Thai Journal of Mathematics Volume 16 (2018) Number 3 : 651-663
http://thaijmath.in.cmu.ac.th

Fine Spectrum of the Generalized Difference Operator $\Delta_{u v}$ on the Sequence Space c_{0}

Parmeshwary Dayal Srivastava and Sudhanshu Kumar ${ }^{1}$
Department of Mathematics, Indian Institute of Technology, Kharagpur
Kharagpur - 721302, India
e-mail : pds@maths.iitkgp.ernet.in (P. D. Srivastava) sudhanshu_tomar@yahoo.com (S. Kumar)

Abstract

The purpose of this paper is to determine spectrum and fine spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0}. The operator $\Delta_{u v}$ on sequence space c_{0} is defined as $\Delta_{u v} x=\left(u_{n} x_{n}+v_{n-1} x_{n-1}\right)_{n=0}^{\infty}$ satisfying certain conditions, where $x_{-1}=0$ and $x=\left(x_{n}\right) \in c_{0}$. In this paper we have obtained the results on the spectrum and point spectrum for the operator $\Delta_{u v}$ on the sequence space c_{0}. Further, the results on continuous spectrum, residual spectrum and fine spectrum of the operator $\Delta_{u v}$ on sequence space c_{0} are also derived.

Keywords : spectrum of an operator; generalized difference operator; sequence space.
2010 Mathematics Subject Classification : 41A17; 47H09.

1 Introduction

Let $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right)$ be sequences such that
(i) u is either a constant sequence or sequence of distinct real numbers with $U=\lim _{k \rightarrow \infty} u_{k}$,
(ii) v is a sequence of nonzero real numbers with $V=\lim _{k \rightarrow \infty} v_{k} \neq 0$, and
(iii) $\left|U-u_{k}\right|<|V|$ for each $k \in \mathbb{N}_{0}=\{0,1,2, \cdots\}$.

We define the operator $\Delta_{u v}$ on the sequence space c_{0} as follows:

$$
\begin{equation*}
\Delta_{u v} x=\left(u_{n} x_{n}+v_{n-1} x_{n-1}\right)_{n=0}^{\infty} \text { with } x_{-1}=0, \text { where } x=\left(x_{n}\right) \in c_{0} \tag{1.1}
\end{equation*}
$$

[^0]It is easy to verify that the operator $\Delta_{u v}$ can be represented by the matrix

$$
\Delta_{u v}=\left(\begin{array}{cccc}
u_{0} & 0 & 0 & \ldots \tag{1.2}\\
v_{0} & u_{1} & 0 & \ldots \\
0 & v_{1} & u_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The spectrum of the Cesaro operator on the sequence space c_{0} is investigated by Reade [1], Akhmedov and Basar [2]. Spectrum of the Cesaro operator on sequence spaces $b v_{0}$ and $b v$ is obtained by Okutoyi 3] and Okutoyi 4, respectively. Furthermore, Coskun [5] studied the spectrum and fine spectrum for p-Cesaro operator acting on the space c_{0}. Yildirim [6] and [7] examined fine spectrum of the Rhaly operator on sequence spaces c_{o} and c. The spectrum and fine spectrum of the difference operator Δ over the sequence spaces c_{0} and c is determined by Altay and Basar [8], where $\Delta x=\left(x_{n}-x_{n-1}\right)$. The fine spectrum of the Zweier matrix Z^{s} on sequence spaces l_{1} and $b v$ is obtained by Altay and Karakus 9], where s is a real number with $s \neq 0,1$ and $Z^{s} x=\left(s x_{n}+(1-s) x_{n-1}\right)$. Altay and Basar [10] determined fine spectrum of the operator $B(r, s)$ over sequence spaces c_{0} and c, where $B(r, s) x=\left(r x_{n}+s x_{n-1}\right)$. Recently, spectrum and fine spectrum of the operator $B(r, s, t)$ on sequence spaces c_{0} and c is studied by Furkan, Bilgic and Altay 11], where $B(r, s, t) x=\left(r x_{n}+s x_{n-1}+t x_{n-2}\right)$.

In this paper we determine spectrum, point spectrum, continuous spectrum and residual spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0}. It is easy to verify that by choosing suitably u and v sequences, one can get easily the operators such as $B(r, s), Z^{s}$ etc. Choosing $u=(r), v=(s)$ and $u=(s), v=$ $(1-s)$, then the operator $\Delta_{u v}$ reduces to $B(r, s)$ and Z^{s}, respectively. Similarly, if $u=(1), v=(-1)$ and $u=(0), v=(1)$, then the operator $\Delta_{u v}$ reduces to Δ and right-shift operator, respectively. Thus, the results of this paper generalizes the corresponding results of many operator whose matrix representation has diagonal and post-diagonal elements studied by earlier authors.

2 Preliminaries and Notation

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. The set of all bounded linear operators on X into itself is denoted by $B(X)$. The adjoint $T^{\star}: X^{\star} \rightarrow X^{\star}$ of T is defined by

$$
\left(T^{\times} \phi\right)(x)=\phi(T x) \text { for all } \phi \in X^{\star} \text { and } x \in X
$$

Clearly, T^{\times}is a bounded linear operator on the dual space X^{\star}.
Let $X \neq\{\mathbf{0}\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator $T_{\alpha}=(T-\alpha I)$, where α is a complex number and I is the identity operator on $D(T)$. The inverse of T_{α} (if exists) is denoted by T_{α}^{-1} and known as the resolvent operator of T.

Since the spectral theory is concerned with many properties of T_{α} and T_{α}^{-1}, which depend on α, so we are interested the set of those α in the complex plane for which T_{α}^{-1} exists or T_{α}^{-1} is bounded or domain of T_{α}^{-1} is dense in X.
Definition 2.1. ($\boxed{12}$, pp. 371) Let $X \neq\{0\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. A regular value of T is a complex number α such that
(R1) T_{α}^{-1} exists,
(R2) T_{α}^{-1} is bounded,
(R3) T_{α}^{-1} is defined on a set which is dense in X.
Resolvent set $\rho(T, X)$ of T is the set of all regular values α of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called spectrum of T. The spectrum $\sigma(T, X)$ is further partitioned into three disjoint sets namely point spectrum, continuous spectrum and residual continuous as follows:

Point spectrum $\sigma_{p}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} does not exist, i.e., condition (R1) fails. The element of $\sigma_{p}(T, X)$ is called eigenvalue of T.

Continuous spectrum $\sigma_{c}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that conditions (R1) and (R3) hold but condition (R2) fails, i.e., T_{α}^{-1} exists, domain of T_{α}^{-1} is dense in X but T_{α}^{-1} is unbounded.

Residual spectrum $\sigma_{r}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists but do not satisfy condition (R3), i.e., domain of T_{α}^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg's classification of operator $T_{\alpha}(\sqrt{13}$, pp. 58): Let X be a Banach space and $T_{\alpha} \in B(X)$, where α is a complex number. Again, let $R\left(T_{\alpha}\right)$ and T_{α}^{-1} denote the range and inverse of the operator T_{α}, respectively. Then the following possibilities may occur;
(A) $R\left(T_{\alpha}\right)=X$,
(B) $R\left(T_{\alpha}\right) \neq \overline{R\left(T_{\alpha}\right)}=X$,
(C) $\overline{R\left(T_{\alpha}\right)} \neq X$,
and
(1) T_{α} is injective and T_{α}^{-1} is continuous,
(2) T_{α} is injective and T_{α}^{-1} is discontinuous,
(3) T_{α} is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different cases. These are labeled by $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}$ and C_{3}. The notation $\alpha \in A_{2} \sigma(T, X)$ means the operator $T_{\alpha} \in A_{2}$, i.e., $R\left(T_{\alpha}\right)=X$ and T_{α} is injective but T_{α}^{-1} is discontinuous. Similarly others.

Remark 2.3. If α is a complex number such that $T_{\alpha} \in A_{1}$ or $T_{\alpha} \in B_{1}$, then α belongs to the resolvent set $\rho(T, X)$ of T on X. The other classification gives rise to the fine spectrum of T.

Lemma 2.4. ($(14]$, pp. 129) The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(\overline{\left.c_{0}\right)}\right.$ from c_{0} to itself if and only if
(i) the rows of A in l_{1} and their l_{1} norms are bounded, and
(ii) the columns of A are in c_{0}.

Note: The operator norm of T is the supremum of the l_{1} norms of the rows.
Lemma 2.5. ($[13], \mathrm{pp} .59) T$ has a dense range if and only if T^{\times}is one to one, where T^{\times}denotes the adjoint operator of the operator T.
Lemma 2.6. (13, pp. 60) The adjoint operator T^{\times}of T is onto if and only if T has a bounded inverse.

3 Main Results

3.1 Spectrum and Point Spectrum of the Operator $\Delta_{u v}$ on the Sequence Space c_{0}

In this section we obtain spectrum and point spectrum of the operator $\Delta_{u v}$ on c_{0}.
Theorem 3.1. The operator $\Delta_{u v}: c_{0} \rightarrow c_{0}$ is a bounded linear operator and

$$
\left\|\Delta_{u v}\right\|_{B\left(c_{0}\right)}=\sup _{k}\left(\left|u_{k}\right|+\left|v_{k-1}\right|\right) .
$$

Proof. Proof is simple. So we omit.
Theorem 3.2. Spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0} is given by

$$
\sigma\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} .
$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma\left(\Delta_{u v}, c_{0}\right) \subseteq\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\}$, which is equivalent to

$$
\alpha \in \mathbb{C} \text { with }|U-\alpha|>|V| \text { implies } \alpha \notin \sigma\left(\Delta_{u v}, c_{0}\right) \text {, i.e., } \alpha \in \rho\left(\Delta_{u v}, c_{0}\right) \text {. }
$$

In the second part, we establish the reverse inclusion, i.e.,

$$
\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} \subseteq \sigma\left(\Delta_{u v}, c_{0}\right)
$$

Part I : Let $\alpha \in \mathbb{C}$ with $|U-\alpha|>|V|$. Clearly, $\alpha \neq U$ and $\alpha \neq u_{k}$ for each $k \in \mathbb{N}_{0}$ as it does not satisfy this condition. Further, $\left(\Delta_{u v}-\alpha I\right)=\left(a_{n k}\right)$ reduces to a triangle and hence has an inverse $\left(\Delta_{u v}-\alpha I\right)^{-1}=\left(b_{n k}\right)$, where

$$
\left(b_{n k}\right)=\left(\begin{array}{cccc}
\frac{1}{\left(u_{0}-\alpha\right)} & 0 & 0 & \cdots \tag{3.1}\\
\frac{-v_{0}}{\left(u_{0}-\alpha\right)\left(u_{1}-\alpha\right)} & \frac{1}{\left(u_{1}-\alpha\right)} & 0 & \cdots \\
\frac{v_{0} v_{1}}{\left(u_{0}-\alpha\right)\left(u_{1}-\alpha\right)\left(u_{2}-\alpha\right)} & \frac{-v_{1}}{\left(u_{1}-\alpha\right)\left(u_{2}-\alpha\right)} & \frac{1}{\left(u_{2}-\alpha\right)} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

By Lemma 2.4, the operator $\left(\Delta_{u v}-\alpha I\right)^{-1} \in B\left(c_{0}\right)$ if
(i) series $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $n \in \mathbb{N}_{0}$ and $\sup _{n} \sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$, and
(ii) $\lim _{n \rightarrow \infty}\left|b_{n k}\right|=0$ for each $k \in \mathbb{N}_{0}$.

In order to show $\sup _{n} \sum_{k=0}^{\infty}\left|b_{n k}\right|<\infty$, first we prove that the series $\sum_{k=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $n \in \mathbb{N}_{0}$. For this consider $S_{n}=\sum_{k=0}^{\infty}\left|b_{n k}\right|$. Clearly, the series

$$
\begin{equation*}
S_{n}=\left|\frac{v_{0} v_{1} \cdots v_{n-1}}{\left(u_{0}-\alpha\right)\left(u_{1}-\alpha\right) \cdots\left(u_{n}-\alpha\right)}\right|+\ldots+\left|\frac{v_{n-1}}{\left(u_{n-1}-\alpha\right)\left(u_{n}-\alpha\right)}\right|+\left|\frac{1}{\left(u_{n}-\alpha\right)}\right| \tag{3.2}
\end{equation*}
$$

is convergent for each $n \in \mathbb{N}_{0}$. Now we claim that $\sup S_{n}$ is finite. For this, suppose

$$
\beta=\lim _{n \rightarrow \infty}\left|\frac{v_{n-1}}{u_{n}-\alpha}\right|, \text { which is equal to }\left|\frac{V}{U-\alpha}\right|
$$

So, $0<\beta<1$. We choose $\epsilon>0$ such that $\beta+\epsilon<1$. Since $\lim _{n \rightarrow \infty}\left|\frac{v_{n-1}}{u_{n}-\alpha}\right|=\beta$, so there exists a positive integer n_{0} such that

$$
\begin{equation*}
\left|\frac{v_{n-1}}{u_{n}-\alpha}\right|<\beta+\epsilon \text { and }\left|\frac{1}{u_{n}-\alpha}\right|<\frac{\beta+\epsilon}{m} \text { for all } n \geqslant n_{0} \tag{3.3}
\end{equation*}
$$

where m is a lower bound of bounded sequence $v=\left(v_{k}\right)$.
For $n \geqslant n_{0}, S_{n}$ can be write as

$$
\begin{aligned}
S_{n}= & \left|\frac{v_{0} v_{1} \cdots v_{n_{0}-2} v_{n_{0}-1} \cdots v_{n-1}}{\left(u_{0}-\alpha\right)\left(u_{1}-\alpha\right)\left(u_{2}-\alpha\right) \cdots\left(u_{n_{0}-1}-\alpha\right)\left(u_{n_{0}}-\alpha\right) \cdots\left(u_{n}-\alpha\right)}\right|+\cdots \\
& +\left|\frac{v_{n_{0}-1} \cdots v_{n-1}}{\left(u_{n_{0}-1}-\alpha\right)\left(u_{n_{0}}-\alpha\right) \cdots\left(u_{n}-\alpha\right)}\right|+\left|\frac{v_{n_{0}} \cdots v_{n-1}}{\left(u_{n_{0}}-\alpha\right)\left(u_{n_{0}+1}-\alpha\right) \cdots\left(u_{n}-\alpha\right)}\right| \\
& +\cdots+\left|\frac{1}{u_{n}-\alpha}\right|
\end{aligned}
$$

Take

$$
M=\max \left\{\left|\frac{1}{u_{0}-\alpha}\right|, \cdots,\left|\frac{1}{u_{n_{0}-1}-\alpha}\right|,\left|\frac{v_{0}}{u_{1}-\alpha}\right|, \cdots,\left|\frac{v_{n_{0}-2}}{u_{n_{0}-1}-\alpha}\right|\right\} .
$$

Using inequalities in (3.3), we have

$$
\begin{aligned}
S_{n} & <M^{n_{0}}(\beta+\epsilon)^{n-n_{0}+1}+\cdots+M(\beta+\epsilon)^{n-n_{0}+1}+\frac{(\beta+\epsilon)^{n-n_{0}+1}}{m}+\cdots+\frac{(\beta+\epsilon)}{m} \\
& =(\beta+\epsilon)^{n-n_{0}+1}\left[M^{n_{0}}+\cdots+M\right]+\frac{(\beta+\epsilon)}{m}\left[1+\cdots+(\beta+\epsilon)^{n-n_{0}}\right] \\
& <\left[M^{n_{0}}+\cdots+M\right]+\frac{1}{m}\left[\frac{1}{1-(\beta+\epsilon)}\right]<\infty .
\end{aligned}
$$

Thus, $S_{n}<\infty$ for each $n \in \mathbb{N}$ and hence $\sup _{n} S_{n}<\infty$.
Again, since $\beta<1$, therefore $\left|\frac{v_{n-1}}{u_{n}-\alpha}\right|<1$ for large n and consequently,

$$
\lim _{n \rightarrow \infty}\left|b_{n 0}\right|=\lim _{n \rightarrow \infty}\left|\frac{v_{0} v_{1} \cdots v_{n-1}}{\left(u_{0}-\alpha\right)\left(u_{1}-\alpha\right) \cdots\left(u_{n}-\alpha\right)}\right|=0 .
$$

Similarly, we can show that $\lim _{n \rightarrow \infty}\left|b_{n k}\right|=0$ for all $k=1,2,3, \cdots$.
Thus,

$$
\begin{equation*}
\left(\Delta_{u v}-\alpha I\right)^{-1} \in B\left(c_{0}\right) \text { for } \alpha \in \mathbb{C} \text { with }|U-\alpha|>|V| . \tag{3.4}
\end{equation*}
$$

Next, we show that domain of the operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is dense in c_{0}, which follows if the operator $\left(\Delta_{u v}-\alpha I\right)$ is onto. Suppose $\left(\Delta_{u v}-\alpha I\right) x=y$, which gives

$$
x=\left(\Delta_{u v}-\alpha I\right)^{-1} y \text {, i.e., } x_{n}=\left(\left(\Delta_{u v}-\alpha I\right)^{-1} y\right)_{n}, n \in \mathbb{N}_{0} .
$$

Thus for every $y \in c_{0}$, we can find $x \in c_{0}$ such that $\left(\Delta_{u v}-\alpha I\right) x=y$.
Hence we have

$$
\begin{equation*}
\sigma\left(\Delta_{u v}, c_{0}\right) \subseteq\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} . \tag{3.5}
\end{equation*}
$$

Part II: Conversely it is required to show

$$
\begin{equation*}
\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} \subseteq \sigma\left(\Delta_{u v}, c_{o}\right) . \tag{3.6}
\end{equation*}
$$

We first prove inclusion (3.6) under the assumption $\alpha \neq U$ and $\alpha \neq u_{k}$ for each $k \in \mathbb{N}_{0}$. Let $\alpha \in \mathbb{C}$ with $|U-\alpha| \leqslant|V|$. Clearly, ($\Delta_{u v}-\alpha I$) is a triangle and hence $\left(\Delta_{u v}-\alpha I\right)^{-1}$ exists. So condition (R1) is satisfied but condition (R2) fails as can be seen below:

Suppose $\alpha \in \mathbb{C}$ with $|U-\alpha|<|V|$. Then $\beta>1$. This means that $\left|\frac{v_{n-1}}{u_{n}-\alpha}\right|>$ 1 for large n and consequently, $\lim _{n \rightarrow \infty}\left|b_{n 0}\right| \neq 0$. Hence

$$
\begin{equation*}
\left(\Delta_{u v}-\alpha I\right)^{-1} \notin B\left(c_{0}\right) \text { for } \alpha \in \mathbb{C} \text { with }|U-\alpha|<|V| . \tag{3.7}
\end{equation*}
$$

Next, we consider $\alpha \in \mathbb{C}$ with $|U-\alpha|=|V|$. Proof is by contradiction. Equality (3.2) can be write as

$$
\begin{equation*}
S_{n}=\left|\frac{v_{n-1}}{u_{n}-\alpha}\right| S_{n-1}+\left|\frac{1}{u_{n}-\alpha}\right| . \tag{3.8}
\end{equation*}
$$

Taking limit both sides of equality (3.8) and using condition $|U-\alpha|=|V|$, we get $\left|\frac{1}{V}\right|=0$, which is not possible. Thus, $\lim _{n \rightarrow \infty} S_{n}$ does not exist and consequently, $\sup _{n} S_{n}$ is unbounded. Hence

$$
\begin{equation*}
\left(\Delta_{u v}-\alpha I\right)^{-1} \notin B\left(c_{0}\right) \text { for } \alpha \in \mathbb{C} \text { with }|U-\alpha|=|V| . \tag{3.9}
\end{equation*}
$$

Finally, we prove the inclusion (3.6) under the assumption $\alpha=U$ and $\alpha=u_{k}$ for all $k \in \mathbb{N}_{0}$. For this, we consider

$$
\left(\Delta_{u v}-\alpha I\right) x=\left(\begin{array}{c}
\left(u_{0}-\alpha\right) x_{0} \\
v_{0} x_{0}+\left(u_{1}-\alpha\right) x_{1} \\
\vdots \\
-v_{k-1} x_{k-1}+\left(u_{k}-\alpha\right) x_{k} \\
\vdots
\end{array}\right)
$$

Case(i): If $\left(u_{k}\right)$ is a constant sequence, say $u_{k}=U$ for all $k \in \mathbb{N}_{0}$, then for $\alpha=U$

$$
\left(\Delta_{u v}-U I\right) x=\mathbf{0} \Rightarrow x_{0}=0, x_{1}=0, x_{2}=0, \cdots
$$

This shows that the operator $\left(\Delta_{u v}-U I\right)$ is one to one, but $R\left(\Delta_{u v}-U I\right)$ is not dense in c_{0}. So condition (R3) fails. Hence $U \in \sigma\left(\Delta_{u v}, c_{0}\right)$.
Case(ii): If $\left(u_{k}\right)$ is a sequence of distinct real numbers, then the series S_{k} is divergent for each $\alpha=u_{k}$ from equality $\sqrt{3.2}$ and consequently, $\sup _{n} S_{n}$ is unbounded. Hence

$$
\begin{equation*}
\left(\Delta_{u v}-\alpha I\right)^{-1} \notin B\left(c_{0}\right) \text { for } \alpha=u_{k} \tag{3.10}
\end{equation*}
$$

So condition (R2) fails. Hence $u_{k} \in \sigma\left(\Delta_{u v}, c_{0}\right)$ for all $k \in \mathbb{N}_{0}$.
Again, taking limit both sides of equality $\sqrt{3.9}$, we see that $\lim _{n \rightarrow \infty} S_{n}$ does not exist for $\alpha=U$. So $\sup S_{n}$ is unbounded. Hence

$$
\begin{equation*}
\left(\Delta_{u v}-\alpha I\right)^{-1} \notin B\left(c_{0}\right) \text { for } \alpha=U \tag{3.11}
\end{equation*}
$$

So condition (R2) fails. Hence $U \in \sigma\left(\Delta_{u v}, c_{0}\right)$. Thus, in this case also $u_{k} \in$ $\sigma\left(\Delta_{u v}, c_{0}\right)$ for all $k \in \mathbb{N}_{0}$ and $U \in \sigma\left(\Delta_{u v}, c_{0}\right)$. Hence we have

$$
\begin{equation*}
\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} \subseteq \sigma\left(\Delta_{u v}, c_{0}\right) \tag{3.12}
\end{equation*}
$$

From inclusions 3.5 and 3.12, we get

$$
\sigma\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha| \leqslant|V|\} .
$$

This completes the proof.
Theorem 3.3. Point spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0} is

$$
\sigma_{p}\left(\Delta_{u v}, c_{0}\right)=\emptyset
$$

Proof. For the point spectrum of the operator $\Delta_{u v}$, we find those α in \mathbb{C} such that the matrix equation $\Delta_{u v} x=\alpha x$ is satisfy for non-zero vector $x=\left(x_{k}\right)$ in c_{0}.

Consider $\Delta_{u v} x=\alpha x$ for $x \neq \mathbf{0}=(0,0, \cdots)$ in c_{0}, which gives system of equations

$$
\begin{align*}
u_{0} x_{0} & =\alpha x_{0} \\
v_{0} x_{0}+u_{1} x_{1} & =\alpha x_{1} \tag{3.13}\\
& \vdots \\
v_{k-1} x_{k-1}+u_{k} x_{k} & =\alpha x_{k}
\end{align*}
$$

The proof of this Theorem is divided into two cases.
Case (i): Suppose $\left(u_{k}\right)$ is a constant sequence, say $u_{k}=U$ for all $k \in \mathbb{N}_{0}$. Let x_{t} be the first nonzero entry of the sequence $x=\left(x_{n}\right)$. Then equation $v_{t-1} x_{t-1}+U x_{t}=$ αx_{t} gives $\alpha=U$, and from the equation $v_{t} x_{t}+U x_{t+1}=\alpha x_{t+1}$, we get $x_{t}=0$, which is a contradiction to our assumption. Hence $\sigma_{p}\left(\Delta_{u v}, c_{0}\right)=\emptyset$.
Case(ii): Suppose (u_{k}) is a sequence of distinct real numbers. Clearly,

$$
x_{k}=\left(\frac{v_{k-1}}{\alpha-u_{k}}\right) x_{k-1} \quad \text { for all } k \geqslant 1 .
$$

If $\alpha=u_{0}$, then $\lim _{k \rightarrow \infty}\left|\frac{x_{k}}{x_{k-1}}\right|>1$ because $\left|U-u_{0}\right|<|V|$.
So $x \notin l_{1}$ and hence $x \notin c_{0}$ for $x_{0} \neq 0$.
Similarly, if $\alpha=u_{k}$ for all $k \geqslant 1$, then $x_{k-1}=0, x_{k-2}=0, \cdots, x_{0}=0$ and

$$
x_{n+1}=\left(\frac{v_{n}}{u_{k}-u_{n+1}}\right) x_{n} \text { for all } n \geqslant k .
$$

This implies $\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|>1$ because $\left|U-u_{k}\right|<|V|$ for all $k \geqslant 1$.
So $x \notin l_{1}$ and hence $x \notin c_{0}$ for $x_{0} \neq 0$. If $x_{0}=0$, then $x_{k}=0$ for all $k \geqslant 1$. Only possibility is $x=\mathbf{0}=(0,0, \cdots)$. Hence $\sigma_{p}\left(\Delta_{u v}, c_{0}\right)=\emptyset$.

3.2 Residual and Continuous Spectrum of the Operator $\Delta_{u v}$ on the Sequence Space c_{0}

Let $T: X \rightarrow X$ be a bounded linear operator having matrix representation A and the dual space of X denoted by X^{\star}. Again, let T^{\star} be its adjoint operator on X^{\star}. Then the matrix representation of T^{\star} is the transpose of the matrix A.
Theorem 3.4. Point spectrum of the adjoint operator $\Delta_{u v}^{\times}$on c_{o}^{\star} is

$$
\sigma_{p}\left(\Delta_{u v}^{\times}, c_{o}^{\star}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\} .
$$

Proof. For the point spectrum of the operator $\Delta_{u v}^{\times}$, we find those α in \mathbb{C} such that the matrix equation $\Delta_{u v}^{\times} f=\alpha f$ is satisfy for non-zero vector $f=\left(f_{k}\right)$ in $c_{0}^{\star} \cong l_{1}$. Consider $\Delta_{u v}^{\times} f=\alpha f$, which gives system of equations

$$
\begin{aligned}
u_{0} f_{0}+v_{0} f_{1} & =\alpha f_{0} \\
u_{1} f_{1}+v_{1} f_{2} & =\alpha f_{1} \\
& \vdots \\
u_{k-1} f_{k-1}+v_{k-1} f_{k} & =\alpha f_{k-1}
\end{aligned}
$$

This gives

$$
\begin{equation*}
\left|f_{k}\right|=\left|\frac{\alpha-u_{k-1}}{v_{k-1}}\right|\left|f_{k-1}\right| \quad \text { for all } k \geqslant 1 . \tag{3.14}
\end{equation*}
$$

Now, we take those $\alpha \in \mathbb{C}$ which satisfy the condition $|U-\alpha|<|V|$.
From equality (3.14), $\lim _{k \rightarrow \infty} \frac{\left|f_{k}\right|}{\left|f_{k-1}\right|}<1$. So, series $\sum_{k=0}^{\infty}\left|f_{k}\right|$ converges and hence $f \in l_{1}$.
Thus, $\alpha \in \mathbb{C}$ satisfying the condition $|U-\alpha|<|V|$ implies $f \in l_{1}$.
Conversely, we show that

$$
\sum_{k=0}^{\infty}\left|f_{k}\right|<\infty \text { implies } \alpha \in \mathbb{C} \text { satisfy the condition }|U-\alpha|<|V|
$$

or equivalently for $\alpha \in \mathbb{C}$ satisfy the condition $|U-\alpha| \geqslant|V|$ implies $\sum_{k=0}^{\infty}\left|f_{k}\right|$ diverges. We first consider $\alpha \in \mathbb{C}$ which satisfy the condition $|U-\alpha|>|V|$. From equality (3.14), $\lim _{k \rightarrow \infty} \frac{\left|f_{k}\right|}{\left|f_{k-1}\right|}>1$. So, series $\sum_{k=0}^{\infty}\left|f_{k}\right|$ diverges.
Next, we consider $\alpha \in \mathbb{C}$ such that $|U-\alpha|=|V|$, i.e., $\lim _{k \rightarrow \infty}\left|\frac{u_{k}-\alpha}{v_{k}}\right|=1$. So for each $\epsilon>0$, there exists a positive integer k_{0} such that

$$
\begin{equation*}
1-\epsilon<\left|\frac{u_{k}-\alpha}{v_{k}}\right|<1+\epsilon \quad \text { for all } k \geqslant k_{0} . \tag{3.15}
\end{equation*}
$$

Take

$$
\begin{equation*}
m=\min \left\{\left|\frac{u_{0}-\alpha}{v_{0}}\right|,\left|\frac{u_{1}-\alpha}{v_{1}}\right|, \cdots,\left|\frac{u_{k_{0}-1}-\alpha}{v_{k_{0}-1}}\right|\right\} . \tag{3.16}
\end{equation*}
$$

Using equality (3.14), the series $\sum_{k=0}^{\infty}\left|f_{k}\right|$ can be write as

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|f_{k}\right|= & \left|f_{0}\right|+\left|\frac{u_{0}-\alpha}{v_{0}}\right|\left|f_{0}\right|+\cdots+\left|\frac{u_{0}-\alpha}{v_{0}}\right| \cdots\left|\frac{u_{k_{0}-1}-\alpha}{v_{k_{0}-1}}\right|\left|f_{0}\right| \\
& +\left|\frac{u_{0}-\alpha}{v_{0}}\right| \cdots\left|\frac{u_{k_{0}}-\alpha}{v_{k_{0}}}\right|\left|f_{0}\right|+\left|\frac{u_{0}-\alpha}{v_{0}}\right| \cdots\left|\frac{u_{k_{0}+1}-\alpha}{v_{k_{0}+1}}\right|\left|f_{0}\right|+\cdots \\
> & \left|f_{0}\right|+m\left|f_{0}\right|+\cdots+m^{k_{0}}\left|f_{0}\right|+m^{k_{0}}(1-\epsilon)\left|f_{0}\right| \\
& \left.+m^{k_{0}}(1-\epsilon)^{2}\left|f_{0}\right|+\cdots, \quad \text { (using (3.15) and (3.16) }\right) \\
= & \left(1+m+\cdots+m^{k_{0}-1}\right)\left|f_{0}\right|+\frac{m^{k_{0}}\left|f_{0}\right|}{\epsilon} \rightarrow \infty \text { as } \epsilon \rightarrow 0 .
\end{aligned}
$$

So, in this case also series $\sum_{k=0}^{\infty}\left|f_{k}\right|$ diverges. Thus, $f \in l_{1}$ implies $\alpha \in \mathbb{C}$ satisfying the condition $|U-\alpha|<|V|$.
This means that $f \in c_{0}^{\star}$ if and only if $f_{0} \neq 0$ and $\alpha \in \mathbb{C}$ such that $|U-\alpha|<|V|$. Hence

$$
\sigma_{p}\left(\Delta_{u v}^{\times}, c_{0}^{\star}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\} .
$$

Theorem 3.5. Residual spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0} is

$$
\sigma_{r}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\}
$$

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose $\left(u_{k}\right)$ is a constant sequence, say $u_{k}=U$ for all $k \in \mathbb{N}_{0}$. For $\alpha \in \mathbb{C}$ with $|U-\alpha|<|V|$, the operator $\left(\Delta_{u v}-\alpha I\right)$ is a triangle except $\alpha=U$ and consequently, the operator $\left(\Delta_{u v}-\alpha I\right)$ has an inverse. Further by Theorem 3.3. the operator $\left(\Delta_{u v}-\alpha I\right)$ is one to one for $\alpha=U$ and hence has an inverse.

But by Theorem 3.4, the operator $\left(\Delta_{u v}-\alpha I\right)^{\times}$is not one to one for $\alpha \in \mathbb{C}$ with $|U-\alpha|<|V|$. Hence by Lemma 2.5 , the range of the operator $\left(\Delta_{u v}-\alpha I\right)$ is not dense in c_{0}. Thus, $\sigma_{r}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\}$.

Case(ii): Suppose $\left(u_{k}\right)$ is a sequence of distinct real numbers. For $\alpha \in \mathbb{C}$ such that $|U-\alpha|<|V|$, the operator $\left(\Delta_{u v}-\alpha I\right)$ is a triangle except $\alpha=u_{k}$ for all $k \in \mathbb{N}_{0}$ and consequently, the operator $\left(\Delta_{u v}-\alpha I\right)$ has an inverse. Further by Theorem 3.3, the operator $\left(\Delta_{u v}-u_{k} I\right)$ is one to one and hence $\left(\Delta_{u v}-u_{k} I\right)^{-1}$ exists for all $k \in \mathbb{N}_{0}$.

On the basis of argument as given in Case(i), it is easy to verify that the range of the operator $\left(\Delta_{u v}-\alpha I\right)$ is not dense in c_{0}. Thus,

$$
\sigma_{r}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\}
$$

Theorem 3.6. Continuous spectrum of the operator $\Delta_{u v}$ on the sequence space c_{0} is

$$
\sigma_{c}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|=|V|\}
$$

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose $\left(u_{k}\right)$ is a constant sequence. For $\alpha \in \mathbb{C}$ with $|U-\alpha|=|V|$, the operator $\left(\Delta_{u v}-\alpha I\right)$ is a triangle because $\alpha \neq U$ and has an inverse. The operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous by condition 3.9. Therefore, the operator $\left(\Delta_{u v}-\alpha I\right)$ has an unbounded inverse.

As the operator $\left(\Delta_{u v}-\alpha I\right)^{\times}$is one to one for $\alpha \in \mathbb{C}$ satisfying $|U-\alpha|=|V|$ follows from Theorem 3.4 . So, the range of the operator $\left(\Delta_{u v}-\alpha I\right)$ is dense in c_{0} by Lemma 2.5. Hence

$$
\sigma_{c}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|=|V|\}
$$

Case(ii): Suppose $\left(u_{k}\right)$ is a sequence of distinct real numbers. For $\alpha \in \mathbb{C}$ with $|U-\alpha|=|V|$, the operator $\left(\Delta_{u v}-\alpha I\right)$ is a triangle because $\alpha \neq u_{k}$ for each $k \in \mathbb{N}$ and consequently, the operator $\left(\Delta_{u v}-\alpha I\right)$ has an inverse. The operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous by condition 3.9$)$. Therefore, $\left(\Delta_{u v}-\alpha I\right)$ has an unbounded inverse.

On the basis of argument as given in Case (i), it is easy to verify that the range of the operator $\left(\Delta_{u v}-\alpha I\right)$ is dense in c_{0}. Hence

$$
\sigma_{c}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|=|V|\}
$$

3.3 Fine Spectrum of the Operator $\Delta_{u v}$ on the Sequence Space c_{0}

Theorem 3.7. If α satisfies $|U-\alpha|>|V|$, then $\left(\Delta_{u v}-\alpha I\right) \in A_{1}$.
Proof. It is required to show that the operator $\left(\Delta_{u v}-\alpha I\right)$ is bijective and has a continuous inverse for $\alpha \in \mathbb{C}$ with $|U-\alpha|>|V|$. Since $\alpha \neq U$ and $\alpha \neq u_{k}$ for each $k \in \mathbb{N}_{0}$, therefore the operator $\left(\Delta_{u v}-\alpha I\right)$ is a triangle. Hence it has an inverse. The operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is continuous for $\alpha \in \mathbb{C}$ with $|U-\alpha|>|V|$ by statement 3.4 . Also the equation

$$
\begin{aligned}
\left(\Delta_{u v}-\alpha I\right) x= & y \text { gives } x=\left(\Delta_{u v}-\alpha I\right)^{-1} y, \text { i.e., } \\
& x_{n}=\left(\left(\Delta_{u v}-\alpha I\right)^{-1} y\right)_{n}, n \in \mathbb{N}_{0}
\end{aligned}
$$

Thus, for every $y \in c_{0}$, we can find $x \in c_{0}$ such that

$$
\left(\Delta_{u v}-\alpha I\right) x=y, \quad \text { since } \quad\left(\Delta_{u v}-\alpha I\right)^{-1} \in B\left(c_{0}\right)
$$

This shows that the operator $\left(\Delta_{u v}-\alpha I\right)$ is onto and hence $\left(\Delta_{u v}-\alpha I\right) \in A_{1}$.
Theorem 3.8. Let u be constant sequence, say $u_{k}=U$ for all $k \in \mathbb{N}_{0}$. Then $U \in C_{1} \sigma\left(\Delta_{u v}, c_{0}\right)$.

Proof. We have $\sigma_{r}\left(\Delta_{u v}, c_{0}\right)=\{\alpha \in \mathbb{C}:|U-\alpha|<|V|\}$. Clearly, $U \in \sigma_{r}\left(\Delta_{u v}, c_{0}\right)$. It is sufficient to show that the operator $\left(\Delta_{u v}-U I\right)^{-1}$ is continuous. By Lemma 2.6, it is enough to show that $\left(\Delta_{u v}-U I\right)^{\times}$is onto, i.e., for given $y=\left(y_{n}\right) \in c_{0}^{\star}$, we have to find $x=\left(x_{n}\right) \in c_{0}^{\star}$ such that $\left(\Delta_{u v}-U I\right)^{\times} x=y$. Now $\left(\Delta_{u v}-U I\right)^{\times} x=y$, i.e.,

$$
\begin{aligned}
v_{0} x_{1} & =y_{0} \\
v_{1} x_{2} & =y_{1} \\
& \vdots \\
v_{i-1} x_{i} & =y_{i-1} \\
& \vdots
\end{aligned}
$$

Thus, $v_{n-1} x_{n}=y_{n-1}$ for all $n \geqslant 1$ which implies $\sum_{n=0}^{\infty}\left|x_{n}\right|<\infty$, since $y \in l_{1}$ and $v=\left(v_{k}\right)$ is a convergent sequence. This shows that operator $\left(\Delta_{u v}-U I\right)^{\times}$is onto and hence $U \in C_{1} \sigma\left(\Delta_{u v}, c_{0}\right)$.

Theorem 3.9. Let u be constant sequence, say $u_{k}=U$ for all $k \in \mathbb{N}_{0}$ and $\alpha \neq U$ but $\alpha \in \sigma_{r}\left(\Delta_{u v}, c_{0}\right)$. Then $\alpha \in C_{2} \sigma\left(\Delta_{u v}, c_{0}\right)$.
Proof. It is sufficient to show that the operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous for $\alpha \neq U$ and $\alpha \in \sigma_{r}\left(\Delta_{u v}, c_{0}\right)$. The operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous by statement (3.7) for $U \neq \alpha \in \mathbb{C}$ with $|U-\alpha|<|V|$.

Theorem 3.10. Let u be a sequence of distinct real numbers and $\alpha \in \sigma_{r}\left(\Delta_{u v}, c_{0}\right)$. Then $\alpha \in C_{2} \sigma\left(\Delta_{u v}, c_{0}\right)$.

Proof. It is sufficient to show that the operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous for $\alpha \in \sigma_{r}\left(\Delta_{u v}, c_{0}\right)$. The operator $\left(\Delta_{u v}-\alpha I\right)^{-1}$ is discontinuous by statements (3.7), (3.10) and (3.11) for $\alpha \in \mathbb{C}$ with $|U-\alpha|<|V|$.

Theorem 3.11. Let u and v be constant sequences and $\alpha \in \sigma_{c}\left(\Delta_{u v}, c_{0}\right)$. Then $\alpha \in B_{2} \sigma\left(\Delta_{u v}, c_{0}\right)$.
Proof. It is sufficient to show that the operator $\left(\Delta_{u v}-\alpha I\right)$ is not onto, i.e., there is no sequence $x=\left(x_{n}\right)$ in c_{0} such that $\left(\Delta_{u v}-\alpha I\right) x=y$ for some $y \in c_{0}$. Clearly, $y=(1,0,0, \cdots) \in c_{0}$. We have

$$
\left(\Delta_{u v}-\alpha I\right) x=y \Rightarrow x_{n}=(-1)^{n} \frac{V^{n}}{(U-\alpha)^{n+1}} \text { for each } \mathrm{n} \geqslant 0 .
$$

Therefore, $\left|x_{n}\right|=\left|\frac{1}{V}\right|$ for each $n \geqslant 0$ because $|U-\alpha|=|V|$. Consequently, $\lim _{n \rightarrow \infty}\left|x_{n}\right|=\left|\frac{1}{V}\right|>0$. This shows that $x \notin c_{0}$ and hence the operator $\left(\Delta_{u v}-\alpha I\right)$ is not onto.

Acknowledgements : I would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was supported by the Indian Institute of Technology, Kharagpur.

References

[1] J.B. Reade, On the spectrum of the Cesaro operator, Bull. London Math. Soc. 17 (3) (1985) 263-267.
[2] A.M. Akhmedov, F. Basar, On the fine spectrum of the Cesaro operator in c_{0}, Math. J. Ibaraki Univ. 36 (2004) 25-32.
[3] J.I. Okutoyi, On the spectrum of C_{1} as an operator on $b v_{0}$, J. Austral. Math. Soc. Ser. A 48 (1990) 79-86.
[4] J.T. Okutoyi, On the spectrum of C_{1} as an operator on $b v$, Comm. Fac. sci. univ. Ankara ser. A_{1} Math. Statist. 41 (1-2) (1992) 197-207.
[5] C. Coskun, The spectra and fine spectra for p-Cesaro operators, Turkish J. Math. 21 (2) (1997) 207-212.
[6] M. Yildirim, On the spectrum and fine spectrum of the compact Rhaly operators, Indian J. Pure Appl. Math. 27 (8) (1996) 779-784.
[7] M. Yildirim, The fine spectra of the Rhaly operators on c_{0}, Turkish J. Math. 26 (2002) 273-282.
[8] B. Altay, F. Basar, On the fine spectrum of the difference operator Δ on c_{0} and c, Inform. Sci. 168 (2004) 217-224.
[9] B. Altay, M. Karakus, On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math. 3 (2) (2005) 153-162.
[10] B. Altay, F. Basar, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Math. Sci. 18 (2005) 3005-3013.
[11] H. Furkan, H. Bilgic, B. Altay, On the fine spectrum of the operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl. 53 (2007) 989-998.
[12] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Inc. New York-Chichester-Brisbane-Toronato, 1978.
[13] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc. New York, 1985.
[14] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, North-Holland, Amsterdam, 85, 1984.
(Received 12 July 2012)
(Accepted 12 September 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

