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Abstract : The purpose of this paper is to determine spectrum and fine spectrum
of the operator ∆uv on the sequence space c0. The operator ∆uv on sequence space
c0 is defined as ∆uvx = (unxn+vn−1xn−1)∞n=0 satisfying certain conditions, where
x−1 = 0 and x = (xn) ∈ c0. In this paper we have obtained the results on the
spectrum and point spectrum for the operator ∆uv on the sequence space c0.
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1 Introduction

Let u = (uk) and v = (vk) be sequences such that
(i) u is either a constant sequence or sequence of distinct real numbers with

U = lim
k→∞

uk,

(ii) v is a sequence of nonzero real numbers with V = lim
k→∞

vk 6= 0, and

(iii) |U − uk| < |V | for each k ∈ N0 = {0, 1, 2, · · · }.
We define the operator ∆uv on the sequence space c0 as follows:

∆uvx = (unxn + vn−1xn−1)∞n=0 with x−1 = 0, where x = (xn) ∈ c0. (1.1)

1Corresponding author.
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It is easy to verify that the operator ∆uv can be represented by the matrix

∆uv =


u0 0 0 . . .
v0 u1 0 . . .
0 v1 u2 . . .
...

...
...

. . .

 . (1.2)

The spectrum of the Cesaro operator on the sequence space c0 is investigated
by Reade [1], Akhmedov and Basar [2]. Spectrum of the Cesaro operator on
sequence spaces bv0 and bv is obtained by Okutoyi [3] and Okutoyi [4], respectively.
Furthermore, Coskun [5] studied the spectrum and fine spectrum for p-Cesaro
operator acting on the space c0. Yildirim [6] and [7] examined fine spectrum of
the Rhaly operator on sequence spaces co and c. The spectrum and fine spectrum
of the difference operator ∆ over the sequence spaces c0 and c is determined by
Altay and Basar [8], where ∆x = (xn − xn−1). The fine spectrum of the Zweier
matrix Zs on sequence spaces l1 and bv is obtained by Altay and Karakus [9],
where s is a real number with s 6= 0, 1 and Zsx = (sxn + (1− s)xn−1). Altay and
Basar [10] determined fine spectrum of the operator B(r, s) over sequence spaces
c0 and c, where B(r, s)x = (rxn + sxn−1). Recently, spectrum and fine spectrum
of the operator B(r, s, t) on sequence spaces c0 and c is studied by Furkan, Bilgic
and Altay [11], where B(r, s, t)x = (rxn + sxn−1 + txn−2).

In this paper we determine spectrum, point spectrum, continuous spectrum
and residual spectrum of the operator ∆uv on the sequence space c0. It is easy
to verify that by choosing suitably u and v sequences, one can get easily the
operators such as B(r, s), Zs etc. Choosing u = (r), v = (s) and u = (s), v =
(1− s), then the operator ∆uv reduces to B(r, s) and Zs, respectively. Similarly,
if u = (1), v = (−1) and u = (0), v = (1), then the operator ∆uv reduces to ∆ and
right-shift operator, respectively. Thus, the results of this paper generalizes the
corresponding results of many operator whose matrix representation has diagonal
and post-diagonal elements studied by earlier authors.

2 Preliminaries and Notation

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
The set of all bounded linear operators on X into itself is denoted by B(X). The
adjoint T× : X? → X? of T is defined by(

T×φ
)

(x) = φ (Tx) for all φ ∈ X? and x ∈ X.

Clearly, T× is a bounded linear operator on the dual space X?.

Let X 6= {0} be a complex normed space and T : D(T ) → X be a linear op-
erator with domain D(T ) ⊆ X. With T , we associate the operator Tα = (T −αI),
where α is a complex number and I is the identity operator on D(T ). The inverse
of Tα (if exists) is denoted by T−1α and known as the resolvent operator of T .
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Since the spectral theory is concerned with many properties of Tα and T−1α , which
depend on α, so we are interested the set of those α in the complex plane for which
T−1α exists or T−1α is bounded or domain of T−1α is dense in X.

Definition 2.1. ([12], pp. 371) Let X 6= {0} be a complex normed space and
T : D(T )→ X be a linear operator with domain D(T ) ⊆ X. A regular value of T
is a complex number α such that
(R1) T−1α exists,
(R2) T−1α is bounded,
(R3) T−1α is defined on a set which is dense in X.

Resolvent set ρ(T,X) of T is the set of all regular values α of T . Its com-
plement σ(T,X) = C \ ρ(T,X) in the complex plane C is called spectrum of T .
The spectrum σ(T,X) is further partitioned into three disjoint sets namely point
spectrum, continuous spectrum and residual continuous as follows:

Point spectrum σp(T,X) is the set of all α ∈ C such that T−1α does not exist,
i.e., condition (R1) fails. The element of σp(T,X) is called eigenvalue of T .

Continuous spectrum σc(T,X) is the set of all α ∈ C such that conditions (R1)
and (R3) hold but condition (R2) fails, i.e., T−1α exists, domain of T−1α is dense in
X but T−1α is unbounded.

Residual spectrum σr(T,X) is the set of all α ∈ C such that T−1α exists but do
not satisfy condition (R3), i.e., domain of T−1α is not dense in X. The condition
(R2) may or may not holds good.

Goldberg’s classification of operator Tα ([13], pp. 58): Let X be a Banach
space and Tα ∈ B(X), where α is a complex number. Again, let R(Tα) and T−1α

denote the range and inverse of the operator Tα, respectively. Then the following
possibilities may occur;
(A) R(Tα) = X,
(B) R(Tα) 6= R(Tα) = X,
(C) R(Tα) 6= X,
and
(1) Tα is injective and T−1α is continuous,
(2) Tα is injective and T−1α is discontinuous,
(3) Tα is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different
cases. These are labeled by A1, A2, A3, B1, B2, B3, C1, C2 and C3. The
notation α ∈ A2σ(T,X) means the operator Tα ∈ A2, i.e., R(Tα) = X and Tα is
injective but T−1α is discontinuous. Similarly others.

Remark 2.3. If α is a complex number such that Tα ∈ A1 or Tα ∈ B1, then α
belongs to the resolvent set ρ(T,X) of T on X. The other classification gives rise
to the fine spectrum of T .

Lemma 2.4. ([14], pp. 129) The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(c0) from c0 to itself if and only if
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(i) the rows of A in l1 and their l1 norms are bounded, and
(ii) the columns of A are in c0.

Note: The operator norm of T is the supremum of the l1 norms of the rows.

Lemma 2.5. ([13], pp. 59) T has a dense range if and only if T× is one to one,
where T× denotes the adjoint operator of the operator T .

Lemma 2.6. ([13], pp. 60) The adjoint operator T× of T is onto if and only if
T has a bounded inverse.

3 Main Results

3.1 Spectrum and Point Spectrum of the Operator ∆uv on
the Sequence Space c0

In this section we obtain spectrum and point spectrum of the operator ∆uv

on c0.

Theorem 3.1. The operator ∆uv : c0 → c0 is a bounded linear operator and

‖∆uv‖B(c0) = sup
k

(|uk|+ |vk−1|) .

Proof. Proof is simple. So we omit.

Theorem 3.2. Spectrum of the operator ∆uv on the sequence space c0 is given by

σ(∆uv, c0) = {α ∈ C : |U − α| 6 |V |} .

Proof. The proof of this theorem is divided into two parts. In the first part, we
show that σ(∆uv, c0) ⊆ {α ∈ C : |U − α| 6 |V |}, which is equivalent to

α ∈ C with |U − α| > |V | implies α /∈ σ(∆uv, c0), i.e., α ∈ ρ(∆uv, c0).

In the second part, we establish the reverse inclusion, i.e.,

{α ∈ C : |U − α| 6 |V |} ⊆ σ(∆uv, c0).

Part I : Let α ∈ C with |U − α| > |V |. Clearly, α 6= U and α 6= uk for each k ∈ N0

as it does not satisfy this condition. Further, (∆uv − αI) = (ank) reduces to a
triangle and hence has an inverse (∆uv − αI)−1 = (bnk), where

(bnk) =



1

(u0 − α)
0 0 . . .

−v0
(u0 − α)(u1 − α)

1

(u1 − α)
0 . . .

v0v1
(u0 − α)(u1 − α)(u2 − α)

−v1
(u1 − α)(u2 − α)

1

(u2 − α)
. . .

...
...

...
. . .


. (3.1)
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By Lemma 2.4, the operator (∆uv − αI)−1 ∈ B(c0) if

(i) series

∞∑
k=0

|bnk| is convergent for each n ∈ N0 and sup
n

∞∑
k=0

|bnk| <∞, and

(ii) lim
n→∞

|bnk| = 0 for each k ∈ N0.

In order to show sup
n

∞∑
k=0

|bnk| < ∞, first we prove that the series

∞∑
k=0

|bnk| is

convergent for each n ∈ N0. For this consider Sn =

∞∑
k=0

|bnk|. Clearly, the series

Sn=

∣∣∣∣ v0v1 · · · vn−1
(u0 − α)(u1 − α) · · · (un − α)

∣∣∣∣+...+∣∣∣∣ vn−1
(un−1 − α)(un − α)

∣∣∣∣+∣∣∣∣ 1

(un − α)

∣∣∣∣ (3.2)

is convergent for each n ∈ N0. Now we claim that sup
n
Sn is finite. For this, suppose

β = lim
n→∞

∣∣∣∣ vn−1un − α

∣∣∣∣ , which is equal to

∣∣∣∣ V

U − α

∣∣∣∣ .
So, 0 < β < 1. We choose ε > 0 such that β + ε < 1. Since lim

n→∞

∣∣∣∣ vn−1un − α

∣∣∣∣ = β, so

there exists a positive integer n0 such that∣∣∣∣ vn−1un − α

∣∣∣∣ < β + ε and

∣∣∣∣ 1

un − α

∣∣∣∣ < β + ε

m
for all n > n0, (3.3)

where m is a lower bound of bounded sequence v = (vk).
For n > n0, Sn can be write as

Sn =

∣∣∣∣ v0v1 · · · vn0−2vn0−1 · · · vn−1
(u0 − α)(u1 − α)(u2 − α) · · · (un0−1 − α)(un0

− α) · · · (un − α)

∣∣∣∣+ · · ·

+

∣∣∣∣ vn0−1 · · · vn−1
(un0−1 − α)(un0

− α) · · · (un − α)

∣∣∣∣+

∣∣∣∣ vn0 · · · vn−1
(un0

− α)(un0+1 − α) · · · (un − α)

∣∣∣∣
+ · · ·+

∣∣∣∣ 1

un − α

∣∣∣∣ .
Take

M = max

{∣∣∣∣ 1

u0 − α

∣∣∣∣ , · · · , ∣∣∣∣ 1

un0−1 − α

∣∣∣∣ , ∣∣∣∣ v0
u1 − α

∣∣∣∣ , · · · , ∣∣∣∣ vn0−2

un0−1 − α

∣∣∣∣} .
Using inequalities in (3.3), we have

Sn < Mn0(β + ε)n−n0+1+· · ·+M(β + ε)n−n0+1+
(β + ε)n−n0+1

m
+· · ·+ (β + ε)

m

= (β + ε)n−n0+1 [Mn0 + · · ·+M ] +
(β + ε)

m

[
1 + · · ·+ (β + ε)n−n0

]
< [Mn0 + · · ·+M ] +

1

m

[
1

1− (β + ε)

]
<∞.
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Thus, Sn <∞ for each n ∈ N and hence sup
n
Sn <∞.

Again, since β < 1, therefore

∣∣∣∣ vn−1un − α

∣∣∣∣ < 1 for large n and consequently,

lim
n→∞

|bn0| = lim
n→∞

∣∣∣∣ v0v1 · · · vn−1
(u0 − α) (u1 − α) · · · (un − α)

∣∣∣∣ = 0.

Similarly, we can show that lim
n→∞

|bnk| = 0 for all k = 1, 2, 3, · · · .
Thus,

(∆uv − αI)−1 ∈ B(c0) for α ∈ C with |U − α| > |V |. (3.4)

Next, we show that domain of the operator (∆uv − αI)−1 is dense in c0, which
follows if the operator (∆uv −αI) is onto. Suppose (∆uv − αI)x = y, which gives

x = (∆uv − αI)
−1
y, i.e., xn =

(
(∆uv − αI)−1y

)
n
, n ∈ N0.

Thus for every y ∈ c0, we can find x ∈ c0 such that (∆uv − αI)x = y.
Hence we have

σ(∆uv, c0) ⊆ {α ∈ C : |U − α| 6 |V |} . (3.5)

Part II: Conversely it is required to show

{α ∈ C : |U − α| 6 |V |} ⊆ σ(∆uv, co). (3.6)

We first prove inclusion (3.6) under the assumption α 6= U and α 6= uk for each
k ∈ N0. Let α ∈ C with |U − α| 6 |V |. Clearly, (∆uv − αI) is a triangle and hence

(∆uv − αI)
−1

exists. So condition (R1) is satisfied but condition (R2) fails as can
be seen below:

Suppose α ∈ C with |U − α| < |V |. Then β > 1. This means that

∣∣∣∣ vn−1un − α

∣∣∣∣ >
1 for large n and consequently, lim

n→∞
|bn0| 6= 0. Hence

(∆uv − αI)−1 /∈ B(c0) for α ∈ C with |U − α| < |V |. (3.7)

Next, we consider α ∈ C with |U − α| = |V |. Proof is by contradiction. Equality
(3.2) can be write as

Sn =

∣∣∣∣ vn−1un − α

∣∣∣∣Sn−1 +

∣∣∣∣ 1

un − α

∣∣∣∣ . (3.8)

Taking limit both sides of equality (3.8) and using condition |U − α| = |V |, we get∣∣∣∣ 1

V

∣∣∣∣ = 0, which is not possible. Thus, lim
n→∞

Sn does not exist and consequently,

sup
n
Sn is unbounded. Hence

(∆uv − αI)−1 /∈ B(c0) for α ∈ C with |U − α| = |V |. (3.9)
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Finally, we prove the inclusion (3.6) under the assumption α = U and α = uk for
all k ∈ N0. For this, we consider

(∆uv − αI)x =



(u0 − α)x0
v0x0 + (u1 − α)x1

...
−vk−1xk−1 + (uk − α)xk

...

 .

Case(i): If (uk) is a constant sequence, say uk = U for all k ∈ N0, then for α = U
(∆uv − UI)x = 0 ⇒ x0 = 0, x1 = 0, x2 = 0, · · · .

This shows that the operator (∆uv − UI) is one to one, but R(∆uv − UI) is not
dense in c0. So condition (R3) fails. Hence U ∈ σ(∆uv, c0).
Case(ii): If (uk) is a sequence of distinct real numbers, then the series Sk is diver-
gent for each α = uk from equality (3.2) and consequently, sup

n
Sn is unbounded.

Hence
(∆uv − αI)−1 /∈ B(c0) for α = uk. (3.10)

So condition (R2) fails. Hence uk ∈ σ (∆uv, c0) for all k ∈ N0.
Again, taking limit both sides of equality (3.9), we see that lim

n→∞
Sn does not

exist for α = U . So sup
n
Sn is unbounded. Hence

(∆uv − αI)−1 /∈ B(c0) for α = U. (3.11)

So condition (R2) fails. Hence U ∈ σ(∆uv, c0). Thus, in this case also uk ∈
σ(∆uv, c0) for all k ∈ N0 and U ∈ σ(∆uv, c0). Hence we have

{α ∈ C : |U − α| 6 |V |} ⊆ σ (∆uv, c0) . (3.12)

From inclusions (3.5) and (3.12), we get

σ(∆uv, c0) = {α ∈ C : |U − α| 6 |V |} .

This completes the proof.

Theorem 3.3. Point spectrum of the operator ∆uv on the sequence space c0 is

σp(∆uv, c0) = ∅.

Proof. For the point spectrum of the operator ∆uv, we find those α in C such that
the matrix equation ∆uvx = αx is satisfy for non-zero vector x = (xk) in c0.

Consider ∆uvx = αx for x 6= 0 = (0, 0, · · · ) in c0, which gives system of
equations

u0x0 = αx0
v0x0 + u1x1 = αx1

...
vk−1xk−1 + ukxk = αxk

...


(3.13)
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The proof of this Theorem is divided into two cases.
Case(i): Suppose (uk) is a constant sequence, say uk = U for all k ∈ N0. Let xt be
the first nonzero entry of the sequence x = (xn). Then equation vt−1xt−1 +Uxt =
αxt gives α = U , and from the equation vtxt + Uxt+1 = αxt+1, we get xt = 0,
which is a contradiction to our assumption. Hence σp(∆uv, c0) = ∅.
Case(ii): Suppose (uk) is a sequence of distinct real numbers. Clearly,

xk =

(
vk−1
α− uk

)
xk−1 for all k > 1.

If α = u0, then lim
k→∞

∣∣∣∣ xkxk−1

∣∣∣∣ > 1 because |U − u0| < |V |.

So x /∈ l1 and hence x /∈ c0 for x0 6= 0.
Similarly, if α = uk for all k > 1, then xk−1 = 0, xk−2 = 0, · · · , x0 = 0 and

xn+1 =

(
vn

uk − un+1

)
xn for all n > k.

This implies lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ > 1 because |U − uk| < |V | for all k > 1.

So x /∈ l1 and hence x /∈ c0 for x0 6= 0. If x0 = 0, then xk = 0 for all k > 1. Only
possibility is x = 0 = (0, 0, · · · ). Hence σp (∆uv, c0) = ∅.

3.2 Residual and Continuous Spectrum of the Operator ∆uv

on the Sequence Space c0

Let T : X → X be a bounded linear operator having matrix representation A
and the dual space of X denoted by X?. Again, let T× be its adjoint operator on
X?. Then the matrix representation of T× is the transpose of the matrix A.

Theorem 3.4. Point spectrum of the adjoint operator ∆×uv on c?o is

σp(∆
×
uv, c

?
o) = {α ∈ C : |U − α| < |V |} .

Proof. For the point spectrum of the operator ∆×uv, we find those α in C such that
the matrix equation ∆×uvf = αf is satisfy for non-zero vector f = (fk) in c?0

∼= l1.
Consider ∆×uvf = αf , which gives system of equations

u0f0 + v0f1 = αf0

u1f1 + v1f2 = αf1
...

uk−1fk−1 + vk−1fk = αfk−1
...

This gives

|fk| =
∣∣∣∣α− uk−1vk−1

∣∣∣∣ |fk−1| for all k > 1. (3.14)
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Now, we take those α ∈ C which satisfy the condition |U − α| < |V |.

From equality (3.14), lim
k→∞

|fk|
|fk−1|

< 1. So, series

∞∑
k=0

|fk| converges and hence

f ∈ l1.
Thus, α ∈ C satisfying the condition |U − α| < |V | implies f ∈ l1.

Conversely, we show that

∞∑
k=0

|fk| <∞ implies α ∈ C satisfy the condition |U − α| < |V |

or equivalently for α ∈ C satisfy the condition |U − α| > |V | implies

∞∑
k=0

|fk|

diverges. We first consider α ∈ C which satisfy the condition |U − α| > |V |. From

equality (3.14), lim
k→∞

|fk|
|fk−1|

> 1. So, series

∞∑
k=0

|fk| diverges.

Next, we consider α ∈ C such that |U − α| = |V |, i.e., lim
k→∞

∣∣∣∣uk − αvk

∣∣∣∣ = 1. So for

each ε > 0, there exists a positive integer k0 such that

1− ε <
∣∣∣∣uk − αvk

∣∣∣∣ < 1 + ε for all k > k0. (3.15)

Take

m = min

{∣∣∣∣u0 − αv0

∣∣∣∣ , ∣∣∣∣u1 − αv1

∣∣∣∣ , · · · , ∣∣∣∣uk0−1 − αvk0−1

∣∣∣∣} . (3.16)

Using equality (3.14), the series

∞∑
k=0

|fk| can be write as

∞∑
k=0

|fk| = |f0|+
∣∣∣∣u0 − αv0

∣∣∣∣ |f0|+ · · ·+ ∣∣∣∣u0 − αv0

∣∣∣∣ · · · ∣∣∣∣uk0−1 − αvk0−1

∣∣∣∣ |f0|
+

∣∣∣∣u0 − αv0

∣∣∣∣ · · · ∣∣∣∣uk0 − αvk0

∣∣∣∣ |f0|+ ∣∣∣∣u0 − αv0

∣∣∣∣ · · · ∣∣∣∣uk0+1 − α
vk0+1

∣∣∣∣ |f0|+ · · ·
> |f0|+m|f0|+ · · ·+mk0 |f0|+mk0(1− ε)|f0|

+mk0(1− ε)2|f0|+ · · · , (using (3.15) and (3.16))

=
(
1 +m+ · · ·+mk0−1

)
|f0|+

mk0 |f0|
ε

→∞ as ε→ 0.

So, in this case also series

∞∑
k=0

|fk| diverges. Thus, f ∈ l1 implies α ∈ C satisfying

the condition |U − α| < |V |.
This means that f ∈ c?0 if and only if f0 6= 0 and α ∈ C such that |U − α| < |V |.
Hence
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σp(∆
×
uv, c

?
0) = {α ∈ C : |U − α| < |V |}.

Theorem 3.5. Residual spectrum of the operator ∆uv on the sequence space c0 is

σr(∆uv, c0) = {α ∈ C : |U − α| < |V |} .

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose (uk) is a constant sequence, say uk = U for all k ∈ N0. For
α ∈ C with |U − α| < |V |, the operator (∆uv−αI) is a triangle except α = U and
consequently, the operator (∆uv − αI) has an inverse. Further by Theorem 3.3,
the operator (∆uv − αI) is one to one for α = U and hence has an inverse.

But by Theorem 3.4, the operator (∆uv − αI)
×

is not one to one for α ∈ C
with |U − α| < |V |. Hence by Lemma 2.5, the range of the operator (∆uv − αI)
is not dense in c0. Thus, σr (∆uv, c0) = {α ∈ C : |U − α| < |V |}.

Case(ii): Suppose (uk) is a sequence of distinct real numbers. For α ∈ C such
that |U − α| < |V |, the operator (∆uv − αI) is a triangle except α = uk for all
k ∈ N0 and consequently, the operator (∆uv − αI) has an inverse. Further by

Theorem 3.3, the operator (∆uv − ukI) is one to one and hence (∆uv − ukI)
−1

exists for all k ∈ N0.
On the basis of argument as given in Case(i), it is easy to verify that the range

of the operator (∆uv − αI) is not dense in c0. Thus,
σr (∆uv, c0) = {α ∈ C : |U − α| < |V |}.

Theorem 3.6. Continuous spectrum of the operator ∆uv on the sequence space
c0 is

σc(∆uv, c0) = {α ∈ C : |U − α| = |V |} .

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose (uk) is a constant sequence. For α ∈ C with |U − α| = |V |,
the operator (∆uv − αI) is a triangle because α 6= U and has an inverse. The
operator (∆uv−αI)−1 is discontinuous by condition (3.9). Therefore, the operator
(∆uv − αI) has an unbounded inverse.

As the operator (∆uv − αI)× is one to one for α ∈ C satisfying |U − α| = |V |
follows from Theorem 3.4. So, the range of the operator (∆uv −αI) is dense in c0
by Lemma 2.5. Hence

σc (∆uv, c0) = {α ∈ C : |U − α| = |V |} .

Case(ii): Suppose (uk) is a sequence of distinct real numbers. For α ∈ C with
|U − α| = |V |, the operator (∆uv − αI) is a triangle because α 6= uk for each
k ∈ N and consequently, the operator (∆uv − αI) has an inverse. The operator
(∆uv − αI)−1 is discontinuous by condition (3.9). Therefore, (∆uv − αI) has an
unbounded inverse.
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On the basis of argument as given in Case (i), it is easy to verify that the
range of the operator (∆uv − αI) is dense in c0. Hence

σc (∆uv, c0) = {α ∈ C : |U − α| = |V |}.

3.3 Fine Spectrum of the Operator ∆uv on the Sequence
Space c0

Theorem 3.7. If α satisfies |U − α| > |V |, then (∆uv − αI) ∈ A1.

Proof. It is required to show that the operator (∆uv − αI) is bijective and has a
continuous inverse for α ∈ C with |U − α| > |V |. Since α 6= U and α 6= uk for
each k ∈ N0, therefore the operator (∆uv − αI) is a triangle. Hence it has an
inverse. The operator (∆uv − αI)−1 is continuous for α ∈ C with |U − α| > |V |
by statement (3.4). Also the equation

(∆uv − αI)x = y gives x = (∆uv − αI)−1y, i.e.,

xn =
(
(∆uv − αI)−1y

)
n
, n ∈ N0.

Thus, for every y ∈ c0, we can find x ∈ c0 such that

(∆uv − αI)x = y, since (∆uv − αI)−1 ∈ B(c0).

This shows that the operator (∆uv − αI) is onto and hence (∆uv − αI) ∈ A1.

Theorem 3.8. Let u be constant sequence, say uk = U for all k ∈ N0. Then
U ∈ C1σ(∆uv, c0).

Proof. We have σr(∆uv, c0) = {α ∈ C : |U − α| < |V |}. Clearly, U ∈ σr(∆uv, c0).

It is sufficient to show that the operator (∆uv − UI)
−1

is continuous. By Lemma
2.6, it is enough to show that (∆uv − UI)

×
is onto, i.e., for given y = (yn) ∈ c?0, we

have to find x = (xn) ∈ c?0 such that (∆uv − UI)
×
x = y. Now (∆uv − UI)

×
x = y,

i.e.,

v0x1 = y0

v1x2 = y1
...

vi−1xi = yi−1
...

Thus, vn−1xn = yn−1 for all n > 1 which implies

∞∑
n=0

|xn| < ∞, since y ∈ l1 and

v = (vk) is a convergent sequence. This shows that operator (∆uv − UI)
×

is onto
and hence U ∈ C1σ (∆uv, c0).
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Theorem 3.9. Let u be constant sequence, say uk = U for all k ∈ N0 and α 6= U
but α ∈ σr (∆uv, c0). Then α ∈ C2σ (∆uv, c0).

Proof. It is sufficient to show that the operator (∆uv − αI)−1 is discontinuous

for α 6= U and α ∈ σr (∆uv, c0). The operator (∆uv − αI)
−1

is discontinuous by
statement (3.7) for U 6= α ∈ C with |U − α| < |V |.

Theorem 3.10. Let u be a sequence of distinct real numbers and α ∈ σr(∆uv, c0).
Then α ∈ C2σ (∆uv, c0).

Proof. It is sufficient to show that the operator (∆uv −αI)−1 is discontinuous for

α ∈ σr (∆uv, c0). The operator (∆uv − αI)
−1

is discontinuous by statements (3.7),
(3.10) and (3.11) for α ∈ C with |U − α| < |V |.

Theorem 3.11. Let u and v be constant sequences and α ∈ σc(∆uv, c0). Then
α ∈ B2σ(∆uv, c0).

Proof. It is sufficient to show that the operator (∆uv − αI) is not onto, i.e., there
is no sequence x = (xn) in c0 such that (∆uv −αI)x = y for some y ∈ c0. Clearly,
y = (1, 0, 0, · · · ) ∈ c0. We have

(∆uv − αI)x = y ⇒ xn = (−1)n
V n

(U − α)n+1
for each n > 0.

Therefore, |xn| =

∣∣∣∣ 1

V

∣∣∣∣ for each n > 0 because |U − α| = |V |. Consequently,

lim
n→∞

|xn| =
∣∣∣∣ 1

V

∣∣∣∣ > 0. This shows that x /∈ c0 and hence the operator (∆uv − αI)

is not onto.
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