THAI JOURNAL OF M ATHEMATICS @%
S
VOLUME 16 (2018) NUMBER 3 : 665-674 p

'Y

» >

http://thaijmath.in.cmu.ac.th &ﬂ\y
ISSN 1686-0209

Global Behavior of a Fourth Order
Rational Difference Equation

R. Abo-Zeid!{] and M. A. Al-Shabit

"Department of Basic Science, The Higher Institute for Engineering &
Technology, Al-Obour, Cairo, Egypt
e-mail : abuzead73@yahoo.com

iDepartment of Computer Science, College of Computer
Qassim University, Buraidah 51411, Saudi Arabia
e-mail : malshabi@yahoo.com

Abstract : In this paper, we investigate the global stability, periodic nature, and
the oscillation of solutions of the difference equation

A:L'nfi%

_ATns 01,2,
B+ Cx?%_,

Tn41 =

where A,C, B > 0 and the initial conditions z_3,x_o,x_1,x9 are nonnegative
real numbers. We show that under certain conditions unbounded solutions will be
obtained.

Keywords : difference equation; periodic solution; globally asymptotically stable.
2010 Mathematics Subject Classification : 39A20.

1 Introduction

Difference equations, although their forms look very simple, it is extremely
difficult to understand thoroughly the global behaviors of their solutions. One can
refer to [1[2].

The study of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such equations. It is
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worthwhile to point out that although several approaches have been developed for
finding the global character of difference equations [2H5], relatively a large number
of difference equations have not been thoroughly understood yet [6-9]. Hence a
great challenge and reward for further investigations are remained and are still at
their infancy.

In this paper, we study the global asymptotic stability of the difference equa-

tion
Axy,_3

m, n20,1,2,... (11)

Tn4+1 =
where A, C, B > 0 and the initial conditions x_3,z_o,x_1, xo are nonnegative real
numbers.

Here we recall some results which will be useful in the sequel.
Consider the difference equation

Tl = [(Tny Tty vy Tnek) ,n=0,1,... (1.2)
where f: RF1 — R.

Definition 1.1. [2] An equilibrium point for equation (1.2)) is a point Z € R such
that z = f(z,%,...,T).

Definition 1.2. [2]

1. An equilibrium point Z for equation is called locally stable if for every
€ > 0, there exists a § > 0 such that every solution {z,,} with initial condi-
tions T_p, T_g41,-..,%0 €]T — 0, T + d[ is such that x,, €] — €, T + €] for all
n € N. Otherwise Z is said to be unstable.

2. The equilibrium point Z of equation is called locally asymptotically
stable if it is locally stable and there exists v > 0 such that for any initial
conditions _g,T_g4y1,...,Z0 €]T — v, T + [, the corresponding solution
{z,} tends to Z.

3. An equilibrium point z for equation ([1.2)) is called a global attractor if every
solution {z,} converges to T as n — oc.

4. The equilibrium point Z for equation (1.2)) is called globally asymptotically
stable if it is locally asymptotically stable and global attractor.

Suppose that f is continuously differentiable in some open neighborhood of z.

Let of
a; = 8xn_i(i,...,i), for i=0,1,...,k
denote the partial derivatives of f(x,,zp_1,...,2n_) With respect to z,_; eval-

uated at the equilibrium point Z of equation (1.2]). Then the equation

k
Ynt1 = Zaiyn,i ,n=0,1,... (1.3)
i=0
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is called the linearized equation associated with equation (1.2]) about the equilib-
rium point z, and the equation

k
AN " =0 (1.4)
=0

is called the characteristic equation associated with equation ([1.3)) about the
equilibrium point Z.

Theorem 1.3. [2] Assume that f is a C! function and let T be an equilibrium
point of equation (L.2)). Then the following statements are true:

1. If all roots of equation (L.4) lie in the open disk |A| < 1, then T is locally
asymptotically stable.

2. If at least one root of equation (1.4]) has absolute value greater than one,
then T is unstable.

Now we give the definitions for the positive and negative semicycle of a solution
of equation (|1.2)) relative to an equilibrium point Z.

Definition 1.4. [8] A positive semicycle of a solution {z,}52_; of equation
consists of a “string” of terms {x;, 2;41,...,Zm}, all greater than or equal to the
equilibrium Z, with [ > —1 and m < oo and such that
either [ =—1, orl>-landz_1<Z
and
either m = 0o, or m < oo and z,,+1 < Z.

Definition 1.5. [8] A negative semicycle of a solution {,,}>2 _; of equation (1.2))

consists of a “string” of terms {z;,z11,...,Zm}, all less than or equal to the
equilibrium Z, with [ > —1 and m < oo and such that
either [ =—-1, orl>-landxz;_,>2%

and
either m = 0o, or m < oo and Zy,+1 > .

Theorem 1.6. [8] Assume that f € C[(0,00) x (0,00), (0,00)] is such that:
f(z,y) is decreasing in x for each fized y, and f(x,y) is increasing in y for each
fixed x. Let T be a positive equilibrium of equation , Then except possibly for
the first semicycle, every solution of equation has semicycles of length one.

The change of variables x,, = 1/%yn reduces equation (1.1]) to the difference
equation
Yn—3

Y3 01,2, 1.5
Y4y, (15)

Yn+1 =

[+

where v = Z.
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2 Local Asymptotic Stability of the Equilibrium
Points

Now we examine the equilibrium points of equation and their local asymp-
totic behavior. Clearly equation has two nonnegative equilibrium points
g=0and § =+/1—~ when v <1 and § = 0 only when v > 1.

The linearized equation associated with equation about y is

292 1

e Y S} 2.1
Y+ "2 g @1

Zn+1 +

The characteristic equation associated with this equation is

29 1
A+ — A - —— =
v+ v+
We summarize the results of this section in the following theorem.

Theorem 2.1. 1. If v > 1, then the zero equilibrium point is locally asymp-
totically stable.

2. If v < 1, then the equilibrium point § = 0 is unstable (repeller) and the
equilibrium point § = /1 — v is unstable (saddle point).

Proof. The linearized equation (2.1)) about § = 0 is z,41 — %Zn_g, = 0. The
characteristic equation associated with this equation is A* — % =0.

1. If ¥ > 1, then | A |< 1 and § = 0 is locally asymptotically stable.

2. If v < 1, then § = 0 is unstable (repeller).
Now, the characteristic equation (2.2)) about § = /1 — 7 is

M42(1—y)A—1=0.

It is clear that this equation has a root in the interval (0,1) and another
root in the interval (—oo, —1), from which the result follows. O

3 Global Behavior of Equation (1.5

Assume that v > 1. Our main result is the following theorem.

Theorem 3.1. If~y > 1, then the zero equilibrium point is globally asymptotically
stable.

Proof. Let {y,}2 _4 be a solution of equation ([1.5). Hence

Ya(m—1)+i < Ya(m—1)+i
2
Y F Yim—1)+i+1 v

Yam+i = 5 1= 17 2a 3a 4.
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This implies that
im y(4m4iy) = 0, i=1,2,3,4.

m—o0

Therefore, lim,, oo yn = 0.
In view of Theorem (3.1), g = 0 is globally asymptotically stable. O

Example 3.2. Figure 1. (v > 1) shows that the solution {y,}52 _5 of the equation

Yn—3

—_— =0,1,...
1.2+y721727 n )

Yn4+1 =

with initial conditions y_3 = 0.2, y_2 =1, y_1 = 3 and yo = 0.1 converges to zero.

20k ]

1.5: ]

05F

0 50 100 150 200

Yn—3

Figure 1: The difference equation yn41 = 55—
. +yn72

4 Periodic Nature

Theorem 4.1. Suppose that v = 1. Then every solution of equation (1.5 con-
verges to a period 4 solution and there exist periodic solutions of equation (1.5
with prime period 4.

Proof. Assume that v =1 and let {y,,}>2_4 be a solution of equation (1.5). Then
the subsequences {ysn+i 52 _; are decreasing for each 1 <i < 4. Let

lim yan+i = pi, 1=1,2,3,4.
n— oo

It is clear that {..., p1, p2, P3, P4, P1, P2, P3, P4, - - -} is a period 4 solution of equation

[3).

Now let ¢1, 2 be distinct positive real numbers. It follows that the sequence

{"'7g01a0a<)02707g0170a()02507'"}
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is a periodic solution of equation ([L.5) with prime period 4. This completes the
proof. O

5 Oscillation and Unbounded Solutions

In this section, we study the semicycle analysis and the existence of unbounded
solutions for equation (1.5).

Theorem 5.1. Assume that v < 1 and let {y,}> _5 be a nontrivial solution of
equation (1.5). If § is the unique positive equilibrium of equation (L.5)), then the
following statements are true.

1. Let the initial conditions be such that either

(C1) y—2,90 >y and y_3,y-1 <y
or

(C2) y—2,90 <y and y—3,y—1 >y
is satisfied. Then {y,}22 _5 oscillates about § with semicycles of length one.

2. There exist solutions of equation (1.5)) which are neither bounded nor persist.

Proof. 1. The proof follows immediately from Theorem [1.6

2. Let {y}>2 _4 be a solution of equation ([1.5]) with initial conditions y_3,y_2,
Y—1,Yo such that y_3,y_1 <y <y—2,y0. Then

Y-3 Y2
y1:7<y737 y2:7>y72
v+ 2, v+ 92, ’
Y- Yo
Y3 = <y_1, and yu= > Yo.
v+ ys v+ yi

By induction we get,

Yamti < Ya(m-1)+i» ¢ = 1,3,

and
Yam+i > Ya(m—1)+is = 2,4

It follows that, for each j = 1,2 we have that lim,, oo Yam+2; = Lo; €

(V1 =7, 00] and limy;, 00 Yam+2j+1 = Loj11 € [0,/1 = 7).
We show that for each j = 1,2, Lyj;1 = 0. For the sake of contradiction,
suppose that there exists j € {1,2} with Ly, 41 € (0,1/T —~). Then

) . Yam+25+1 Laji1
Lojy1 = Im yaemi1)42i41 = lim 5 = TR
m—00 m—00 7y + y4m+2j+2 v+ 2j+42

As limp o0 Yamt2j+1 = Loj41 € (0,/1 —7), we have

l=vy+L3,,>1,
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which is a contradiction. It follows that, for each j = 1,2 we have that
Lyj11 =0, and so limy, o0 Y241 = 0.

Now we show that Lo; = oo for each j = 1,2. For the sake of contradiction,
suppose that there exists j € {1,2} with Ly; € (/1 —~,00). Then

o T Yam+2; _ @
b = I e = I T

This implies that v = 1, which is a contradiction. Therefore, lim,, ;oo Y2, =
oo, and the proof is complete. ]

Example 5.2. Figure 2. (v = 1) shows that the solution {y, }52 _4 of the equation

Yn—3

e B
14+y2 ,

Yn+1 =
with initial conditions y_3 = 1.9, y_o =1, y_1 = 0.4 and yg = 0.1 converges to a
period-4 solution.
Example 5.3. Figure 3. (y < 1) shows that the solution {y, }32 _ of the equation

Yn—3
n = 5 = 0, 1, .
Il = 0Tsr g2,
with initial conditions y_3 = 0.4, y_5 = 0.6, y_; = 0.1 and yo = 0.7 is nether
bounded nor persist.

5 FT

08 by

0.6 15

041 for

02 S

0.0+ L L L L 0, L L L L |
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Yn—3 _3

Figure 2: yp41 = Figure 3: yp41 =

> Yn
1+y; 0.75+y2 _,

Theorem 5.4. Assume that v < 1/2 and let {yn}5> _5 be a nontrivial solution of
equation (1.B). If y is the unique positive equilibrium of equation (L.5)), then the
following statements are true.

1. If there exists a positive integer K, y,_3 > 4y for every n > K, then
{yn}Se _5 converges monotonically to the equilibrium §.
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2.

Proof.
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If the initial conditions satisfy 0 < y_3,y_2,y_1,%0 < /1 —~ with y_3 >
Y_o,Y—1 > yo and y_o < /T — (v +y%,), then {y,}°, oscillates about i
with semicycles of length one. Moreover, the subsequences {Yan+i}S>, are
increasing when i = 1,3 and decreasing when i = 2, 4.

If the initial conditions satisfy /1 — v < y_3,y_2,Y_1,Yo withy_3 < y_2,y_1
<yo andy_o > /T —y(y+y2,), then {y, o, oscillates about i with semi-
cycles of length one. Moreover, the subsequences {yan+i >, are decreasing
when i = 1,3 and increasing when i = 2,4.

1. Let {y,} be a solution of equation (1.5). We will assume that there
exists a positive integer K such that y,_3 > gy for every n > K.

It is sufficient to show that {y,} is a decreasing sequence for n > K.

For, assume for the sake of contradiction that for some ng > K, yn, > Yng—1-
Then there exist mg € N and ig € {1,2,3,4} such that ng = 4mg + io.
Clearly the condition vy < % implies that the function

X

f(f)zm

is decreasing. Then

Yamo+i—1 Yamo+i
v+ yzmo-l-i v+ yimo‘i‘i

Ya(mo+1)+i-1 = = f(Yamo+i) < f(U) = 7,

which is a contradiction.

Assume that the initial conditions satisfy 0 < y_3,y—2,9-1,% < +/1—7
with y_5 >y 2,51 >yo and y_» < /T—=7(y+»%,). Then

Y-3 Y—2 _
Yy = > > Y,
Y+y2, T v +yE,
Y_2 -
Y= ——%5 <y1-7=y,
v+ 3,
Y—1 Yo _
Ys = > Y,
Y+us v+ ys
and Y
Yq = <y.
v+ yi

Using Theorem [1.6] we get the result. It follows by induction that that
Ydm+i > ga 1= ]-7 33

and
Yam+i < Y, = 274.
But as
Yam+i

Yam+D)+i = ——5
(m )+ 7+yim+i+1
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we have for ¢ = 1,3 that

y o Yam+i Yam+i y
4(m+1)+i = — = Yam+i
(m+1)+1 '7+yim+i+1 7+y2 m+i
and for i = 2,4, we have
Y - Yam+i Yam+i Ya
A(mA+1)+i = - = +
(m4+1)+14 ’7+yzm+i+1 'Y+y2 m-+1i
This completes the proof.
3. The proof is similar to (2) and will be omitted. O

Example 5.5. Figure 4. (y < 1) shows that for the solution {y,}32_5 of the
equation

Yn=3 n=20,1,...

with initial conditions y_3 = 0.7, y_o = 0.6, y_1 = 0.8 and yo = 0.78, the
solution oscillates about § ~ 0.866) with semycycles of length one. Moreover,
the subsequences {yin+i}o2, are increasing when ¢ = 1,3 and decreasing when
i =2,4.
Example 5.6. Figure 5. (y < 1) shows that for the solution {y,}32_5 of the
equation

Yn—3

0.25+y2_,’

with initial conditions y_3 = 0.82, y_o = 0.85, y_1 = 0.8 and yy = 0.81, the
solution oscillates about § ~ 0.866) with semycycles of length one. Moreover,
the subsequences {yan+i}o2, are decreasing when ¢ = 1,3 and increasing when
1=2,4.

Ynt+1 = n=0,1,...

s o]l I I I I |
0 10 20 30 40 50 0 10 20 30 40 50

—3

n—3 Yn
0.25+y2_,

3 . — Y
Pﬁgurezi Yn+1 = 633;&7‘;

Figure 5: yp41 =
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