_{q}(x+1) \geq[x]^{x} \sqrt{\frac{1-q^{x+a}}{1-q^{a}}} \exp \left(\frac{L i_{2}\left(1-q^{x}\right)}{\log q}\right), \quad x>0 \tag{2.10}
\end{equation*}
$$

for all $a \geq \frac{\sqrt{259}-7}{42} \simeq 0.216511 \ldots$ and $b \leq 0$ with the best possible constants $a=$ $\frac{\sqrt{259}-7}{42}$ and $b=0$, where

$$
S_{q}=q^{\frac{-1}{24}} \sqrt{\frac{q-1}{\log q}} \sum_{m=-\infty}^{\infty}\left(r^{m(6 m+1)}-r^{(2 m+1)(3 m+1)}\right)
$$

Proof. The monotonicity properties of the function $F_{a}(x ; q)$ in Theorem 2.4 give $F_{a}(x ; q)<0<F_{b}(x ; q)$ which is equivalent 2.9) and

$$
F_{a}(x ; q)>F_{a}(0 ; q)=-C_{\hat{q}}-\frac{1}{2} H(q-1) \log q-\frac{1}{2} \log [a]_{q}
$$

which is equivalent 2.10 .
Remark 2.6. When letting $q \rightarrow 1$, (2.9) tends to

$$
\begin{equation*}
x^{x} e^{-x} \sqrt{2 \pi(x+b)}<\Gamma(x+1)<x^{x} e^{-x} \sqrt{2 \pi(x+a)} \tag{2.11}
\end{equation*}
$$

which is valid for all $x>0$ with the best possible constants $a=\frac{\sqrt{259}-7}{42}$ and $b=0$. Although the values of the constants a, b in 1.1) are better than here but we extend the values of x to start with zero. Also, when letting $q \rightarrow 1,2.10$ tends to

$$
\begin{equation*}
\Gamma(x+1) \geq x^{x} e^{-x} \sqrt{\frac{x+a}{a}}, \quad x>0 \tag{2.12}
\end{equation*}
$$

with the best possible constants $a=\frac{\sqrt{259}-7}{42}$. The inequality $\sqrt{2.12}$ for the gamma function appears to be a new.

3 Conclusion

In this paper, the Moak formula 1.10 is used to prove the complete monotonicity property for the function $F_{a}(x ; q)$ for all positive real q. The inequalities (2.2), 2.3, 2.9 and 2.10 come as an application of the complete monotonicity property for the function $F_{a}(x ; q)$ and $G_{a}(x ; q)$. When letting $q \rightarrow 1$, these inequalities give the inequalities $2.4,2.2 .5,2.11$ and 2.12 . Some of them are considered refinement of existing inequalities and 2.12 is shown to be new.

Acknowledgements : This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G:150-130-1439). The author, therefore, acknowledges with thanks DSR for technical and financial support.

References

[1] N. Batir, Inequalities for the gamma function, Arch. Math. 91 (2008) 554-563.
[2] M. Abramowitz, C.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, Mathematical tables 7th printing, Applied Mathematics Series, Vol. 55, Nathional Bureau of Standards, Washington, DC, 1964.
[3] R. Askey, The q-gamma and q-beta functions, Appl. Anal. 8 (1978) 125-141.
[4] D.S. Moak, The q-gamma function for $q>1$, Aequationes Math. 20 (1980) 278-285.
[5] D.S. Moak, The q-analogue of Stirling's formula, Rocky Mountain J. Math. 14 (1984) 403-412.
[6] A.B. Olde Daalhuis, Asymptotic expansions of q-gamma, q-exponential and q-bessel functions, Journal of Mathematical Analysis and Applications 186 (1994) 896-912.
[7] A. Salem, A completely monotonic function involving q-gamma and q digamma functions, Journal of Approximations Theory 164 (7) (2012) 971980.
[8] C. Krattenthaler, H.M. Srivastava, Summations for basic hypergeometric series involving a q-analogue of the digamma function, Computers Math. Applic. 32 (2) (1996) 73-91.
[9] H. Alzer, A.Z. Grinshpan, Inequalities for the gamma and q-gamma functions, Journal of Approximation Theory 144 (2007) 67-82.
[10] T. Mansour, A.SH. Shabani, Some inequalities for the q-digamma function, J. Inequal. Pure and Appl. Math. 10 (1) (2009) 1-8.
[11] A. Salem, Sharp bounds for the q-gamma function in terms of the Lambert W function, Ramanujan J. (2018) (To appear).
[12] A. Salem, F. Alzahrani, Improvements of bounds for the q-gamma and the q-polygamma functions, Journal of Mathematical Inequalities 11 (3) (2017) 873-883.
[13] A. Salem, Completely monotonic functions related to the gamma and the q gamma functions, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 111 (1) (2017) 271-280.
[14] A. Salem, Some classes of completely monotonic functions related to q-gamma and q-digamma functions, Mathematical Inequalities \& Applications 19 (3) (2016) 853-862.
[15] A. Salem, A certain class of approximations for the q-digamma function, Rocky Mountain Journal of Mathematics 46 (5) (2016) 1665-1677.
[16] A. Salem, Monotonic functions related to the q-gamma function, Monatshefte fur Mathematik 179 (2) (2016) 281-292.
[17] A. Salem, Some completely monotonic functions associated with the q-gamma and the q-polygamma functions, Acta Mathematica Scientia 35 (5) (2015) 1214-1224.
[18] A. Salem, Completely monotonic functions related to the q-gamma and the q-trigamma functions, Analysis \& Applications, 13 (2) (2015) 125-134.
[19] A. Salem, Complete monotonicity properties of functions involving q-gamma and q-digamma functions, Mathematical Inequalities \& Applications 17 (3) (2014) 801-811.
[20] A. Salem, Two classes of bounds for the q-gamma and the q-digamma functions in terms of the q-zeta functions, Banach J. Math. Anal. 8 (1) (2014) 109-117.
[21] A. Salem, An infinite class of completely monotonic functions involving the q-gamma function, Journal of Mathematical Analysis and Applications 406 (2) (2013) 392-399.
[22] A. Salem, Some properties and expansions associated with q-digamma function, Quaestiones mathematicae 36 (1) (2013) 67-77.
[23] G.D. Anderson, S.L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc. 125 (11) (1997) 3355-3362.
(Received 9 January 2013)
(Accepted 11 February 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

