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Abstract : In this paper, we investigate the global stability, periodic nature, and
the oscillation of solutions of the difference equation

xn+1 =
Axn−3

B + Cx2n−2
, n = 0, 1, 2, . . .

where A,C,B > 0 and the initial conditions x−3, x−2, x−1, x0 are nonnegative
real numbers. We show that under certain conditions unbounded solutions will be
obtained.
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1 Introduction

Difference equations, although their forms look very simple, it is extremely
difficult to understand thoroughly the global behaviors of their solutions. One can
refer to [1, 2].

The study of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such equations. It is
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worthwhile to point out that although several approaches have been developed for
finding the global character of difference equations [2–5], relatively a large number
of difference equations have not been thoroughly understood yet [6–9]. Hence a
great challenge and reward for further investigations are remained and are still at
their infancy.

In this paper, we study the global asymptotic stability of the difference equa-
tion

xn+1 =
Axn−3

B + Cx2n−2
, n = 0, 1, 2, . . . (1.1)

where A,C,B > 0 and the initial conditions x−3, x−2, x−1, x0 are nonnegative real
numbers.

Here we recall some results which will be useful in the sequel.
Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k) , n = 0, 1, . . . (1.2)

where f : Rk+1 → R.

Definition 1.1. [2] An equilibrium point for equation (1.2) is a point x̄ ∈ R such
that x̄ = f(x̄, x̄, . . . , x̄).

Definition 1.2. [2]

1. An equilibrium point x̄ for equation (1.2) is called locally stable if for every
ε > 0, there exists a δ > 0 such that every solution {xn} with initial condi-
tions x−k, x−k+1,. . . , x0 ∈]x̄− δ, x̄+ δ[ is such that xn ∈]x̄− ε, x̄+ ε[ for all
n ∈ N. Otherwise x̄ is said to be unstable.

2. The equilibrium point x̄ of equation (1.2) is called locally asymptotically
stable if it is locally stable and there exists γ > 0 such that for any initial
conditions x−k, x−k+1, . . . , x0 ∈]x̄ − γ, x̄ + γ[, the corresponding solution
{xn} tends to x̄.

3. An equilibrium point x̄ for equation (1.2) is called a global attractor if every
solution {xn} converges to x̄ as n→∞.

4. The equilibrium point x̄ for equation (1.2) is called globally asymptotically
stable if it is locally asymptotically stable and global attractor.

Suppose that f is continuously differentiable in some open neighborhood of x̄.
Let

ai =
∂f

∂xn−i
(x̄, . . . , x̄), for i = 0, 1, . . . , k

denote the partial derivatives of f(xn, xn−1, . . . , xn−k) with respect to xn−i eval-
uated at the equilibrium point x̄ of equation (1.2). Then the equation

yn+1 =

k∑
i=0

aiyn−i , n = 0, 1, . . . (1.3)
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is called the linearized equation associated with equation (1.2) about the equilib-
rium point x̄, and the equation

λk+1 −
k∑
i=0

aiλ
k−i = 0 (1.4)

is called the characteristic equation associated with equation (1.3) about the
equilibrium point x̄.

Theorem 1.3. [2] Assume that f is a C1 function and let x̄ be an equilibrium
point of equation (1.2). Then the following statements are true:

1. If all roots of equation (1.4) lie in the open disk |λ| < 1, then x̄ is locally
asymptotically stable.

2. If at least one root of equation (1.4) has absolute value greater than one,
then x̄ is unstable.

Now we give the definitions for the positive and negative semicycle of a solution
of equation (1.2) relative to an equilibrium point x̄.

Definition 1.4. [8] A positive semicycle of a solution {xn}∞n=−1 of equation (1.2)
consists of a “ string ” of terms {xl, xl+1, . . . , xm}, all greater than or equal to the
equilibrium x̄, with l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l > −1 and xl−1 < x̄

and
either m =∞, or m <∞ and xm+1 < x̄.

Definition 1.5. [8] A negative semicycle of a solution {xn}∞n=−1 of equation (1.2)
consists of a “ string ” of terms {xl, xl+1, . . . , xm}, all less than or equal to the
equilibrium x̄, with l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l > −1 and xl−1 ≥ x̄
and

either m =∞, or m <∞ and xm+1 ≥ x̄.

Theorem 1.6. [8] Assume that f ∈ C[(0,∞)× (0,∞), (0,∞)] is such that:
f(x, y) is decreasing in x for each fixed y, and f(x, y) is increasing in y for each
fixed x. Let x̄ be a positive equilibrium of equation (1.2). Then except possibly for
the first semicycle, every solution of equation (1.2) has semicycles of length one.

The change of variables xn =
√

A
C yn reduces equation (1.1) to the difference

equation

yn+1 =
yn−3

γ + y2n−2
, n = 0, 1, 2, · · · (1.5)

where γ = B
A .
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2 Local Asymptotic Stability of the Equilibrium
Points

Now we examine the equilibrium points of equation (1.5) and their local asymp-
totic behavior. Clearly equation (1.5) has two nonnegative equilibrium points
ȳ = 0 and ȳ =

√
1− γ when γ < 1 and ȳ = 0 only when γ ≥ 1.

The linearized equation associated with equation (1.5) about ȳ is

zn+1 +
2ȳ2

(γ + ȳ2)2
zn−2 −

1

γ + ȳ2
zn−3 = 0. (2.1)

The characteristic equation associated with this equation is

λ4 +
2ȳ2

(γ + ȳ2)2
λ− 1

γ + ȳ2
= 0. (2.2)

We summarize the results of this section in the following theorem.

Theorem 2.1. 1. If γ > 1, then the zero equilibrium point is locally asymp-
totically stable.

2. If γ < 1, then the equilibrium point ȳ = 0 is unstable (repeller) and the
equilibrium point ȳ =

√
1− γ is unstable (saddle point).

Proof. The linearized equation (2.1) about ȳ = 0 is zn+1 − 1
γ zn−3 = 0. The

characteristic equation associated with this equation is λ4 − 1
γ = 0.

1. If γ > 1, then | λ |< 1 and ȳ = 0 is locally asymptotically stable.

2. If γ < 1, then ȳ = 0 is unstable (repeller).
Now, the characteristic equation (2.2) about ȳ =

√
1− γ is

λ4 + 2(1− γ)λ− 1 = 0.

It is clear that this equation has a root in the interval (0, 1) and another
root in the interval (−∞,−1), from which the result follows.

3 Global Behavior of Equation (1.5)

Assume that γ > 1. Our main result is the following theorem.

Theorem 3.1. If γ > 1, then the zero equilibrium point is globally asymptotically
stable.

Proof. Let {yn}∞n=−3 be a solution of equation (1.5). Hence

y4m+i =
y4(m−1)+i

γ + y24(m−1)+i+1

<
y4(m−1)+i

γ
, i = 1, 2, 3, 4.
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This implies that
lim
m→∞

y(4m+i) = 0, i = 1, 2, 3, 4.

Therefore, limm→∞ yn = 0.
In view of Theorem (3.1), ȳ = 0 is globally asymptotically stable.

Example 3.2. Figure 1. (γ > 1) shows that the solution {yn}∞n=−3 of the equation

yn+1 =
yn−3

1.2 + y2n−2
, n = 0, 1, . . .

with initial conditions y−3 = 0.2, y−2 = 1, y−1 = 3 and y0 = 0.1 converges to zero.
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Figure 1: The difference equation yn+1 = yn−3

1.2+y2n−2

4 Periodic Nature

Theorem 4.1. Suppose that γ = 1. Then every solution of equation (1.5) con-
verges to a period 4 solution and there exist periodic solutions of equation (1.5)
with prime period 4.

Proof. Assume that γ = 1 and let {yn}∞n=−3 be a solution of equation (1.5). Then
the subsequences {y4n+i}∞n=−1 are decreasing for each 1 ≤ i ≤ 4. Let

lim
n→∞

y4n+i = ρi, i = 1, 2, 3, 4.

It is clear that {. . . , ρ1, ρ2, ρ3, ρ4, ρ1, ρ2, ρ3, ρ4, . . .} is a period 4 solution of equation
(1.5).

Now let ϕ1, ϕ2 be distinct positive real numbers. It follows that the sequence

{. . . , ϕ1, 0, ϕ2, 0, ϕ1, 0, ϕ2, 0, . . .}
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is a periodic solution of equation (1.5) with prime period 4. This completes the
proof.

5 Oscillation and Unbounded Solutions

In this section, we study the semicycle analysis and the existence of unbounded
solutions for equation (1.5).

Theorem 5.1. Assume that γ < 1 and let {yn}∞n=−3 be a nontrivial solution of
equation (1.5). If ȳ is the unique positive equilibrium of equation (1.5), then the
following statements are true.

1. Let the initial conditions be such that either
(C1) y−2, y0 > ȳ and y−3, y−1 < ȳ
or
(C2) y−2, y0 < ȳ and y−3, y−1 > ȳ
is satisfied. Then {yn}∞n=−3 oscillates about ȳ with semicycles of length one.

2. There exist solutions of equation (1.5) which are neither bounded nor persist.

Proof. 1. The proof follows immediately from Theorem 1.6.

2. Let {yn}∞n=−3 be a solution of equation (1.5) with initial conditions y−3, y−2,
y−1, y0 such that y−3, y−1 < ȳ < y−2, y0. Then

y1 =
y−3

γ + y2−2
< y−3, y2 =

y−2
γ + y2−1

> y−2,

y3 =
y−1
γ + y20

< y−1, and y4 =
y0

γ + y21
> y0.

By induction we get,

y4m+i < y4(m−1)+i, i = 1, 3,

and
y4m+i > y4(m−1)+i, i = 2, 4.

It follows that, for each j = 1, 2 we have that limm→∞ y4m+2j = L2j ∈
(
√

1− γ,∞] and limm→∞ y4m+2j+1 = L2j+1 ∈ [0,
√

1− γ).
We show that for each j = 1, 2, L2j+1 = 0. For the sake of contradiction,
suppose that there exists j ∈ {1, 2} with L2j+1 ∈ (0,

√
1− γ). Then

L2j+1 = lim
m→∞

y4(m+1)+2j+1 = lim
m→∞

y4m+2j+1

γ + y24m+2j+2

=
L2j+1

γ + L2
2j+2

.

As limm→∞ y4m+2j+1 = L2j+1 ∈ (0,
√

1− γ), we have

1 = γ + L2
2j+2 > 1,
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which is a contradiction. It follows that, for each j = 1, 2 we have that
L2j+1 = 0, and so limn→∞ y2n+1 = 0.

Now we show that L2j =∞ for each j = 1, 2. For the sake of contradiction,
suppose that there exists j ∈ {1, 2} with L2j ∈ (

√
1− γ,∞). Then

L2j = lim
m→∞

y4(m+1)+2j = lim
m→∞

y4m+2j

γ + y24(m)+2j+1

=
L2j

γ
.

This implies that γ = 1, which is a contradiction. Therefore, limn→∞ y2n =
∞, and the proof is complete.

Example 5.2. Figure 2. (γ = 1) shows that the solution {yn}∞n=−3 of the equation

yn+1 =
yn−3

1 + y2n−2
, n = 0, 1, . . .

with initial conditions y−3 = 1.9, y−2 = 1, y−1 = 0.4 and y0 = 0.1 converges to a
period-4 solution.

Example 5.3. Figure 3. (γ < 1
2 ) shows that the solution {yn}∞n=−3 of the equation

yn+1 =
yn−3

0.75 + y2n−2
, n = 0, 1, . . .

with initial conditions y−3 = 0.4, y−2 = 0.6, y−1 = 0.1 and y0 = 0.7 is nether
bounded nor persist.
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Figure 2: yn+1 = yn−3

1+y2n−2
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Figure 3: yn+1 = yn−3

0.75+y2n−2

Theorem 5.4. Assume that γ < 1/2 and let {yn}∞n=−3 be a nontrivial solution of
equation (1.5). If ȳ is the unique positive equilibrium of equation (1.5), then the
following statements are true.

1. If there exists a positive integer K, yn−3 ≥ ȳ for every n ≥ K, then
{yn}∞n=−3 converges monotonically to the equilibrium ȳ.
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2. If the initial conditions satisfy 0 < y−3, y−2, y−1, y0 <
√

1− γ with y−3 >
y−2, y−1 > y0 and y−2 <

√
1− γ(γ + y2−1), then {yn}∞n=1 oscillates about ȳ

with semicycles of length one. Moreover, the subsequences {y4n+i}∞n=0 are
increasing when i = 1, 3 and decreasing when i = 2, 4.

3. If the initial conditions satisfy
√

1− γ < y−3, y−2, y−1, y0 with y−3 < y−2, y−1
< y0 and y−2 >

√
1− γ(γ+y2−1), then {yn}∞n=1 oscillates about ȳ with semi-

cycles of length one. Moreover, the subsequences {y4n+i}∞n=0 are decreasing
when i = 1, 3 and increasing when i = 2, 4.

Proof. 1. Let {yn} be a solution of equation (1.5). We will assume that there
exists a positive integer K such that yn−3 ≥ ȳ for every n ≥ K.

It is sufficient to show that {yn} is a decreasing sequence for n ≥ K.
For, assume for the sake of contradiction that for some n0 ≥ K, yn0 > yn0−1.
Then there exist m0 ∈ N and i0 ∈ {1, 2, 3, 4} such that n0 = 4m0 + i0.
Clearly the condition γ < 1

2 implies that the function

f(x) =
x

γ + x2

is decreasing. Then

y4(m0+1)+i−1 =
y4m0+i−1

γ + y24m0+i

<
y4m0+i

γ + y24m0+i

= f(y4m0+i) < f(ȳ) = ȳ,

which is a contradiction.

2. Assume that the initial conditions satisfy 0 < y−3, y−2, y−1, y0 <
√

1− γ
with y−3 > y−2, y−1 > y0 and y−2 <

√
1− γ(γ + y2−1). Then

y1 =
y−3

γ + y2−2
>

y−2
γ + y2−2

> ȳ,

y2 =
y−2

γ + y2−1
<

√
1− γ = ȳ,

y3 =
y−1
γ + y20

>
y0

γ + y20
> ȳ,

and
y4 =

y0
γ + y21

< ȳ.

Using Theorem 1.6, we get the result. It follows by induction that that

y4m+i > ȳ, i = 1, 3,

and
y4m+i < ȳ, i = 2, 4.

But as
y4(m+1)+i =

y4m+i

γ + y24m+i+1

,
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we have for i = 1, 3 that

y4(m+1)+i =
y4m+i

γ + y24m+i+1

>
y4m+i

γ + ȳ2
= y4m+i

and for i = 2, 4, we have

y4(m+1)+i =
y4m+i

γ + y24m+i+1

<
y4m+i

γ + ȳ2
= y4m+i.

This completes the proof.

3. The proof is similar to (2) and will be omitted.

Example 5.5. Figure 4. (γ < 1
2 ) shows that for the solution {yn}∞n=−3 of the

equation

yn+1 =
yn−3

0.25 + y2n−2
, n = 0, 1, . . .

with initial conditions y−3 = 0.7, y−2 = 0.6, y−1 = 0.8 and y0 = 0.78, the
solution oscillates about ȳ ' 0.866) with semycycles of length one. Moreover,
the subsequences {y4n+i}∞n=0 are increasing when i = 1, 3 and decreasing when
i = 2, 4.

Example 5.6. Figure 5. (γ < 1
2 ) shows that for the solution {yn}∞n=−3 of the

equation

yn+1 =
yn−3

0.25 + y2n−2
, n = 0, 1, . . .

with initial conditions y−3 = 0.82, y−2 = 0.85, y−1 = 0.8 and y0 = 0.81, the
solution oscillates about ȳ ' 0.866) with semycycles of length one. Moreover,
the subsequences {y4n+i}∞n=0 are decreasing when i = 1, 3 and increasing when
i = 2, 4.
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Figure 4: yn+1 = yn−3

0.25+y2n−2
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Figure 5: yn+1 = yn−3

0.25+y2n−2
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