Thai Journal of Mathematics Volume 16 (2018) Number 3 : 675–681

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

ϵ -Closed Sets

Talal Al-Hawary

Department of Mathematics, Yarmouk University, Irbid-Jordan e-mail : talalhawary@yahoo.com

Abstract: Our goal in this paper is to introduce the relatively new notions of ϵ -closed and ϵ -generalized closed sets. Several properties and connections to other well-known weak and strong closed sets are discussed. ϵ -generalized continuous and ϵ -generalized irresolute functions and their basic properties and relations to other continuities are explored.

Keywords : ϵ -open set; ϵ -closed set; ϵ -generalized closed set; ϵ -generalized continuous function.

2010 Mathematics Subject Classification : 54C08; 54H05.

1 Introduction

Let (X, \mathfrak{T}) be a topological space (or simply, a space). If $A \subseteq X$, then the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A subset $A \subseteq X$ is called *semi-open* [1] if there exists an open set $O \in \mathfrak{T}$ such that $O \subseteq A \subseteq Cl(O)$. Clearly A is a semi-open set if and only if $A \subseteq Cl(Int(A))$. A complement of a semi-open set is called *semi-closed*. A is a generalized closed (= g-closed) set [2] if $A \subseteq U$ and $U \in \mathfrak{T}$ implies that $Cl(A) \subseteq U$. For more on the preceding notions, the reader is referred to [3-24].

A function $f : (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is called *g-continuous* [25] if $f^{-1}(V)$ is gclosed in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') and *contra-semi-continuous* [26] if $f^{-1}(V)$ is semi-open in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') .

We introduce the relatively new notions of ϵ -closed sets, which is closely related to the class of closed subsets. We investigate several characterizations of ϵ -open and ϵ -closed notions via the operations of interior and closure. In Section 3, we introduce the notion of ϵ -generalized closed sets and study connections to other weak and strong forms of generalized closed sets. In addition several interesting

Copyright \bigcirc 2018 by the Mathematical Association of Thailand. All rights reserved.

properties and constructions of ϵ -generalized closed sets are discussed. Section 4 is devoted to introducing and studying ϵ -generalized continuous and ϵ -generalized irresolute functions and connections to other similar forms of continuity.

2 ϵ -Closed Sets

We begin this section by introducing the notions of ϵ -open and ϵ -closed subsets.

Definition 2.1. Let A be a subset of a space (X, \mathfrak{T}) . The ϵ -interior of A is the union of all open subsets of X whose closures are contained in Cl(A), and is denoted by $Int_{\epsilon}(A)$. A is called ϵ -open if $A = Int_{\epsilon}(A)$. The complement of a ϵ -open subset is called ϵ -closed. Equivalently, a subset A of X is ϵ -closed if $A = Cl_{\epsilon}(A)$, where $Cl_{\epsilon}(A) = \{x \in X : Cl(U) \cap Cl(A) \neq \emptyset, U \in \mathfrak{T}, x \in U\}.$

Clearly $Int(A) \subseteq Int_{\epsilon}(A) \subseteq Cl(A)$ and $A \subseteq Cl(A) \subseteq Cl_{\epsilon}(A)$ and hence every ϵ -closed set is closed, but the converses need not be true.

Example 2.2. Let $X = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Set $A = \{a, c\}$. Then A is closed, but not ϵ -closed as $Cl_{\epsilon}(A) = X$.

Even the intersection of two ϵ -open subsets needs not be ϵ -open.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\mathfrak{T} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Then $A = \{a, b\}$ and $B = \{a, c\}$ are ϵ -open subsets, but $A \cap B = \{c\}$ is not ϵ -open.

Next, we show that arbitrary union of ϵ -open subsets are ϵ -open.

Theorem 2.4. If (X, \mathfrak{T}) is a space, then arbitrary union of ϵ -open subsets are ϵ -open.

Proof. If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of ϵ -open subsets of X, then for every $\alpha \in \Delta$, $Int_{\epsilon}(A\alpha) = A_{\alpha}$. Hence

$$Int_{\epsilon}(\cup_{\alpha\in\Delta}A\alpha) = \bigcup\{U\in\mathfrak{T}:Cl(U)\subseteq Cl(\cup_{\alpha\in\Delta}A\alpha)\}\$$
$$= \bigcup\{U\in\mathfrak{T}:Cl(U)\subseteq\cup_{\alpha\in\Delta}Cl(A\alpha)\}\$$
$$= \cup_{\alpha\in\Delta}(Int_{\epsilon}(A\alpha))\$$
$$= \cup_{\alpha\in\Delta}A_{\alpha}.$$

Hence $\cup_{\alpha \in \Delta} A \alpha$ is ϵ -open.

Corollary 2.5. Arbitrary intersection of ϵ -closed subsets are ϵ -closed, while finite unions of ϵ -closed subsets need not be ϵ -closed.

Next we show that $A \subseteq Int_{\epsilon}(A)$ and $Int_{\epsilon}(A) \subseteq A$ need not be true.

Example 2.6. Consider the space in Example 2.2. Then $\{c\} \subsetneq Int_{\epsilon}(\{c\}) = \emptyset$ and $Int_{\epsilon}(\{a, b\}) = X \subsetneq \{a, b\}$.

 $\epsilon\text{-}\mathsf{Closed}$ Sets

Remark 2.7. If A is a dense subset of X, then $Int_{\epsilon}(A) = X$.

Lemma 2.8. The intersection of a closed set with a ϵ -closed set is closed.

Proof. Let A be a closed set and B be a ϵ -closed set. For all $x \in Cl(A \cap B)$, the for every open set U containing $x, U \cap (A \cap B) \neq \emptyset$. Hence $U \cap A \neq \emptyset$ and $Cl(U) \cap Cl(B) \neq \emptyset$. Thus $x \in Cl(A) \cap Cl_{\epsilon}(B) = A \cap B$. Therefore, $A \cap B$ is closed.

Corollary 2.9. The union of an open set with a ϵ -open set is open.

Lemma 2.10. If A is a semi-closed subset of an E.D. space X, then $Cl(A) = Cl_{\epsilon}(A)$.

Proof. We only need to show $Cl_{\epsilon}(A) \subseteq Cl(A)$ when A is semi-closed. For all $x \in Cl_{\epsilon}(A)$ and all U open set containing x, we have $Cl(U) \cap Cl(A) \neq \emptyset$. As X is E.D., Cl(A) = Int(Cl(A)) and hence $Cl(U) \cap Int(Cl(A)) \neq \emptyset$. Thus there exists $y \in Cl(U)$ and $y \in Int(Cl(A))$ which is open. Hence $U \cap Int(Cl(A)) \neq \emptyset$ and as A is semi-closed, $U \cap A \neq \emptyset$. Therefore $Cl_{\epsilon}(A) \subseteq Cl(A)$.

We remark that X being an E.D. space is necessary in Lemma 2.10.

Example 2.11. Consider the space in Example 2.3. Then $Cl_{\epsilon}(\{b\}) = X \neq \{a, b, d\} = Cl(\{b\})$.

Corollary 2.12. In an E.D. space, a subset is closed if and only if it is ϵ -closed.

3 ϵ -Generalized Closed Sets

In this section, we introduce the notion of ϵ -generalized closed set. Moreover, several interesting properties and constructions of these subsets are discussed.

Definition 3.1. A subset A of a space X is called ϵ -generalized closed (ϵ -g-closed) if whenever U is an open subset containing A, we have $Cl_{\epsilon}(A) \subseteq U$. A is ϵ -g-open if $X \setminus A$ is ϵ -g-closed.

Theorem 3.2. A subset A of (X, \mathfrak{T}) is ϵ -g-open if and only if $F \subseteq Int\epsilon(A)$, whenever $F \subseteq A$ and F is closed in (X, \mathfrak{T}) .

Proof. Let A be an ϵ -g-open set and F be a closed subset such that $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$. As $X \setminus A$ is ϵ -g-closed and as $X \setminus F$ is open, $Cl_{\epsilon}(X \setminus A) \subseteq X \setminus F$. So $F \subseteq X \setminus Cl_{\epsilon}(X \setminus A) = Int_{\epsilon}(A)$.

Conversely, if $X \setminus A \subseteq U$ where U is open, then the closed set $X \setminus U \subseteq A$. Thus $X \setminus U \subseteq Int_{\epsilon}(A) = X \setminus Cl_{\epsilon}(X \setminus A)$ and so $Cl_{\epsilon}(X \setminus A) \subseteq U$.

Next we show the class of ϵ -g-closed sets is properly placed between the classes of closed and ϵ -closed sets. Moreover, the class g-closed sets is properly placed between the classes of closed sets and ϵ -g-closed sets. A closed set is trivially gclosed and clearly every ϵ -closed set is closed and every ϵ -g-closed set is g-closed as $Cl(A) \subseteq Cl_{\epsilon}(A)$ for every subset A of a space X. In Example 2.2, $A = \{a, c\}$ is a closed set that is not ϵ -closed. In Example 2.3, $A = \{a, b, d\}$ is not ϵ -closed, but as the only super set of A is X, A is ϵ -g-closed.

Example 3.3. Consider the space $X = \{a, b, c, d\}$ and $\mathfrak{T} = \{\emptyset, X, \{a, b, d\}, \{c, d\}, \{d\}\}$. Then $A = \{a, b\}$ is closed and hence is g-closed, but not ϵ -g-closed as $Cl_{\epsilon}(A) = X$.

The following is an immediate result from Lemma 2.10:

Theorem 3.4. If A is a semi-closed subset of an E.D. space X, the following are equivalent:

(1) A is ε-g-closed;
(2) A is g-closed

Its clear that if $A \subseteq B$, then $Int_{\epsilon}(A) \subseteq Int_{\epsilon}(B)$ and $Cl_{\epsilon}(A) \subseteq Cl_{\epsilon}(B)$.

Lemma 3.5. If A and B are subsets of a space X, then $Cl_{\epsilon}(A \cup B) = Cl_{\epsilon}(A) \cup Cl_{\epsilon}(B)$ and $Cl_{\epsilon}(A \cap B) \subseteq Cl_{\epsilon}(A) \cap Cl_{\epsilon}(B)$.

Proof. Since A and B are subsets of $A \cup B$, $Cl_{\epsilon}(A) \cup Cl_{\epsilon}(B) \subseteq Cl_{\epsilon}(A \cup B)$. On the other hand, if $x \in Cl_{\epsilon}(A \cup B)$ and U is an open set containing x, then $Cl(U) \cap Int(A \cup B) \neq \emptyset$. Hence either $Cl(U) \cap Cl(A) \neq \emptyset$ or $Cl(U) \cap Int(B) \neq \emptyset$. Thus $x \in Cl_{\epsilon}(A) \cup Cl_{\epsilon}(B)$.

Finally since $A \cap B$ is a subset of A and B, $Cl_{\epsilon}(A \cap B) \subseteq Cl_{\epsilon}(A) \cap Cl_{\epsilon}(B)$. \Box

Corollary 3.6. Finite union of ϵ -g-closed sets is ϵ -g-closed.

While the finite intersection of ϵ -g-closed sets needs not be ϵ -g-closed.

Example 3.7. Let $X = \{a, b, c, d, e\}$ and $\mathfrak{T} = \{\emptyset, X, \{a, b\}, \{c\}, \{a, b, c\}\}$. Then $A = \{a, c, d\}$ and $B = \{b, c, e\}$ are ϵ -g-closed sets as the only super set of them is X, but $A \cap B = \{c\}$ is not ϵ -g-closed.

Theorem 3.8. The intersection of an ϵ -g-closed set with a ϵ -closed set is ϵ -g-closed.

Proof. Let A be a ϵ -g-closed set and B be a ϵ -closed set. Let U be an open set containing $A \cap B$. Then $A \subseteq U \cup X \setminus B$. Since $X \setminus B$ is ϵ -open, by Corollary 2.9, $U \cup X \setminus B$ is open and since A is ϵ -g-closed, $Cl_{\epsilon}(A \cap B) \subseteq Cl_{\epsilon}(A) \cap Cl_{\epsilon}(B) = Cl_{\epsilon}(A) \cap B \subseteq (U \cup X \setminus B) \cap B = U \cap B \subseteq U$.

 $\epsilon\text{-}\mathrm{Closed}$ Sets

4 ϵ -g-Continuous and ϵ -g-Irresolute Functions

Definition 4.1. A function $f: (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is called

(1) ϵ -g-continuous if $f^{-1}(V)$ is ϵ -g-closed in (X, \mathfrak{T}) for every closed set V of (Y, \mathfrak{T}') ,

(2) ϵ -g-irresolute if $f^{-1}(V)$ is ϵ -g-closed in (X, \mathfrak{T}) for every ϵ -g-closed set V of (Y, \mathfrak{T}') .

Lemma 4.2. Let $f : (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ be ϵ -g-continuous. Then f is g-continuous but not conversely.

Proof. Follows from the fact that every ϵ -g-closed set is g-closed.

Example 4.3. Consider the space (X, \mathfrak{T}) in Example 3.3 and the identity function $f : (X, \mathfrak{T}) \to (X, \mathfrak{T}')$ where $\mathfrak{T}' = \{\emptyset, X, \{c, d\}\}$. Since $f^{-1}(\{a, b\}) = \{a, b\} \neq Cl_{\epsilon}(\{a, b\}), f$ is not ϵ -g-continuous, but f is continuous and hence g-continuous.

Even the composition of ϵ -g-continuous functions needs not be ϵ -g-continuous.

Example 4.4. Let f be the function in Example 3.7. Let $\mathfrak{T}'' = \{\emptyset, \{a, b, d, e\}, X\}$. Let $g: (X, \mathfrak{T}') \to (X, \mathfrak{T}'')$ be the identity function. It is easily observed that g is also ϵ -g-continuous as the only super set of $\{c\}$ is X. But the composition function $g \circ f: (X, \mathfrak{T}) \to (X, \mathfrak{T}'')$ is not ϵ -g-continuous since $\{c\}$ is closed in (X, \mathfrak{T}'') , but not ϵ -g-closed in (X, \mathfrak{T}) .

We end this section by giving a necessary condition for ϵ -g-continuous function to be ϵ -g-irresolute.

Theorem 4.5. If $f: (X, \mathfrak{T}) \to (Y, \mathfrak{T}')$ is bijective, open and ϵ -g-continuous, then f is ϵ -g-irresolute.

Proof. Let V be a ϵ -g-closed subset of Y and let $f^{-1}(V) \subseteq O$, where $O \in \mathfrak{T}$. Clearly, $V \subseteq f(O)$. Since $f(O) \in \mathfrak{T}'$ and since V is ϵ -g-closed, $Cl_{\epsilon}(V) \subseteq f(O)$ and thus $f^{-1}(Cl_{\epsilon}(V)) \subseteq O$. Since f is ϵ -generalized continuous and since $Cl_{\epsilon}(V)$ is closed in Y, $f^{-1}(Cl_{\epsilon}(V))$ is ϵ -g-closed. $f^{-1}(Cl_{\epsilon}(V) \subseteq Cl_{\epsilon}(f^{-1}(Cl_{\epsilon}(V))) = f^{-1}(Cl_{\epsilon}(V)) \subseteq O$. Therefore, $f^{-1}(V)$ is ϵ -g-closed and hence, f is ϵ -g-irresolute.

Acknowledgement : I would like to thank the referee for his comments and suggestions on the manuscript.

References

- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [2] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970) 89-96.
- [3] T. Al-Hawary, β -Greedoids, Matematicki Vesnik 66 (4) (2014) 343-350.
- [4] T. Al-Hawary, A. Al-Omari, Between open and ω-open sets, Questions Answers Gen. Topology 24 (2006) 67-77.
- [5] T. Al-Hawary, A. Al-Omari, Decompositions of continuity, Turkish J. Math. 30 (20) (2006) 187-195.
- [6] T. Al-Hawary, Continuous mappings via regular open sets, Mutah Lil-Buhuth Wad-Dirasat 2 (7) (2007) 15-26.
- [7] T. Al-Hawary, Decompositions of continuity via ζ -open sets, Acta Universitatis aplulensis 34 (2013) 137-142.
- [8] T. Al-Hawary, A. Al-Omari, Generalized b-closed sets, Mutah Lil-Buhuth Wad-Dirasat 5 (1) (2008) 27-39.
- [9] T. Al-Hawary, Generalized preopen sets, Questions Answers Gen. Topology 29 (1) (2011) 73-80.
- [10] T. Al-Hawary, A. Al-Omari, ω-Continuous like mappings, Al-Manarah J. 13 (6) (2007) 135-147.
- [11] T. Al-Hawary, On generalized preopen sets, Proyecciones: revista de matematica 31 (4) (2013) 63-76.
- T. Al-Hawary, On supper continuity of topological spaces, Matematika 21 (1) (2005) 43-49.
- [13] T. Al-Hawary, ω -Generalized closed sets, Int. J. Appl. Math. 16 (3) (2004) 341-353.
- [14] T. Al-Hawary, Paracompact like spaces, Al-Manarah J. 12 (2) (2006) 199-211.
- [15] T. Al-Hawary, ρ -Closed sets, Acta Universitatis aplulensis 35 (2013) 29-36.
- [16] T. Al-Hawary, A. Al-Omari, θ-Generalized regular closed sets, Mutah Lil-Buhuth Wad-Dirasat 2 (1) (2009) 21-29.
- [17] T. Al-Hawary, $\zeta\text{-}\mathrm{Open}$ sets, Acta Scientiarum-Technology 35 (1) (2013) 111-115.
- [18] S. Crossley, S. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971) 99-112.
- [19] S. Crossley, S. Hildebrand, Semi-topological properties, Fund. Math. LXXI (1972) 233-254.

 $\epsilon\text{-}\mathsf{Closed}$ Sets

- [20] M. Ganster, I. Reilly, A decomposition of continuity, Acta Math. Hung. 56 (3-4) (1990) 299-301.
- [21] A.S. Mashhour, M.E. Abd El Monsef, S.N. El Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47-53.
- [22] A. Mashhour, I. Hasanein, S. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982) 1119-1123.
- [23] J. Tong, A Decomposition of continuity, Acta Math. Hung. 48 (1-2) (1986) 11-15.
- [24] J. Tong, On Decomposition of continuity in topological spaces, Acta Math. Hung. 54 (1-2) (1989) 51-55.
- [25] K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 12 (1991) 5-13.
- [26] J. Dontchev, T. Noiri, Conra-semi-continuous functions, Math. Pannon. 10 (2) (1999) 159-168.

(Received 15 April 2013) (Accepted 10 November 2016)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th