Thai Journal of Mathematics
Volume 16 (2018) Number 3: 665-674
http://thaijmath.in.cmu.ac.th

Global Behavior of a Fourth Order Rational Difference Equation

R. Abo-Zeid ${ }^{\dagger} 11$ and M. A. Al-Shabi ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Basic Science, The Higher Institute for Engineering \& Technology, Al-Obour, Cairo, Egypt
e-mail : abuzead73@yahoo.com
\ddagger Department of Computer Science, College of Computer
Qassim University, Buraidah 51411, Saudi Arabia
e-mail : malshabi@yahoo.com

Abstract : In this paper, we investigate the global stability, periodic nature, and the oscillation of solutions of the difference equation

$$
x_{n+1}=\frac{A x_{n-3}}{B+C x_{n-2}^{2}}, \quad n=0,1,2, \ldots
$$

where $A, C, B>0$ and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are nonnegative real numbers. We show that under certain conditions unbounded solutions will be obtained.

Keywords : difference equation; periodic solution; globally asymptotically stable. 2010 Mathematics Subject Classification : 39A20.

1 Introduction

Difference equations, although their forms look very simple, it is extremely difficult to understand thoroughly the global behaviors of their solutions. One can refer to 1,2 .

The study of nonlinear rational difference equations of higher order is of paramount importance, since we still know so little about such equations. It is

[^0]worthwhile to point out that although several approaches have been developed for finding the global character of difference equations $2-5$, relatively a large number of difference equations have not been thoroughly understood yet $6-9$. Hence a great challenge and reward for further investigations are remained and are still at their infancy.

In this paper, we study the global asymptotic stability of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{A x_{n-3}}{B+C x_{n-2}^{2}}, \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where $A, C, B>0$ and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are nonnegative real numbers.

Here we recall some results which will be useful in the sequel.
Consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right) \quad, n=0,1, \ldots \tag{1.2}
\end{equation*}
$$

where $f: R^{k+1} \rightarrow R$.
Definition 1.1. 2 An equilibrium point for equation (1.2) is a point $\bar{x} \in R$ such that $\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x})$.

Definition 1.2. [2]

1. An equilibrium point \bar{x} for equation (1.2) is called locally stable if for every $\epsilon>0$, there exists a $\delta>0$ such that every solution $\left\{x_{n}\right\}$ with initial conditions $\left.x_{-k}, x_{-k+1}, \ldots, x_{0} \in\right] \bar{x}-\delta, \bar{x}+\delta\left[\right.$ is such that $\left.x_{n} \in\right] \bar{x}-\epsilon, \bar{x}+\epsilon[$ for all $n \in \mathbb{N}$. Otherwise \bar{x} is said to be unstable.
2. The equilibrium point \bar{x} of equation 1.2 is called locally asymptotically stable if it is locally stable and there exists $\gamma>0$ such that for any initial conditions $\left.x_{-k}, x_{-k+1}, \ldots, x_{0} \in\right] \bar{x}-\gamma, \bar{x}+\gamma[$, the corresponding solution $\left\{x_{n}\right\}$ tends to \bar{x}.
3. An equilibrium point \bar{x} for equation 1.2 is called a global attractor if every solution $\left\{x_{n}\right\}$ converges to \bar{x} as $n \rightarrow \infty$.
4. The equilibrium point \bar{x} for equation (1.2) is called globally asymptotically stable if it is locally asymptotically stable and global attractor.

Suppose that f is continuously differentiable in some open neighborhood of \bar{x}. Let

$$
a_{i}=\frac{\partial f}{\partial x_{n-i}}(\bar{x}, \ldots, \bar{x}), \quad \text { for } \quad i=0,1, \ldots, k
$$

denote the partial derivatives of $f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)$ with respect to x_{n-i} evaluated at the equilibrium point \bar{x} of equation (1.2). Then the equation

$$
\begin{equation*}
y_{n+1}=\sum_{i=0}^{k} a_{i} y_{n-i} \quad, n=0,1, \ldots \tag{1.3}
\end{equation*}
$$

is called the linearized equation associated with equation about the equilibrium point \bar{x}, and the equation

$$
\begin{equation*}
\lambda^{k+1}-\sum_{i=0}^{k} a_{i} \lambda^{k-i}=0 \tag{1.4}
\end{equation*}
$$

is called the characteristic equation associated with equation (1.3) about the equilibrium point \bar{x}.

Theorem 1.3. 2 Assume that f is a C^{1} function and let \bar{x} be an equilibrium point of equation (1.2). Then the following statements are true:

1. If all roots of equation 1.4 lie in the open disk $|\lambda|<1$, then \bar{x} is locally asymptotically stable.
2. If at least one root of equation (1.4) has absolute value greater than one, then \bar{x} is unstable.

Now we give the definitions for the positive and negative semicycle of a solution of equation 1.2 relative to an equilibrium point \bar{x}.

Definition 1.4. [8] A positive semicycle of a solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of equation 1.2 consists of a "string" of terms $\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$, all greater than or equal to the equilibrium \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } l=-1, \quad \text { or } l>-1 \text { and } x_{l-1}<\bar{x}
$$

and

$$
\text { either } m=\infty, \quad \text { or } m<\infty \text { and } x_{m+1}<\bar{x}
$$

Definition 1.5. [8] A negative semicycle of a solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of equation 1.2 consists of a "string" of terms $\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$, all less than or equal to the equilibrium \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } l=-1, \quad \text { or } l>-1 \text { and } x_{l-1} \geq \bar{x}
$$

and

$$
\text { either } m=\infty, \quad \text { or } m<\infty \text { and } x_{m+1} \geq \bar{x}
$$

Theorem 1.6. [8] Assume that $f \in C[(0, \infty) \times(0, \infty),(0, \infty)]$ is such that: $f(x, y)$ is decreasing in x for each fixed y, and $f(x, y)$ is increasing in y for each fixed x. Let \bar{x} be a positive equilibrium of equation 1.2). Then except possibly for the first semicycle, every solution of equation (1.2) has semicycles of length one.

The change of variables $x_{n}=\sqrt{\frac{A}{C}} y_{n}$ reduces equation (1.1) to the difference equation

$$
\begin{equation*}
y_{n+1}=\frac{y_{n-3}}{\gamma+y_{n-2}^{2}}, \quad n=0,1,2, \cdots \tag{1.5}
\end{equation*}
$$

where $\gamma=\frac{B}{A}$.

2 Local Asymptotic Stability of the Equilibrium Points

Now we examine the equilibrium points of equation (1.5) and their local asymptotic behavior. Clearly equation (1.5) has two nonnegative equilibrium points $\bar{y}=0$ and $\bar{y}=\sqrt{1-\gamma}$ when $\gamma<1$ and $\bar{y}=0$ only when $\gamma \geq 1$.

The linearized equation associated with equation 1.5 about \bar{y} is

$$
\begin{equation*}
z_{n+1}+\frac{2 \bar{y}^{2}}{\left(\gamma+\bar{y}^{2}\right)^{2}} z_{n-2}-\frac{1}{\gamma+\bar{y}^{2}} z_{n-3}=0 \tag{2.1}
\end{equation*}
$$

The characteristic equation associated with this equation is

$$
\begin{equation*}
\lambda^{4}+\frac{2 \bar{y}^{2}}{\left(\gamma+\bar{y}^{2}\right)^{2}} \lambda-\frac{1}{\gamma+\bar{y}^{2}}=0 \tag{2.2}
\end{equation*}
$$

We summarize the results of this section in the following theorem.
Theorem 2.1. 1. If $\gamma>1$, then the zero equilibrium point is locally asymptotically stable.
2. If $\gamma<1$, then the equilibrium point $\bar{y}=0$ is unstable (repeller) and the equilibrium point $\bar{y}=\sqrt{1-\gamma}$ is unstable (saddle point).
Proof. The linearized equation 2.1 about $\bar{y}=0$ is $z_{n+1}-\frac{1}{\gamma} z_{n-3}=0$. The characteristic equation associated with this equation is $\lambda^{4}-\frac{1}{\gamma}=0$.

1. If $\gamma>1$, then $|\lambda|<1$ and $\bar{y}=0$ is locally asymptotically stable.
2. If $\gamma<1$, then $\bar{y}=0$ is unstable (repeller).

Now, the characteristic equation 2.2 about $\bar{y}=\sqrt{1-\gamma}$ is

$$
\lambda^{4}+2(1-\gamma) \lambda-1=0
$$

It is clear that this equation has a root in the interval $(0,1)$ and another root in the interval $(-\infty,-1)$, from which the result follows.

3 Global Behavior of Equation (1.5)

Assume that $\gamma>1$. Our main result is the following theorem.
Theorem 3.1. If $\gamma>1$, then the zero equilibrium point is globally asymptotically stable.

Proof. Let $\left\{y_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (1.5). Hence

$$
y_{4 m+i}=\frac{y_{4(m-1)+i}}{\gamma+y_{4(m-1)+i+1}^{2}}<\frac{y_{4(m-1)+i}}{\gamma}, \quad i=1,2,3,4 .
$$

This implies that

$$
\lim _{m \rightarrow \infty} y_{(4 m+i)}=0, \quad i=1,2,3,4 .
$$

Therefore, $\lim _{m \rightarrow \infty} y_{n}=0$.
In view of Theorem (3.1), $\bar{y}=0$ is globally asymptotically stable.
Example 3.2. Figure 1. $(\gamma>1)$ shows that the solution $\left\{y_{n}\right\}_{n=-3}^{\infty}$ of the equation

$$
y_{n+1}=\frac{y_{n-3}}{1.2+y_{n-2}^{2}}, \quad n=0,1, \ldots
$$

with initial conditions $y_{-3}=0.2, y_{-2}=1, y_{-1}=3$ and $y_{0}=0.1$ converges to zero.

Figure 1: The difference equation $y_{n+1}=\frac{y_{n-3}}{1.2+y_{n-2}^{2}}$

4 Periodic Nature

Theorem 4.1. Suppose that $\gamma=1$. Then every solution of equation (1.5) converges to a period 4 solution and there exist periodic solutions of equation (1.5) with prime period 4.

Proof. Assume that $\gamma=1$ and let $\left\{y_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation 1.5. Then the subsequences $\left\{y_{4 n+i}\right\}_{n=-1}^{\infty}$ are decreasing for each $1 \leq i \leq 4$. Let

$$
\lim _{n \rightarrow \infty} y_{4 n+i}=\rho_{i}, \quad i=1,2,3,4 .
$$

It is clear that $\left\{\ldots, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \ldots\right\}$ is a period 4 solution of equation (1.5).

Now let φ_{1}, φ_{2} be distinct positive real numbers. It follows that the sequence

$$
\left\{\ldots, \varphi_{1}, 0, \varphi_{2}, 0, \varphi_{1}, 0, \varphi_{2}, 0, \ldots\right\}
$$

is a periodic solution of equation 1.5 with prime period 4 . This completes the proof.

5 Oscillation and Unbounded Solutions

In this section, we study the semicycle analysis and the existence of unbounded solutions for equation 1.5.

Theorem 5.1. Assume that $\gamma<1$ and let $\left\{y_{n}\right\}_{n=-3}^{\infty}$ be a nontrivial solution of equation 1.5). If \bar{y} is the unique positive equilibrium of equation 1.5 , then the following statements are true.

1. Let the initial conditions be such that either
$\left(C_{1}\right) y_{-2}, y_{0}>\bar{y}$ and $y_{-3}, y_{-1}<\bar{y}$
or
$\left(C_{2}\right) y_{-2}, y_{0}<\bar{y}$ and $y_{-3}, y_{-1}>\bar{y}$
is satisfied. Then $\left\{y_{n}\right\}_{n=-3}^{\infty}$ oscillates about \bar{y} with semicycles of length one.
2. There exist solutions of equation (1.5) which are neither bounded nor persist.

Proof. 1. The proof follows immediately from Theorem 1.6
2. Let $\left\{y_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (1.5) with initial conditions y_{-3}, y_{-2}, y_{-1}, y_{0} such that $y_{-3}, y_{-1}<\bar{y}<y_{-2}, y_{0}$. Then

$$
\begin{array}{cl}
y_{1}=\frac{y_{-3}}{\gamma+y_{-2}^{2}}<y_{-3}, & y_{2}
\end{array}=\frac{y_{-2}}{\gamma+y_{-1}^{2}}>y_{-2}, ~ ⿻ y_{-1}<y_{-1}, \quad \text { and } \quad y_{4}=\frac{y_{0}}{\gamma+y_{1}^{2}}>y_{0} .
$$

By induction we get,

$$
y_{4 m+i}<y_{4(m-1)+i}, \quad i=1,3
$$

and

$$
y_{4 m+i}>y_{4(m-1)+i}, \quad i=2,4
$$

It follows that, for each $j=1,2$ we have that $\lim _{m \rightarrow \infty} y_{4 m+2 j}=L_{2 j} \in$ $(\sqrt{1-\gamma}, \infty]$ and $\lim _{m \rightarrow \infty} y_{4 m+2 j+1}=L_{2 j+1} \in[0, \sqrt{1-\gamma})$.
We show that for each $j=1,2, L_{2 j+1}=0$. For the sake of contradiction, suppose that there exists $j \in\{1,2\}$ with $L_{2 j+1} \in(0, \sqrt{1-\gamma})$. Then

$$
L_{2 j+1}=\lim _{m \rightarrow \infty} y_{4(m+1)+2 j+1}=\lim _{m \rightarrow \infty} \frac{y_{4 m+2 j+1}}{\gamma+y_{4 m+2 j+2}^{2}}=\frac{L_{2 j+1}}{\gamma+L_{2 j+2}^{2}}
$$

As $\lim _{m \rightarrow \infty} y_{4 m+2 j+1}=L_{2 j+1} \in(0, \sqrt{1-\gamma})$, we have

$$
1=\gamma+L_{2 j+2}^{2}>1
$$

which is a contradiction. It follows that, for each $j=1,2$ we have that $L_{2 j+1}=0$, and so $\lim _{n \rightarrow \infty} y_{2 n+1}=0$.
Now we show that $L_{2 j}=\infty$ for each $j=1,2$. For the sake of contradiction, suppose that there exists $j \in\{1,2\}$ with $L_{2 j} \in(\sqrt{1-\gamma}, \infty)$. Then

$$
L_{2 j}=\lim _{m \rightarrow \infty} y_{4(m+1)+2 j}=\lim _{m \rightarrow \infty} \frac{y_{4 m+2 j}}{\gamma+y_{4(m)+2 j+1}^{2}}=\frac{L_{2 j}}{\gamma}
$$

This implies that $\gamma=1$, which is a contradiction. Therefore, $\lim _{n \rightarrow \infty} y_{2 n}=$ ∞, and the proof is complete.

Example 5.2. Figure 2. $(\gamma=1)$ shows that the solution $\left\{y_{n}\right\}_{n=-3}^{\infty}$ of the equation

$$
y_{n+1}=\frac{y_{n-3}}{1+y_{n-2}^{2}}, \quad n=0,1, \ldots
$$

with initial conditions $y_{-3}=1.9, y_{-2}=1, y_{-1}=0.4$ and $y_{0}=0.1$ converges to a period-4 solution.

Example 5.3. Figure 3. $\left(\gamma<\frac{1}{2}\right)$ shows that the solution $\left\{y_{n}\right\}_{n=-3}^{\infty}$ of the equation

$$
y_{n+1}=\frac{y_{n-3}}{0.75+y_{n-2}^{2}}, \quad n=0,1, \ldots
$$

with initial conditions $y_{-3}=0.4, y_{-2}=0.6, y_{-1}=0.1$ and $y_{0}=0.7$ is nether bounded nor persist.

Figure 2: $\quad y_{n+1}=\frac{y_{n-3}}{1+y_{n-2}^{2}}$
Figure 3: $\quad y_{n+1}=\frac{y_{n-3}}{0.75+y_{n-2}^{2}}$

Theorem 5.4. Assume that $\gamma<1 / 2$ and let $\left\{y_{n}\right\}_{n=-3}^{\infty}$ be a nontrivial solution of equation 1.5. If \bar{y} is the unique positive equilibrium of equation 1.5), then the following statements are true.

1. If there exists a positive integer $K, y_{n-3} \geq \bar{y}$ for every $n \geq K$, then $\left\{y_{n}\right\}_{n=-3}^{\infty}$ converges monotonically to the equilibrium \bar{y}.
2. If the initial conditions satisfy $0<y_{-3}, y_{-2}, y_{-1}, y_{0}<\sqrt{1-\gamma}$ with $y_{-3}>$ $y_{-2}, y_{-1}>y_{0}$ and $y_{-2}<\sqrt{1-\gamma}\left(\gamma+y_{-1}^{2}\right)$, then $\left\{y_{n}\right\}_{n=1}^{\infty}$ oscillates about \bar{y} with semicycles of length one. Moreover, the subsequences $\left\{y_{4 n+i}\right\}_{n=0}^{\infty}$ are increasing when $i=1,3$ and decreasing when $i=2,4$.
3. If the initial conditions satisfy $\sqrt{1-\gamma}<y_{-3}, y_{-2}, y_{-1}$, y_{0} with $y_{-3}<y_{-2}, y_{-1}$ $<y_{0}$ and $y_{-2}>\sqrt{1-\gamma}\left(\gamma+y_{-1}^{2}\right)$, then $\left\{y_{n}\right\}_{n=1}^{\infty}$ oscillates about \bar{y} with semicycles of length one. Moreover, the subsequences $\left\{y_{4 n+i}\right\}_{n=0}^{\infty}$ are decreasing when $i=1,3$ and increasing when $i=2,4$.

Proof. 1. Let $\left\{y_{n}\right\}$ be a solution of equation $\sqrt{1.5}$). We will assume that there exists a positive integer K such that $y_{n-3} \geq \bar{y}$ for every $n \geq K$.
It is sufficient to show that $\left\{y_{n}\right\}$ is a decreasing sequence for $n \geq K$.
For, assume for the sake of contradiction that for some $n_{0} \geq K, y_{n_{0}}>y_{n_{0}-1}$.
Then there exist $m_{0} \in \mathbb{N}$ and $i_{0} \in\{1,2,3,4\}$ such that $n_{0}=4 m_{0}+i_{0}$. Clearly the condition $\gamma<\frac{1}{2}$ implies that the function

$$
f(x)=\frac{x}{\gamma+x^{2}}
$$

is decreasing. Then

$$
y_{4\left(m_{0}+1\right)+i-1}=\frac{y_{4 m_{0}+i-1}}{\gamma+y_{4 m_{0}+i}^{2}}<\frac{y_{4 m_{0}+i}}{\gamma+y_{4 m_{0}+i}^{2}}=f\left(y_{4 m_{0}+i}\right)<f(\bar{y})=\bar{y}
$$

which is a contradiction.
2. Assume that the initial conditions satisfy $0<y_{-3}, y_{-2}, y_{-1}, y_{0}<\sqrt{1-\gamma}$ with $y_{-3}>y_{-2}, y_{-1}>y_{0}$ and $y_{-2}<\sqrt{1-\gamma}\left(\gamma+y_{-1}^{2}\right)$. Then

$$
\begin{aligned}
y_{1} & =\frac{y_{-3}}{\gamma+y_{-2}^{2}}>\frac{y_{-2}}{\gamma+y_{-2}^{2}}>\bar{y} \\
y_{2} & =\frac{y_{-2}}{\gamma+y_{-1}^{2}}<\sqrt{1-\gamma}=\bar{y} \\
y_{3} & =\frac{y_{-1}}{\gamma+y_{0}^{2}}>\frac{y_{0}}{\gamma+y_{0}^{2}}>\bar{y}
\end{aligned}
$$

and

$$
y_{4}=\frac{y_{0}}{\gamma+y_{1}^{2}}<\bar{y}
$$

Using Theorem 1.6, we get the result. It follows by induction that that

$$
y_{4 m+i}>\bar{y}, \quad i=1,3
$$

and

$$
y_{4 m+i}<\bar{y}, \quad i=2,4 .
$$

But as

$$
y_{4(m+1)+i}=\frac{y_{4 m+i}}{\gamma+y_{4 m+i+1}^{2}}
$$

we have for $i=1,3$ that

$$
y_{4(m+1)+i}=\frac{y_{4 m+i}}{\gamma+y_{4 m+i+1}^{2}}>\frac{y_{4 m+i}}{\gamma+\bar{y}^{2}}=y_{4 m+i}
$$

and for $i=2,4$, we have

$$
y_{4(m+1)+i}=\frac{y_{4 m+i}}{\gamma+y_{4 m+i+1}^{2}}<\frac{y_{4 m+i}}{\gamma+\bar{y}^{2}}=y_{4 m+i} .
$$

This completes the proof.
3. The proof is similar to (2) and will be omitted.

Example 5.5. Figure 4. $\left(\gamma<\frac{1}{2}\right)$ shows that for the solution $\left\{y_{n}\right\}_{n=-3}^{\infty}$ of the equation

$$
y_{n+1}=\frac{y_{n-3}}{0.25+y_{n-2}^{2}}, \quad n=0,1, \ldots
$$

with initial conditions $y_{-3}=0.7, y_{-2}=0.6, y_{-1}=0.8$ and $y_{0}=0.78$, the solution oscillates about $\bar{y} \simeq 0.866$) with semycycles of length one. Moreover, the subsequences $\left\{y_{4 n+i}\right\}_{n=0}^{\infty}$ are increasing when $i=1,3$ and decreasing when $i=2,4$.

Example 5.6. Figure 5. $\left(\gamma<\frac{1}{2}\right)$ shows that for the solution $\left\{y_{n}\right\}_{n=-3}^{\infty}$ of the equation

$$
y_{n+1}=\frac{y_{n-3}}{0.25+y_{n-2}^{2}}, \quad n=0,1, \ldots
$$

with initial conditions $y_{-3}=0.82, y_{-2}=0.85, y_{-1}=0.8$ and $y_{0}=0.81$, the solution oscillates about $\bar{y} \simeq 0.866$) with semycycles of length one. Moreover, the subsequences $\left\{y_{4 n+i}\right\}_{n=0}^{\infty}$ are decreasing when $i=1,3$ and increasing when $i=2,4$.

Figure 4: $\quad y_{n+1}=\frac{y_{n-3}}{0.25+y_{n-2}^{2}}$
Figure 5: $\quad y_{n+1}=\frac{y_{n-3}}{0.25+y_{n-2}^{2}}$

References

[1] R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, 1992.
[2] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
[3] G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys. 1 (4) (1993) 289-294.
[4] V.L. Kocic, G. Ladas, Global attractivity in a second order nonlinear difference equations, J. Math. Anal. Appl. 180 (1993) 144-150.
[5] H. Sedaghat, Form Symmetries and Reduction of Order in Difference Equations, Chapman \& Hall/CRC, Boca Raton, 2011.
[6] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
[7] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
[8] M.R.S. Kulenović, G. Ladas, Dynamics of Second-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
[9] H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic Puplishers, Dordrecht, 2003.
(Received 24 January 2013)
(Accepted 28 October 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

