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Abstract : The purpose of this paper is to determine spectrum and fine spectrum
of the operator A, on the sequence space c¢g. The operator A, on sequence space
co is defined as Ay = (Un Ty +Vn—1Tn—1)meg Satisfying certain conditions, where
2z_1 =0 and x = (x,) € ¢o. In this paper we have obtained the results on the
spectrum and point spectrum for the operator A,, on the sequence space cg.
Further, the results on continuous spectrum, residual spectrum and fine spectrum
of the operator A, on sequence space ¢y are also derived.
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1 Introduction

Let u = (uy) and v = (vg) be sequences such that
(i) w is either a constant sequence or sequence of distinct real numbers with

U= lim uy,
k— o0

(ii) v is a sequence of nonzero real numbers with V' = klim v, # 0, and
—00
(iii) |[U — ug| < |V| for each k € Ng = {0,1,2,---}.
We define the operator A,, on the sequence space ¢q as follows:

Ay = (UnTp + Vp—1Tn—1)meg with z_; = 0, where z = (x,,) € co. (1.1)
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It is easy to verify that the operator A,, can be represented by the matrix

Ug 0 0
Vo U1 0 [N
AUU = 0 U1 us . e . (12>

The spectrum of the Cesaro operator on the sequence space ¢y is investigated
by Reade [1], Akhmedov and Basar |2]. Spectrum of the Cesaro operator on
sequence spaces bvg and bv is obtained by Okutoyi [3] and Okutoyi [4], respectively.
Furthermore, Coskun [5] studied the spectrum and fine spectrum for p-Cesaro
operator acting on the space ¢o. Yildirim [6] and [7] examined fine spectrum of
the Rhaly operator on sequence spaces ¢, and c. The spectrum and fine spectrum
of the difference operator A over the sequence spaces ¢y and c¢ is determined by
Altay and Basar [8], where Az = (z,, — 2,,—1). The fine spectrum of the Zweier
matrix Z% on sequence spaces [; and bv is obtained by Altay and Karakus (9],
where s is a real number with s # 0,1 and Z°z = (sx, + (1 — $)x,—1). Altay and
Basar [10] determined fine spectrum of the operator B(r, s) over sequence spaces
¢o and ¢, where B(r, s)x = (rz,, + st,—1). Recently, spectrum and fine spectrum
of the operator B(r, s, t) on sequence spaces ¢y and c is studied by Furkan, Bilgic
and Altay [11], where B(r,s,t)x = (ra, + sxp—1 + txn—2).

In this paper we determine spectrum, point spectrum, continuous spectrum
and residual spectrum of the operator A, on the sequence space cg. It is easy
to verify that by choosing suitably u and v sequences, one can get easily the
operators such as B(r,s), Z° etc. Choosing u = (r), v = (s) and u = (s), v =
(1 — s), then the operator A, reduces to B(r, s) and Z°, respectively. Similarly,
ifu=(1),v=(-1) and u = (0), v = (1), then the operator A,, reduces to A and
right-shift operator, respectively. Thus, the results of this paper generalizes the
corresponding results of many operator whose matrix representation has diagonal
and post-diagonal elements studied by earlier authors.

2 Preliminaries and Notation

Let X and Y be Banach spaces and T': X — Y be a bounded linear operator.
The set of all bounded linear operators on X into itself is denoted by B(X). The
adjoint T : X* — X* of T is defined by

(T*¢) (z) = ¢ (Tx) for all $ € X* and z € X.

Clearly, T* is a bounded linear operator on the dual space X*.

Let X # {0} be a complex normed space and T : D(T) — X be a linear op-
erator with domain D(T) C X. With T, we associate the operator T,, = (T — al),
where « is a complex number and I is the identity operator on D(T'). The inverse
of T, (if exists) is denoted by T, and known as the resolvent operator of T



Fine Spectrum of the Generalized Difference Operator Ay, ... 653

Since the spectral theory is concerned with many properties of T, and T, !, which
depend on «, so we are interested the set of those « in the complex plane for which
T, ! exists or T, ! is bounded or domain of T);! is dense in X.

Definition 2.1. ([12], pp. 371) Let X # {0} be a complex normed space and
T : D(T) — X be a linear operator with domain D(T) C X. A regular value of T
is a complex number « such that

(R1) T ! exists,

(R2) T,;'! is bounded,

(R3) T, ! is defined on a set which is dense in X.

Resolvent set p(T, X) of T is the set of all regular values o of T. Its com-
plement o(T,X) = C\ p(T, X) in the complex plane C is called spectrum of T.
The spectrum o (T, X) is further partitioned into three disjoint sets namely point
spectrum, continuous spectrum and residual continuous as follows:

Point spectrum o,(T, X) is the set of all a € C such that T,;' does not exist,
i.e., condition (R1) fails. The element of o,,(T, X) is called eigenvalue of T

Continuous spectrum o (T, X) is the set of all a € C such that conditions (R1)
and (R3) hold but condition (R2) fails, i.e., T); ! exists, domain of T;; ! is dense in
X but T;! is unbounded.

Residual spectrum o,(T, X) is the set of all & € C such that T, ! exists but do
not satisfy condition (R3), i.e., domain of T;;! is not dense in X. The condition
(R2) may or may not holds good.

Goldberg’s classification of operator T, ([13], pp. 58): Let X be a Banach
space and T,, € B(X), where « is a complex number. Again, let R(T,) and T, *
denote the range and inverse of the operator T,, respectively. Then the following
possibilities may occur;

(A) R(T) = X,

(B) R(To) # R(Ta) = X,

(C) R(T.) # X,

and

(1) T, is injective and T, ! is continuous,

(2) T, is injective and T, ! is discontinuous,

(3) T, is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different
cases. These are labeled by A1, As, As, By, B, Bs, Cy, Cy and C3. The
notation a € Ayo (T, X) means the operator Ty, € As, i.e., R(T,) = X and T, is
injective but T, ! is discontinuous. Similarly others.

Remark 2.3. If a is a compler number such that T, € Ay or T, € By, then «
belongs to the resolvent set p(T, X ) of T on X. The other classification gives rise
to the fine spectrum of T.

Lemma 2.4. ([14], pp. 129) The matriz A = (ani) gives rise to a bounded linear
operator T € B(cy) from co to itself if and only if
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(i) the rows of A inly and their Iy norms are bounded, and
(ii) the columns of A are in cy.

Note: The operator norm of T is the supremum of the [; norms of the rows.

Lemma 2.5. ([13], pp. 59) T has a dense range if and only if T is one to one,
where T* denotes the adjoint operator of the operator T'.

Lemma 2.6. (|13], pp. 60) The adjoint operator T* of T is onto if and only if
T has a bounded inverse.

3 Main Results

3.1 Spectrum and Point Spectrum of the Operator A, on
the Sequence Space ¢

In this section we obtain spectrum and point spectrum of the operator A,
on cp.

Theorem 3.1. The operator Ay, : co — co 18 a bounded linear operator and
[Awll B(eo) = sup (Jur] + |vk-1l) -

Proof. Proof is simple. So we omit. O
Theorem 3.2. Spectrum of the operator A, on the sequence space cq is given by
0(Ayp,c0) ={aeC:|U—-aof <|V|}.

Proof. The proof of this theorem is divided into two parts. In the first part, we
show that o(Ayy,co) C {a € C:|U — a| < |V]|}, which is equivalent to

a € C with |U — a| > |V] implies a ¢ 0(Ayy, o), 1., @ € p(Ayy, o).
In the second part, we establish the reverse inclusion, i.e.,
{a € C:|U—-a| <|V|} Co(Au,co)-

Part I: Let o € C with |U — a| > |V|. Clearly, o # U and « # wy, for each k € Ny
as it does not satisfy this condition. Further, (Ay, — al) = (ank) reduces to a
triangle and hence has an inverse (A, — al)™! = (b,x), where

_ L 0 0
(up — )
— 1 0
(boi) = (ug — (;}431(]151 — ) (Ul_;a) ] e (3.1)

(up — a)(u1 — a)(uz —a)  (u1 —a)(uz —a) (uz — )
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By Lemma the operator (A, —al)~! € B(cp) if
(i) series Z |bni| is convergent for each n € Ny and sup Z |bni| < 00, and

k=0 " k=0
(ii) ILm |bni| = 0 for each k € Np.

oo (oo}
In order to show supz |bni| < oo, first we prove that the series Z |bni| is
" k=0 k=0

oo
convergent for each n € Ny. For this consider S,, = Z |bni|. Clearly, the series

k=0
_ VUL * + Up_1 Up—_1 1
Sn= (up — @) (u1 — @) -+ (up — @) et (Up—1 — a)(u, — @) (un, — @) (3.2)

is convergent for each n € Ny. Now we claim that sup .S, is finite. For this, suppose
n

_ \%4
B = lim Un-1 ’, which is equal to ‘
n—00 [ Uy — U—-«
So, 0 < B8 < 1. We choose € > 0 such that 84+ € < 1. Since lim Uno1 | _ 3, so
n—00 [ Uy, —
there exists a positive integer ng such that
_ 1
Un-1 < fB+€ and ‘ <5+6foralln>ng, (3.3)
Up — Q Uy — Q
where m is a lower bound of bounded sequence v = (vy).
For n > ng, S, can be write as
S = Vo1 ** * Upyg—2Ung—1 """ Un—1 T
L=
(uo — a)(ur — a)(uz — @) -+ (Ung—1 — @) (tny — @) -+ (Un — @)
+ Ung—1"""Un—1 + Ung *** Un—1
(Ung—1 — @) (Ung — @) -+ (up — @) (Ung — @) (Ung41 — @) -+ (up — @)
1
+- 1+ .
Up —
Take
1 1 _
Mmax{ e , Yo e Uno—2 }
Uug — Upg—1 — & Uy —«@ Upg—1 — ¢
Using inequalities in (3.3)), we have
n—ng+1
Sn < Mno(ﬂ + €)n7n0+1+. . +M(ﬁ + e)nfng+1+ (5 + 6) 4ot (5 + 6)
m m
(B+e€)

= (ﬁ+€)n_n°+l[Mno+"'+M]+T[1+...+(ﬁ+€)n—no]

< [M"°+~-~+M]+% L(lﬂﬂ)] < 0.
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Thus, S,, < oo for each n € N and hence sup S,, < oc.

n—1
Up — X

Again, since 8 < 1, therefore < 1 for large n and consequently,

VoUL U1

(up — @) (u1 — @) - -+ (uy, — @)

=0.

lim |byo| = lim
n—oo n—roo

Similarly, we can show that ILm |brk] =0 for all k =1,2,3,---.
Thus,
(Ayy —aI)™! € B(cp) for a € C with |U —a| > |V]. (3.4)

Next, we show that domain of the operator (A,, — al)~! is dense in ¢y, which
follows if the operator (A, —al) is onto. Suppose (A, — al)x = y, which gives

= (Ayy — oJ)f1 y, le., x, = ((Am, - OJ)*ly)n7 n € Np.

Thus for every y € ¢p, we can find x € ¢y such that (A, —al)z =y.
Hence we have
o(Ayy,c0) C{aeC:|U—-a| < |V|}. (3.5)

Part II: Conversely it is required to show
{aeC:|U—-a| <|V|} Co(AuvsCo)- (3.6)

We first prove inclusion under the assumption « # U and a # uy for each
k € Ng. Let o € C with |U — a| < |V|. Clearly, (A, — al) is a triangle and hence
(Ayy — o) ™" exists. So condition (R1) is satisfied but condition (R2) fails as can
be seen below:

Suppose a € C with |[U — a| < |V|. Then 8 > 1. This means that Unol |
Up —
1 for large n and consequently, lim |b,g| # 0. Hence
n— oo
(Ayy —aI)™t ¢ B(cg) for a € C with |U — o < |V]. (3.7)

Next, we consider o € C with |U — a| = |V|]. Proof is by contradiction. Equality

(3-2) can be write as
1

Up — Q

Sn—1+

. (3.8)

Taking limit both sides of equality (3.8)) and using condition |U — «| = |V|, we get

1
—| = 0, which is not possible. Thus, lim S, does not exist and consequently,
n— oo

%

sup S, is unbounded. Hence
n

(Ayy — )™t ¢ B(cg) for a € C with |U — af = |V]. (3.9)
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Finally, we prove the inclusion (3.6) under the assumption o = U and « = uy, for
all k € Ny. For this, we consider
(ug — a)xzg
voxo + (u1 — @)y
(Ayy —al)x = :
—Vp_1Tk—1 + (ugp — @)xg

Case(i): If (ug) is a constant sequence, say ux = U for all k € Ny, then for a = U
(Ayy —UNz=0 =20=0, 21 =0, 22 =0,---.

This shows that the operator (A,, — UI) is one to one, but R(A,, — UI) is not

dense in ¢g. So condition (R3) fails. Hence U € (A, o).

Case(ii): If (ug) is a sequence of distinct real numbers, then the series Sy is diver-

gent for each a = wy from equality and consequently, sup S, is unbounded.

Hence
(Ayy — )™t ¢ B(cp) for a = ug. (3.10)

So condition (R2) fails. Hence uy, € 0 (Ayy, o) for all k € No.
Again, taking limit both sides of equality 1} we see that lim S, does not

n—oo
exist for « = U. So sup 5, is unbounded. Hence
n

(Ayy — )™t ¢ B(co) for a =U. (3.11)

So condition (R2) fails. Hence U € o(Ayy,¢0). Thus, in this case also up €
o(Ayy,cp) for all k € Ng and U € o(Ayy, o). Hence we have

{aeC:|U—-qal <|V|} Co(Auw,co). (3.12)
From inclusions and , we get
o(Ayp,c0) ={aeC:|U—-ao <|V|}.
This completes the proof. O

Theorem 3.3. Point spectrum of the operator A, on the sequence space cg is
Up(Auvy CO) = (Z)

Proof. For the point spectrum of the operator A,,, we find those « in C such that
the matrix equation A,z = ax is satisfy for non-zero vector x = (xx) in co.

Consider A,z = ax for x # 0 = (0,0,---) in ¢y, which gives system of
equations

Uugyg = g
VoXo + U1T1 = axq

: (3.13)
Vgp—1Tk—1 + UpT = ATk
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The proof of this Theorem is divided into two cases.

Case(i): Suppose (ug) is a constant sequence, say ug, = U for all k € Ny. Let z; be
the first nonzero entry of the sequence x = (). Then equation v;_1x¢—1 + Uz =
axy gives a = U, and from the equation vizy + Uxyy1 = axy1, we get oy = 0,
which is a contradiction to our assumption. Hence o, (A, co) = 0.

Case(ii): Suppose (uy) is a sequence of distinct real numbers. Clearly,

Ty = < k-1 ) zp_1 forall k> 1.

O — Uk
If & = up, then lim Tk_| > 1 because U — upl < |V].
k—oo | T—1
So x ¢ Iy and hence x ¢ ¢ for z¢ # 0.
Similarly, if @« = uy, for all £ > 1, then z,_1 =0, 32 =0, ---, g =0 and

Tpt1 = <Un> x, for all n > k.

Uk — Up41
This implies lim Tutl] S 1 because |U —ug| < |V] forall k> 1.
n—oo | T
So x ¢ 1 and hence x ¢ ¢ for g # 0. If g = 0, then z; = 0 for all £ > 1. Only
possibility is = 0 = (0,0, - ). Hence o}, (Ayy,co) = 0. O

3.2 Residual and Continuous Spectrum of the Operator A,,
on the Sequence Space ¢

Let T : X — X be a bounded linear operator having matrix representation A
and the dual space of X denoted by X*. Again, let T be its adjoint operator on
X*. Then the matrix representation of T is the transpose of the matrix A.

Theorem 3.4. Point spectrum of the adjoint operator A, on ci is

op(AS,cn)={aeC:|U—-af <|V]}.

uv? o

Proof. For the point spectrum of the operator A, , we find those « in C such that

the matrix equation AX, f = af is satisfy for non-zero vector f = (fi) in ¢ = 1.
Consider A, f = af, which gives system of equations

uofo+vofi = afo
uifi+vifo = afi
Up—1fro—1 +op_1f = afi_1
This gives
| fi| = e |fe—1| forall k> 1. (3.14)
k-1
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Now, we take those o € C which satisfy the condition |U — «f < |V].
oo

From equality (3.14)), klim JLfk| | < 1. So, series Z | fx| converges and hence
k=0
fel.

Thus, o € C satisfying the condition |U — | < |V| implies f € I;.
Conversely, we show that

(o]
Z | fx] < oo implies o € C satisfy the condition |U — a| < |V]|
k=0

o0
or equivalently for a € C satisfy the condition |U — «| > |V| implies Z | f|
k=0
diverges. We first consider o € C which satisfy the condition |U — «| > |V|. From
oo

equality -3.14 , lim > 1. So, series fr| diverges.
k=00 | fr—1] ,;' |
Next, we consider a € C such that |U — a| = |V|, i.e., lim ‘uk %~ 1. So for
k—o0 Vk
each e > 0, there exists a positive integer kg such that
1—e<‘uka‘<1—|—e for all k > ko. (3.15)
Uk
Take
m:min{uO_a7u1_a7...’uk°1_a}. (316)
Uo U1 Uko—1

o0
Using equality (3.14)), the series Z | fx| can be write as

k=0
> U « U (0% u «
0 — 0 — ko—1 —
DOIRl = 1fol+ |fol + -+ + |2 | fol
k=0 vk()—l
Ug — U, — Uy — & Ukg+1 — O
+ | =] Ifol + N |fol +--
Yo 0 Uko+1

> fol +mlfol + - +m*[ fo| + mF(1 = )| fol
+mFo(1—e)?|fol + -+, (using (3.15) and (3.16))
mko| fol

= (Q+m+-+m ) [fo| + —— s 0 ase—0.
€

oo
So, in this case also series Z | fx| diverges. Thus, f € l; implies a € C satisfying
k=0
the condition |U — «f < |V|.
This means that f € ¢ if and only if fy # 0 and « € C such that |U — of < |V|.
Hence
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oo (A%, ) ={a € C:|U—al < |V} O

uv’

Theorem 3.5. Residual spectrum of the operator A, on the sequence space cq is
or(Ayw,c0) ={a € C: U —af <|V]}.

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose (uy) is a constant sequence, say uy = U for all k € Ny. For
a € Cwith |U — af < |V, the operator (A, —al) is a triangle except & = U and
consequently, the operator (A,, — o) has an inverse. Further by Theorem (3.3}
the operator (A, — al) is one to one for & = U and hence has an inverse.

But by Theorem the operator (A, — al)™ is not one to one for a € C
with |[U — a| < |V|]. Hence by Lemma the range of the operator (A, — al)
is not dense in ¢o. Thus, 0, (Ayy,c0) ={a € C: |U —a| < |V|}.

Case(ii): Suppose (ug) is a sequence of distinct real numbers. For o € C such
that |[U — | < |V, the operator (A, — al) is a triangle except a = uy, for all
k € Ny and consequently, the operator (A,, — al) has an inverse. Further by
Theorem (3.3} the operator (A, —url) is one to one and hence (A, — ukl)_l
exists for all k& € Ny.
On the basis of argument as given in Case(i), it is easy to verify that the range
of the operator (A, — al) is not dense in ¢g. Thus,
or (Ayp,c0) ={a e C:|U—-a| <|V]} O

Theorem 3.6. Continuous spectrum of the operator Ay, on the sequence space
co 1S

0c(Aup,c0) ={a e C:|U—-al=|V]|}.

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose (ug) is a constant sequence. For o € C with [U — «| = |V,
the operator (A,, — o) is a triangle because o # U and has an inverse. The
operator (A, —al)~! is discontinuous by condition . Therefore, the operator
(Ayy — o) has an unbounded inverse.

As the operator (A, —al)* is one to one for o € C satisfying |U — a| = |V]|
follows from Theorem So, the range of the operator (A, — «l) is dense in ¢q
by Lemma [2.5] Hence

Oc(Ayp,c0) ={ae€eC:|U—-a|=|V|}.

Case(ii): Suppose (ux) is a sequence of distinct real numbers. For a € C with
|U —a| = |V|, the operator (A, — al) is a triangle because o # wuy, for each
k € N and consequently, the operator (A,, — al) has an inverse. The operator
(Ayy — al)~1 is discontinuous by condition (3.9). Therefore, (A,, — af) has an
unbounded inverse.
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On the basis of argument as given in Case (i), it is easy to verify that the
range of the operator (A, — al) is dense in ¢y. Hence

e (Buy, co) ={a € C:|U — o = [V]}. N

3.3 Fine Spectrum of the Operator A,, on the Sequence
Space ¢

Theorem 3.7. If o satisfies |U — a| > |V, then (A, —al) € A;.

Proof. 1t is required to show that the operator (A,, — al) is bijective and has a
continuous inverse for v € C with |[U — «| > |V|. Since o # U and « # uy, for
each k € Ny, therefore the operator (A,, — al) is a triangle. Hence it has an
inverse. The operator (A, — al)~! is continuous for a € C with |U — a| > |V|
by statement . Also the equation

(A —al)z =y gives = = (Ay, —al) 1y, ie.,
T, = ((Am, - a[)*ly)n, n € Np.

Thus, for every y € ¢, we can find x € ¢y such that
(Ayy —al)x =y, since (Ay, —al)™t € Blce).
This shows that the operator (A,, — al) is onto and hence (A, —al) € 4;. O

Theorem 3.8. Let u be constant sequence, say uy = U for all k € Ng. Then
U e Cro(Ayw, o).

Proof. We have 0, (Ayy,c0) = {a € C: |U —a| < |V|}. Clearly, U € (Ays, co)-
It is sufficient to show that the operator (A, — Uf)f1 is continuous. By Lemma
it is enough to show that (A,, — UI)™ is onto, i.e., for given y = (y,,) € cf;, we
have to find = (2,,) € ¢ such that (A, —UI)* z =y. Now (A, —UI) ™z =1y,
ie.,

Vo1 = Yo
V1T2 = Y1
Vi—1%; = Yi-1
oo
Thus, v, 12, = y,_1 for all n > 1 which implies Z |z, | < oo, since y € I; and

n=0
v = (vg) is a convergent sequence. This shows that operator (A, — UI)™ is onto
and hence U € Cio (Ayy, co)- O
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Theorem 3.9. Let u be constant sequence, say ux, = U for all k € Ny and o # U
but a € o (Ayy,co). Then a € Coo (Ayy, o).

Proof. Tt is sufficient to show that the operator (A,, — aI)~! is discontinuous

for « # U and « € o, (Ayy, o). The operator (A, — ozI)_1 is discontinuous by
statement (3.7) for U # a € C with |U — af < |V]. O

Theorem 3.10. Let u be a sequence of distinct real numbers and o € o, (Ayy, o).
Then « € Cao (Ayy, co).-

Proof. Tt is sufficient to show that the operator (A, — al)~! is discontinuous for
a € 0, (Ayy, o). The operator (A, — 04])_1 is discontinuous by statements 1)

(3.10) and (3.11) for a € C with |U — «f < |V]. O

Theorem 3.11. Let u and v be constant sequences and a € c.(Ayy,co). Then
(A BQO’(AHU, Co).

Proof. 1t is sufficient to show that the operator (A, — al) is not onto, i.e., there
is no sequence x = (x,,) in ¢y such that (A, —al)x =y for some y € ¢y. Clearly,
y=(1,0,0,---) € . We have

VTI
(A —alz=y = x, = (—1)nm for each n > 0.
1
Therefore, |z,| = ‘V‘ for each n > 0 because |U —«a| = |V|. Consequently,

1
lim |z,|= “ > 0. This shows that « ¢ ¢y and hence the operator (A, — al)

n—00 Vv
is not onto. O
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