Thai Journal of Mathematics Volume 16 (2018) Number 3 : 665–674

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Global Behavior of a Fourth Order Rational Difference Equation

R. Abo-Zeid^{\dagger ,1} and M. A. Al-Shabi^{\ddagger}

[†]Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo, Egypt e-mail : abuzead73@yahoo.com

[‡]Department of Computer Science, College of Computer Qassim University, Buraidah 51411, Saudi Arabia e-mail : malshabi@yahoo.com

Abstract : In this paper, we investigate the global stability, periodic nature, and the oscillation of solutions of the difference equation

$$x_{n+1} = \frac{Ax_{n-3}}{B + Cx_{n-2}^2}, \qquad n = 0, 1, 2, \dots$$

where A, C, B > 0 and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_0$ are nonnegative real numbers. We show that under certain conditions unbounded solutions will be obtained.

Keywords : difference equation; periodic solution; globally asymptotically stable. **2010 Mathematics Subject Classification :** 39A20.

1 Introduction

Difference equations, although their forms look very simple, it is extremely difficult to understand thoroughly the global behaviors of their solutions. One can refer to [1, 2].

The study of nonlinear rational difference equations of higher order is of paramount importance, since we still know so little about such equations. It is

¹Corresponding author.

Copyright \bigodot 2018 by the Mathematical Association of Thailand. All rights reserved.

worthwhile to point out that although several approaches have been developed for finding the global character of difference equations [2–5], relatively a large number of difference equations have not been thoroughly understood yet [6–9]. Hence a great challenge and reward for further investigations are remained and are still at their infancy.

In this paper, we study the global asymptotic stability of the difference equation

$$x_{n+1} = \frac{Ax_{n-3}}{B + Cx_{n-2}^2}, \qquad n = 0, 1, 2, \dots$$
(1.1)

where A, C, B > 0 and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_0$ are nonnegative real numbers.

Here we recall some results which will be useful in the sequel.

Consider the difference equation

$$x_{n+1} = f(x_n, x_{n-1}, \dots, x_{n-k}) \qquad , n = 0, 1, \dots$$
(1.2)

where $f: \mathbb{R}^{k+1} \to \mathbb{R}$.

Definition 1.1. [2] An equilibrium point for equation (1.2) is a point $\bar{x} \in R$ such that $\bar{x} = f(\bar{x}, \bar{x}, \dots, \bar{x})$.

Definition 1.2. [2]

- 1. An equilibrium point \bar{x} for equation (1.2) is called *locally stable* if for every $\epsilon > 0$, there exists a $\delta > 0$ such that every solution $\{x_n\}$ with initial conditions $x_{-k}, x_{-k+1}, \ldots, x_0 \in]\bar{x} \delta, \bar{x} + \delta[$ is such that $x_n \in]\bar{x} \epsilon, \bar{x} + \epsilon[$ for all $n \in \mathbb{N}$. Otherwise \bar{x} is said to be *unstable*.
- 2. The equilibrium point \bar{x} of equation (1.2) is called *locally asymptotically stable* if it is locally stable and there exists $\gamma > 0$ such that for any initial conditions $x_{-k}, x_{-k+1}, \ldots, x_0 \in]\bar{x} \gamma, \bar{x} + \gamma[$, the corresponding solution $\{x_n\}$ tends to \bar{x} .
- 3. An equilibrium point \bar{x} for equation (1.2) is called a *global attractor* if every solution $\{x_n\}$ converges to \bar{x} as $n \to \infty$.
- 4. The equilibrium point \bar{x} for equation (1.2) is called *globally asymptotically* stable if it is locally asymptotically stable and global attractor.

Suppose that f is continuously differentiable in some open neighborhood of \bar{x} . Let

$$a_i = \frac{\partial f}{\partial x_{n-i}}(\bar{x}, \dots, \bar{x}), \quad \text{for} \quad i = 0, 1, \dots, k$$

denote the partial derivatives of $f(x_n, x_{n-1}, \ldots, x_{n-k})$ with respect to x_{n-i} evaluated at the equilibrium point \bar{x} of equation (1.2). Then the equation

$$y_{n+1} = \sum_{i=0}^{k} a_i y_{n-i} , n = 0, 1, \dots$$
 (1.3)

666

is called the linearized equation associated with equation (1.2) about the equilibrium point \bar{x} , and the equation

$$\lambda^{k+1} - \sum_{i=0}^{k} a_i \lambda^{k-i} = 0 \tag{1.4}$$

is called the characteristic equation associated with equation (1.3) about the equilibrium point \bar{x} .

Theorem 1.3. [2] Assume that f is a C^1 function and let \bar{x} be an equilibrium point of equation (1.2). Then the following statements are true:

- 1. If all roots of equation (1.4) lie in the open disk $|\lambda| < 1$, then \bar{x} is locally asymptotically stable.
- 2. If at least one root of equation (1.4) has absolute value greater than one, then \bar{x} is unstable.

Now we give the definitions for the positive and negative semicycle of a solution of equation (1.2) relative to an equilibrium point \bar{x} .

Definition 1.4. [8] A positive semicycle of a solution $\{x_n\}_{n=-1}^{\infty}$ of equation (1.2) consists of a "string" of terms $\{x_l, x_{l+1}, \ldots, x_m\}$, all greater than or equal to the equilibrium \bar{x} , with $l \geq -1$ and $m \leq \infty$ and such that

either l = -1, or l > -1 and $x_{l-1} < \bar{x}$

and

either $m = \infty$, or $m < \infty$ and $x_{m+1} < \bar{x}$.

Definition 1.5. [8] A negative semicycle of a solution $\{x_n\}_{n=-1}^{\infty}$ of equation (1.2) consists of a "string" of terms $\{x_l, x_{l+1}, \ldots, x_m\}$, all less than or equal to the equilibrium \bar{x} , with $l \geq -1$ and $m \leq \infty$ and such that

and

ither
$$l = -1$$
, or $l > -1$ and $x_{l-1} \ge \bar{x}$

either $m = \infty$, or $m < \infty$ and $x_{m+1} \ge \bar{x}$.

Theorem 1.6. [8] Assume that $f \in C[(0,\infty) \times (0,\infty), (0,\infty)]$ is such that: f(x,y) is decreasing in x for each fixed y, and f(x,y) is increasing in y for each fixed x. Let \bar{x} be a positive equilibrium of equation (1.2). Then except possibly for the first semicycle, every solution of equation (1.2) has semicycles of length one.

The change of variables $x_n = \sqrt{\frac{A}{C}y_n}$ reduces equation (1.1) to the difference equation

$$y_{n+1} = \frac{y_{n-3}}{\gamma + y_{n-2}^2}, \qquad n = 0, 1, 2, \cdots$$
 (1.5)

where $\gamma = \frac{B}{A}$.

2 Local Asymptotic Stability of the Equilibrium Points

Now we examine the equilibrium points of equation (1.5) and their local asymptotic behavior. Clearly equation (1.5) has two nonnegative equilibrium points $\bar{y} = 0$ and $\bar{y} = \sqrt{1-\gamma}$ when $\gamma < 1$ and $\bar{y} = 0$ only when $\gamma \geq 1$.

The linearized equation associated with equation (1.5) about \bar{y} is

$$z_{n+1} + \frac{2\bar{y}^2}{(\gamma + \bar{y}^2)^2} z_{n-2} - \frac{1}{\gamma + \bar{y}^2} z_{n-3} = 0.$$
(2.1)

The characteristic equation associated with this equation is

$$\lambda^4 + \frac{2\bar{y}^2}{(\gamma + \bar{y}^2)^2}\lambda - \frac{1}{\gamma + \bar{y}^2} = 0.$$
(2.2)

We summarize the results of this section in the following theorem.

- **Theorem 2.1.** 1. If $\gamma > 1$, then the zero equilibrium point is locally asymptotically stable.
 - 2. If $\gamma < 1$, then the equilibrium point $\bar{y} = 0$ is unstable (repeller) and the equilibrium point $\bar{y} = \sqrt{1-\gamma}$ is unstable (saddle point).

Proof. The linearized equation (2.1) about $\bar{y} = 0$ is $z_{n+1} - \frac{1}{\gamma} z_{n-3} = 0$. The characteristic equation associated with this equation is $\lambda^4 - \frac{1}{\gamma} = 0$.

- 1. If $\gamma > 1$, then $|\lambda| < 1$ and $\bar{y} = 0$ is locally asymptotically stable.
- 2. If $\gamma < 1$, then $\bar{y} = 0$ is unstable (repeller). Now, the characteristic equation (2.2) about $\bar{y} = \sqrt{1-\gamma}$ is

$$\lambda^4 + 2(1 - \gamma)\lambda - 1 = 0.$$

It is clear that this equation has a root in the interval (0, 1) and another root in the interval $(-\infty, -1)$, from which the result follows.

3 Global Behavior of Equation (1.5)

Assume that $\gamma > 1$. Our main result is the following theorem.

Theorem 3.1. If $\gamma > 1$, then the zero equilibrium point is globally asymptotically stable.

Proof. Let $\{y_n\}_{n=-3}^{\infty}$ be a solution of equation (1.5). Hence

$$y_{4m+i} = \frac{y_{4(m-1)+i}}{\gamma + y_{4(m-1)+i+1}^2} < \frac{y_{4(m-1)+i}}{\gamma}, \quad i = 1, 2, 3, 4.$$

Global Behavior of a Fourth Order Rational Difference Equation

This implies that

$$\lim_{m \to \infty} y_{(4m+i)} = 0, \qquad i = 1, 2, 3, 4$$

Therefore, $\lim_{m\to\infty} y_n = 0$.

In view of Theorem (3.1), $\bar{y} = 0$ is globally asymptotically stable.

Example 3.2. Figure 1. $(\gamma > 1)$ shows that the solution $\{y_n\}_{n=-3}^{\infty}$ of the equation

$$y_{n+1} = \frac{y_{n-3}}{1.2 + y_{n-2}^2}, \quad n = 0, 1, \dots$$

with initial conditions $y_{-3} = 0.2$, $y_{-2} = 1$, $y_{-1} = 3$ and $y_0 = 0.1$ converges to zero.

Figure 1: The difference equation $y_{n+1} = \frac{y_{n-3}}{1.2+y_{n-2}^2}$

4 Periodic Nature

Theorem 4.1. Suppose that $\gamma = 1$. Then every solution of equation (1.5) converges to a period 4 solution and there exist periodic solutions of equation (1.5) with prime period 4.

Proof. Assume that $\gamma = 1$ and let $\{y_n\}_{n=-3}^{\infty}$ be a solution of equation (1.5). Then the subsequences $\{y_{4n+i}\}_{n=-1}^{\infty}$ are decreasing for each $1 \leq i \leq 4$. Let

$$\lim_{n \to \infty} y_{4n+i} = \rho_i, \qquad i = 1, 2, 3, 4.$$

It is clear that $\{\ldots, \rho_1, \rho_2, \rho_3, \rho_4, \rho_1, \rho_2, \rho_3, \rho_4, \ldots\}$ is a period 4 solution of equation (1.5).

Now let φ_1, φ_2 be distinct positive real numbers. It follows that the sequence

$$\{\ldots, \varphi_1, 0, \varphi_2, 0, \varphi_1, 0, \varphi_2, 0, \ldots\}$$

669

is a periodic solution of equation (1.5) with prime period 4. This completes the proof. $\hfill \Box$

5 Oscillation and Unbounded Solutions

In this section, we study the semicycle analysis and the existence of unbounded solutions for equation (1.5).

Theorem 5.1. Assume that $\gamma < 1$ and let $\{y_n\}_{n=-3}^{\infty}$ be a nontrivial solution of equation (1.5). If \bar{y} is the unique positive equilibrium of equation (1.5), then the following statements are true.

- 1. Let the initial conditions be such that either $(C_1) \ y_{-2}, y_0 > \bar{y} \text{ and } y_{-3}, y_{-1} < \bar{y}$ or $(C_2) \ y_{-2}, y_0 < \bar{y} \text{ and } y_{-3}, y_{-1} > \bar{y}$ is satisfied. Then $\{y_n\}_{n=-3}^{\infty}$ oscillates about \bar{y} with semicycles of length one.
- 2. There exist solutions of equation (1.5) which are neither bounded nor persist.

Proof. 1. The proof follows immediately from Theorem 1.6.

2. Let $\{y_n\}_{n=-3}^{\infty}$ be a solution of equation (1.5) with initial conditions $y_{-3}, y_{-2}, y_{-1}, y_0$ such that $y_{-3}, y_{-1} < \bar{y} < y_{-2}, y_0$. Then

$$y_1 = \frac{y_{-3}}{\gamma + y_{-2}^2} < y_{-3}, \qquad y_2 = \frac{y_{-2}}{\gamma + y_{-1}^2} > y_{-2},$$
$$y_3 = \frac{y_{-1}}{\gamma + y_0^2} < y_{-1}, \quad \text{and} \quad y_4 = \frac{y_0}{\gamma + y_1^2} > y_0.$$

By induction we get,

$$y_{4m+i} < y_{4(m-1)+i}, \quad i = 1, 3,$$

and

$$y_{4m+i} > y_{4(m-1)+i}, \quad i = 2, 4.$$

It follows that, for each j = 1, 2 we have that $\lim_{m\to\infty} y_{4m+2j} = L_{2j} \in (\sqrt{1-\gamma}, \infty]$ and $\lim_{m\to\infty} y_{4m+2j+1} = L_{2j+1} \in [0, \sqrt{1-\gamma})$. We show that for each $j = 1, 2, L_{2j+1} = 0$. For the sake of contradiction, suppose that there exists $j \in \{1, 2\}$ with $L_{2j+1} \in (0, \sqrt{1-\gamma})$. Then

$$L_{2j+1} = \lim_{m \to \infty} y_{4(m+1)+2j+1} = \lim_{m \to \infty} \frac{y_{4m+2j+1}}{\gamma + y_{4m+2j+2}^2} = \frac{L_{2j+1}}{\gamma + L_{2j+2}^2}$$

As $\lim_{m \to \infty} y_{4m+2j+1} = L_{2j+1} \in (0, \sqrt{1-\gamma})$, we have

$$1 = \gamma + L_{2i+2}^2 > 1$$

Global Behavior of a Fourth Order Rational Difference Equation

which is a contradiction. It follows that, for each j = 1, 2 we have that $L_{2j+1} = 0$, and so $\lim_{n \to \infty} y_{2n+1} = 0$.

Now we show that $L_{2j} = \infty$ for each j = 1, 2. For the sake of contradiction, suppose that there exists $j \in \{1, 2\}$ with $L_{2j} \in (\sqrt{1-\gamma}, \infty)$. Then

$$L_{2j} = \lim_{m \to \infty} y_{4(m+1)+2j} = \lim_{m \to \infty} \frac{y_{4m+2j}}{\gamma + y_{4(m)+2j+1}^2} = \frac{L_{2j}}{\gamma}$$

This implies that $\gamma = 1$, which is a contradiction. Therefore, $\lim_{n \to \infty} y_{2n} = \infty$, and the proof is complete.

Example 5.2. Figure 2. $(\gamma = 1)$ shows that the solution $\{y_n\}_{n=-3}^{\infty}$ of the equation

$$y_{n+1} = \frac{y_{n-3}}{1+y_{n-2}^2}, \quad n = 0, 1, \dots$$

with initial conditions $y_{-3} = 1.9$, $y_{-2} = 1$, $y_{-1} = 0.4$ and $y_0 = 0.1$ converges to a period-4 solution.

Example 5.3. Figure 3. $(\gamma < \frac{1}{2})$ shows that the solution $\{y_n\}_{n=-3}^{\infty}$ of the equation

$$y_{n+1} = \frac{y_{n-3}}{0.75 + y_{n-2}^2}, \quad n = 0, 1, \dots$$

with initial conditions $y_{-3} = 0.4$, $y_{-2} = 0.6$, $y_{-1} = 0.1$ and $y_0 = 0.7$ is nether bounded nor persist.

Theorem 5.4. Assume that $\gamma < 1/2$ and let $\{y_n\}_{n=-3}^{\infty}$ be a nontrivial solution of equation (1.5). If \bar{y} is the unique positive equilibrium of equation (1.5), then the following statements are true.

1. If there exists a positive integer K, $y_{n-3} \ge \bar{y}$ for every $n \ge K$, then $\{y_n\}_{n=-3}^{\infty}$ converges monotonically to the equilibrium \bar{y} .

- 2. If the initial conditions satisfy $0 < y_{-3}, y_{-2}, y_{-1}, y_0 < \sqrt{1-\gamma}$ with $y_{-3} > y_{-2}, y_{-1} > y_0$ and $y_{-2} < \sqrt{1-\gamma}(\gamma + y_{-1}^2)$, then $\{y_n\}_{n=1}^{\infty}$ oscillates about \bar{y} with semicycles of length one. Moreover, the subsequences $\{y_{4n+i}\}_{n=0}^{\infty}$ are increasing when i = 1, 3 and decreasing when i = 2, 4.
- 3. If the initial conditions satisfy $\sqrt{1-\gamma} < y_{-3}, y_{-2}, y_{-1}, y_0$ with $y_{-3} < y_{-2}, y_{-1} < y_0$ and $y_{-2} > \sqrt{1-\gamma}(\gamma+y_{-1}^2)$, then $\{y_n\}_{n=1}^{\infty}$ oscillates about \bar{y} with semicycles of length one. Moreover, the subsequences $\{y_{4n+i}\}_{n=0}^{\infty}$ are decreasing when i = 1, 3 and increasing when i = 2, 4.
- *Proof.* 1. Let $\{y_n\}$ be a solution of equation (1.5). We will assume that there exists a positive integer K such that $y_{n-3} \ge \overline{y}$ for every $n \ge K$.

It is sufficient to show that $\{y_n\}$ is a decreasing sequence for $n \ge K$. For, assume for the sake of contradiction that for some $n_0 \ge K$, $y_{n_0} > y_{n_0-1}$. Then there exist $m_0 \in \mathbb{N}$ and $i_0 \in \{1, 2, 3, 4\}$ such that $n_0 = 4m_0 + i_0$. Clearly the condition $\gamma < \frac{1}{2}$ implies that the function

$$f(x) = \frac{x}{\gamma + x^2}$$

is decreasing. Then

$$y_{4(m_0+1)+i-1} = \frac{y_{4m_0+i-1}}{\gamma + y_{4m_0+i}^2} < \frac{y_{4m_0+i}}{\gamma + y_{4m_0+i}^2} = f(y_{4m_0+i}) < f(\bar{y}) = \bar{y},$$

which is a contradiction.

2. Assume that the initial conditions satisfy $0 < y_{-3}, y_{-2}, y_{-1}, y_0 < \sqrt{1-\gamma}$ with $y_{-3} > y_{-2}, y_{-1} > y_0$ and $y_{-2} < \sqrt{1-\gamma}(\gamma + y_{-1}^2)$. Then

$$y_{1} = \frac{y_{-3}}{\gamma + y_{-2}^{2}} > \frac{y_{-2}}{\gamma + y_{-2}^{2}} > \bar{y},$$

$$y_{2} = \frac{y_{-2}}{\gamma + y_{-1}^{2}} < \sqrt{1 - \gamma} = \bar{y},$$

$$y_{3} = \frac{y_{-1}}{\gamma + y_{0}^{2}} > \frac{y_{0}}{\gamma + y_{0}^{2}} > \bar{y},$$

and

$$y_4 = \frac{y_0}{\gamma + y_1^2} < \bar{y}.$$

Using Theorem 1.6, we get the result. It follows by induction that that

$$y_{4m+i} > \bar{y}, \quad i = 1, 3,$$

and

$$y_{4m+i} < \bar{y}, \quad i = 2, 4.$$

But as

$$y_{4(m+1)+i} = \frac{y_{4m+i}}{\gamma + y_{4m+i+1}^2},$$

Global Behavior of a Fourth Order Rational Difference Equation

we have for i = 1, 3 that

$$y_{4(m+1)+i} = \frac{y_{4m+i}}{\gamma + y_{4m+i+1}^2} > \frac{y_{4m+i}}{\gamma + \bar{y}^2} = y_{4m+i}$$

and for i = 2, 4, we have

$$y_{4(m+1)+i} = \frac{y_{4m+i}}{\gamma + y_{4m+i+1}^2} < \frac{y_{4m+i}}{\gamma + \bar{y}^2} = y_{4m+i}.$$

This completes the proof.

3. The proof is similar to (2) and will be omitted.

Example 5.5. Figure 4. $(\gamma < \frac{1}{2})$ shows that for the solution $\{y_n\}_{n=-3}^{\infty}$ of the equation

$$y_{n+1} = \frac{y_{n-3}}{0.25 + y_{n-2}^2}, \quad n = 0, 1, \dots$$

with initial conditions $y_{-3} = 0.7$, $y_{-2} = 0.6$, $y_{-1} = 0.8$ and $y_0 = 0.78$, the solution oscillates about $\bar{y} \simeq 0.866$) with semycycles of length one. Moreover, the subsequences $\{y_{4n+i}\}_{n=0}^{\infty}$ are increasing when i = 1, 3 and decreasing when i = 2, 4.

Example 5.6. Figure 5. $(\gamma < \frac{1}{2})$ shows that for the solution $\{y_n\}_{n=-3}^{\infty}$ of the equation

$$y_{n+1} = \frac{y_{n-3}}{0.25 + y_{n-2}^2}, \quad n = 0, 1, \dots$$

with initial conditions $y_{-3} = 0.82$, $y_{-2} = 0.85$, $y_{-1} = 0.8$ and $y_0 = 0.81$, the solution oscillates about $\bar{y} \simeq 0.866$) with semycycles of length one. Moreover, the subsequences $\{y_{4n+i}\}_{n=0}^{\infty}$ are decreasing when i = 1, 3 and increasing when i = 2, 4.

673

References

- [1] R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, 1992.
- [2] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
- [3] G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys. 1 (4) (1993) 289-294.
- [4] V.L. Kocic, G. Ladas, Global attractivity in a second order nonlinear difference equations, J. Math. Anal. Appl. 180 (1993) 144-150.
- [5] H. Sedaghat, Form Symmetries and Reduction of Order in Difference Equations, Chapman & Hall/CRC, Boca Raton, 2011.
- [6] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
- [7] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
- [8] M.R.S. Kulenović, G. Ladas, Dynamics of Second-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
- [9] H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic Puplishers, Dordrecht, 2003.

(Received 24 January 2013) (Accepted 28 October 2015)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th