Thai Journal of Mathematics Volume 16 (2018) Number 3 : 651–663 TJM E Thai J. Math

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Fine Spectrum of the Generalized Difference Operator Δ_{uv} on the Sequence Space c_0

Parmeshwary Dayal Srivastava and Sudhanshu Kumar 1

Department of Mathematics, Indian Institute of Technology, Kharagpur Kharagpur - 721302, India e-mail: pds@maths.iitkgp.ernet.in (P. D. Srivastava) sudhanshu_tomar@yahoo.com (S. Kumar)

Abstract : The purpose of this paper is to determine spectrum and fine spectrum of the operator Δ_{uv} on the sequence space c_0 . The operator Δ_{uv} on sequence space c_0 is defined as $\Delta_{uv}x = (u_nx_n + v_{n-1}x_{n-1})_{n=0}^{\infty}$ satisfying certain conditions, where $x_{-1} = 0$ and $x = (x_n) \in c_0$. In this paper we have obtained the results on the spectrum and point spectrum for the operator Δ_{uv} on the sequence space c_0 . Further, the results on continuous spectrum, residual spectrum and fine spectrum of the operator Δ_{uv} on sequence space c_0 are also derived.

Keywords : spectrum of an operator; generalized difference operator; sequence space.

2010 Mathematics Subject Classification : 41A17; 47H09.

1 Introduction

Let $u = (u_k)$ and $v = (v_k)$ be sequences such that

- (i) u is either a constant sequence or sequence of distinct real numbers with $U = \lim_{k \to \infty} u_k$,
- (ii) v is a sequence of nonzero real numbers with $V = \lim_{k \to \infty} v_k \neq 0$, and

(iii) $|U - u_k| < |V|$ for each $k \in \mathbb{N}_0 = \{0, 1, 2, \cdots\}.$

We define the operator Δ_{uv} on the sequence space c_0 as follows:

$$\Delta_{uv} x = (u_n x_n + v_{n-1} x_{n-1})_{n=0}^{\infty} \text{ with } x_{-1} = 0, \text{ where } x = (x_n) \in c_0.$$
(1.1)

¹Corresponding author.

Copyright \bigcirc 2018 by the Mathematical Association of Thailand. All rights reserved.

It is easy to verify that the operator Δ_{uv} can be represented by the matrix

$$\Delta_{uv} = \begin{pmatrix} u_0 & 0 & 0 & \dots \\ v_0 & u_1 & 0 & \dots \\ 0 & v_1 & u_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
 (1.2)

The spectrum of the Cesaro operator on the sequence space c_0 is investigated by Reade [1], Akhmedov and Basar [2]. Spectrum of the Cesaro operator on sequence spaces bv_0 and bv is obtained by Okutoyi [3] and Okutoyi [4], respectively. Furthermore, Coskun [5] studied the spectrum and fine spectrum for *p*-Cesaro operator acting on the space c_0 . Yildirim [6] and [7] examined fine spectrum of the Rhaly operator on sequence spaces c_o and *c*. The spectrum and fine spectrum of the difference operator Δ over the sequence spaces c_0 and *c* is determined by Altay and Basar [8], where $\Delta x = (x_n - x_{n-1})$. The fine spectrum of the Zweier matrix Z^s on sequence spaces l_1 and bv is obtained by Altay and Karakus [9], where *s* is a real number with $s \neq 0, 1$ and $Z^s x = (sx_n + (1 - s)x_{n-1})$. Altay and Basar [10] determined fine spectrum of the operator B(r, s) over sequence spaces c_0 and *c*, where $B(r, s)x = (rx_n + sx_{n-1})$. Recently, spectrum and fine spectrum of the operator B(r, s, t) on sequence spaces c_0 and *c* is studied by Furkan, Bilgic and Altay [11], where $B(r, s, t)x = (rx_n + sx_{n-1} + tx_{n-2})$.

In this paper we determine spectrum, point spectrum, continuous spectrum and residual spectrum of the operator Δ_{uv} on the sequence space c_0 . It is easy to verify that by choosing suitably u and v sequences, one can get easily the operators such as B(r, s), Z^s etc. Choosing u = (r), v = (s) and u = (s), v =(1 - s), then the operator Δ_{uv} reduces to B(r, s) and Z^s , respectively. Similarly, if u = (1), v = (-1) and u = (0), v = (1), then the operator Δ_{uv} reduces to Δ and right-shift operator, respectively. Thus, the results of this paper generalizes the corresponding results of many operator whose matrix representation has diagonal and post-diagonal elements studied by earlier authors.

2 Preliminaries and Notation

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. The set of all bounded linear operators on X into itself is denoted by B(X). The adjoint $T^{\times}: X^{\star} \to X^{\star}$ of T is defined by

$$(T^{\times}\phi)(x) = \phi(Tx)$$
 for all $\phi \in X^{\star}$ and $x \in X$.

Clearly, T^{\times} is a bounded linear operator on the dual space X^{\star} .

Let $X \neq \{\mathbf{0}\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator $T_{\alpha} = (T - \alpha I)$, where α is a complex number and I is the identity operator on D(T). The inverse of T_{α} (if exists) is denoted by T_{α}^{-1} and known as the resolvent operator of T.

Since the spectral theory is concerned with many properties of T_{α} and T_{α}^{-1} , which depend on α , so we are interested the set of those α in the complex plane for which T_{α}^{-1} exists or T_{α}^{-1} is bounded or domain of T_{α}^{-1} is dense in X.

Definition 2.1. ([12], pp. 371) Let $X \neq \{0\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. A regular value of T is a complex number α such that

(R1) T_{α}^{-1} exists, (R2) T_{α}^{-1} is bounded, (R3) T_{α}^{-1} is defined on a set which is dense in X.

Resolvent set $\rho(T, X)$ of T is the set of all regular values α of T. Its complement $\sigma(T, X) = \mathbb{C} \setminus \rho(T, X)$ in the complex plane \mathbb{C} is called *spectrum* of T. The spectrum $\sigma(T, X)$ is further partitioned into three disjoint sets namely point spectrum, continuous spectrum and residual continuous as follows:

Point spectrum $\sigma_p(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} does not exist, i.e., condition (R1) fails. The element of $\sigma_p(T, X)$ is called *eigenvalue* of T.

Continuous spectrum $\sigma_c(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that conditions (R1) and (R3) hold but condition (R2) fails, i.e., T_{α}^{-1} exists, domain of T_{α}^{-1} is dense in X but T_{α}^{-1} is unbounded.

Residual spectrum $\sigma_r(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists but do not satisfy condition (R3), i.e., domain of T_{α}^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg's classification of operator T_{α} ([13], pp. 58): Let X be a Banach space and $T_{\alpha} \in B(X)$, where α is a complex number. Again, let $R(T_{\alpha})$ and T_{α}^{-1} denote the range and inverse of the operator T_{α} , respectively. Then the following possibilities may occur;

 $\begin{array}{l} \text{(A)} \ R(T_{\alpha}) = X, \\ \text{(B)} \ \underline{R(T_{\alpha})} \neq \overline{R(T_{\alpha})} = X, \end{array} \end{array}$ (C) $\overline{R(T_{\alpha})} \neq X$, and

(1) T_{α} is injective and T_{α}^{-1} is continuous, (2) T_{α} is injective and T_{α}^{-1} is discontinuous,

(3) T_{α} is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different cases. These are labeled by A_1 , A_2 , A_3 , B_1 , B_2 , B_3 , C_1 , C_2 and C_3 . The notation $\alpha \in A_2\sigma(T,X)$ means the operator $T_\alpha \in A_2$, i.e., $R(T_\alpha) = X$ and T_α is injective but T_{α}^{-1} is discontinuous. Similarly others.

Remark 2.3. If α is a complex number such that $T_{\alpha} \in A_1$ or $T_{\alpha} \in B_1$, then α belongs to the resolvent set $\rho(T, X)$ of T on X. The other classification gives rise to the fine spectrum of T.

Lemma 2.4. ([14], pp. 129) The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(c_0)$ from c_0 to itself if and only if

- (i) the rows of A in l_1 and their l_1 norms are bounded, and
- (ii) the columns of A are in c_0 .

Note: The operator norm of T is the *supremum* of the l_1 norms of the rows.

Lemma 2.5. ([13], pp. 59) T has a dense range if and only if T^{\times} is one to one, where T^{\times} denotes the adjoint operator of the operator T.

Lemma 2.6. ([13], pp. 60) The adjoint operator T^{\times} of T is onto if and only if T has a bounded inverse.

3 Main Results

3.1 Spectrum and Point Spectrum of the Operator Δ_{uv} on the Sequence Space c_0

In this section we obtain spectrum and point spectrum of the operator Δ_{uv} on c_0 .

Theorem 3.1. The operator $\Delta_{uv} : c_0 \to c_0$ is a bounded linear operator and

$$\|\Delta_{uv}\|_{B(c_0)} = \sup_{k} \left(|u_k| + |v_{k-1}| \right).$$

Proof. Proof is simple. So we omit.

Theorem 3.2. Spectrum of the operator Δ_{uv} on the sequence space c_0 is given by

$$\sigma(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| \leq |V| \}.$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma(\Delta_{uv}, c_0) \subseteq \{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\}$, which is equivalent to

 $\alpha \in \mathbb{C}$ with $|U - \alpha| > |V|$ implies $\alpha \notin \sigma(\Delta_{uv}, c_0)$, i.e., $\alpha \in \rho(\Delta_{uv}, c_0)$.

In the second part, we establish the reverse inclusion, i.e.,

$$\{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\} \subseteq \sigma(\Delta_{uv}, c_0).$$

Part I: Let $\alpha \in \mathbb{C}$ with $|U - \alpha| > |V|$. Clearly, $\alpha \neq U$ and $\alpha \neq u_k$ for each $k \in \mathbb{N}_0$ as it does not satisfy this condition. Further, $(\Delta_{uv} - \alpha I) = (a_{nk})$ reduces to a triangle and hence has an inverse $(\Delta_{uv} - \alpha I)^{-1} = (b_{nk})$, where

$$(b_{nk}) = \begin{pmatrix} \frac{1}{(u_0 - \alpha)} & 0 & 0 & \dots \\ \frac{-v_0}{(u_0 - \alpha)(u_1 - \alpha)} & \frac{1}{(u_1 - \alpha)} & 0 & \dots \\ \frac{v_0 v_1}{(u_0 - \alpha)(u_1 - \alpha)(u_2 - \alpha)} & \frac{-v_1}{(u_1 - \alpha)(u_2 - \alpha)} & \frac{1}{(u_2 - \alpha)} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
(3.1)

654

By Lemma 2.4, the operator $(\Delta_{uv} - \alpha I)^{-1} \in B(c_0)$ if (i) series $\sum_{k=0}^{\infty} |b_{nk}|$ is convergent for each $n \in \mathbb{N}_0$ and $\sup_n \sum_{k=0}^{\infty} |b_{nk}| < \infty$, and (ii) $\lim_{n \to \infty} |b_{nk}| = 0$ for each $k \in \mathbb{N}_0$.

In order to show $\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| < \infty$, first we prove that the series $\sum_{k=0}^{\infty} |b_{nk}|$ is

convergent for each $n \in \mathbb{N}_0$. For this consider $S_n = \sum_{k=0}^{\infty} |b_{nk}|$. Clearly, the series

$$S_{n} = \left| \frac{v_{0}v_{1}\cdots v_{n-1}}{(u_{0}-\alpha)(u_{1}-\alpha)\cdots(u_{n}-\alpha)} \right| + \dots + \left| \frac{v_{n-1}}{(u_{n-1}-\alpha)(u_{n}-\alpha)} \right| + \left| \frac{1}{(u_{n}-\alpha)} \right|$$
(3.2)

is convergent for each $n \in \mathbb{N}_0$. Now we claim that $\sup S_n$ is finite. For this, suppose

$$\beta = \lim_{n \to \infty} \left| \frac{v_{n-1}}{u_n - \alpha} \right|$$
, which is equal to $\left| \frac{V}{U - \alpha} \right|$

So, $0 < \beta < 1$. We choose $\epsilon > 0$ such that $\beta + \epsilon < 1$. Since $\lim_{n \to \infty} \left| \frac{v_{n-1}}{u_n - \alpha} \right| = \beta$, so there exists a positive integer n_0 such that

$$\left|\frac{v_{n-1}}{u_n - \alpha}\right| < \beta + \epsilon \text{ and } \left|\frac{1}{u_n - \alpha}\right| < \frac{\beta + \epsilon}{m} \text{ for all } n \ge n_0, \tag{3.3}$$

.

where m is a lower bound of bounded sequence $v = (v_k)$.

For $n \ge n_0$, S_n can be write as

$$S_{n} = \left| \frac{v_{0}v_{1}\cdots v_{n_{0}-2}v_{n_{0}-1}\cdots v_{n-1}}{(u_{0}-\alpha)(u_{1}-\alpha)(u_{2}-\alpha)\cdots (u_{n_{0}-1}-\alpha)(u_{n_{0}}-\alpha)\cdots (u_{n}-\alpha)} \right| + \cdots + \left| \frac{v_{n_{0}-1}\cdots v_{n-1}}{(u_{n_{0}-1}-\alpha)(u_{n_{0}}-\alpha)\cdots (u_{n}-\alpha)} \right| + \left| \frac{v_{n_{0}}\cdots v_{n-1}}{(u_{n_{0}}-\alpha)(u_{n_{0}+1}-\alpha)\cdots (u_{n}-\alpha)} + \cdots + \left| \frac{1}{u_{n}-\alpha} \right|.$$

Take

$$M = \max\left\{ \left| \frac{1}{u_0 - \alpha} \right|, \cdots, \left| \frac{1}{u_{n_0 - 1} - \alpha} \right|, \left| \frac{v_0}{u_1 - \alpha} \right|, \cdots, \left| \frac{v_{n_0 - 2}}{u_{n_0 - 1} - \alpha} \right| \right\}.$$

Using inequalities in (3.3), we have

$$S_n < M^{n_0}(\beta + \epsilon)^{n-n_0+1} + \dots + M(\beta + \epsilon)^{n-n_0+1} + \frac{(\beta + \epsilon)^{n-n_0+1}}{m} + \dots + \frac{(\beta + \epsilon)}{m}$$
$$= (\beta + \epsilon)^{n-n_0+1} [M^{n_0} + \dots + M] + \frac{(\beta + \epsilon)}{m} [1 + \dots + (\beta + \epsilon)^{n-n_0}]$$
$$< [M^{n_0} + \dots + M] + \frac{1}{m} \left[\frac{1}{1 - (\beta + \epsilon)}\right] < \infty.$$

Thus, $S_n < \infty$ for each $n \in \mathbb{N}$ and hence $\sup S_n < \infty$.

Again, since $\beta < 1$, therefore $\left| \frac{v_{n-1}}{u_n - \alpha} \right| < 1$ for large n and consequently,

$$\lim_{n \to \infty} |b_{n0}| = \lim_{n \to \infty} \left| \frac{v_0 v_1 \cdots v_{n-1}}{(u_0 - \alpha) (u_1 - \alpha) \cdots (u_n - \alpha)} \right| = 0.$$

Similarly, we can show that $\lim_{n \to \infty} |b_{nk}| = 0$ for all $k = 1, 2, 3, \cdots$. Thus,

$$(\Delta_{uv} - \alpha I)^{-1} \in B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| > |V|.$$
(3.4)

Next, we show that domain of the operator $(\Delta_{uv} - \alpha I)^{-1}$ is dense in c_0 , which follows if the operator $(\Delta_{uv} - \alpha I)$ is onto. Suppose $(\Delta_{uv} - \alpha I) x = y$, which gives

$$x = (\Delta_{uv} - \alpha I)^{-1} y$$
, i.e., $x_n = ((\Delta_{uv} - \alpha I)^{-1} y)_n$, $n \in \mathbb{N}_0$.

Thus for every $y \in c_0$, we can find $x \in c_0$ such that $(\Delta_{uv} - \alpha I)x = y$. Hence we have

$$\sigma(\Delta_{uv}, c_0) \subseteq \{ \alpha \in \mathbb{C} : |U - \alpha| \leqslant |V| \}.$$
(3.5)

Part II: Conversely it is required to show

$$\{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\} \subseteq \sigma(\Delta_{uv}, c_o).$$
(3.6)

We first prove inclusion (3.6) under the assumption $\alpha \neq U$ and $\alpha \neq u_k$ for each $k \in \mathbb{N}_0$. Let $\alpha \in \mathbb{C}$ with $|U - \alpha| \leq |V|$. Clearly, $(\Delta_{uv} - \alpha I)$ is a triangle and hence $(\Delta_{uv} - \alpha I)^{-1}$ exists. So condition (R1) is satisfied but condition (R2) fails as can be seen below:

Suppose $\alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$. Then $\beta > 1$. This means that $\left|\frac{v_{n-1}}{u_n - \alpha}\right| > 1$ for large *n* and consequently, $\lim_{n \to \infty} |b_{n0}| \neq 0$. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| < |V|.$$
(3.7)

Next, we consider $\alpha \in \mathbb{C}$ with $|U - \alpha| = |V|$. Proof is by contradiction. Equality (3.2) can be write as

$$S_n = \left| \frac{v_{n-1}}{u_n - \alpha} \right| S_{n-1} + \left| \frac{1}{u_n - \alpha} \right|.$$
(3.8)

Taking limit both sides of equality (3.8) and using condition $|U - \alpha| = |V|$, we get $\left|\frac{1}{V}\right| = 0$, which is not possible. Thus, $\lim_{n \to \infty} S_n$ does not exist and consequently, $\sup_{n \to \infty} S_n$ is unbounded. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| = |V|.$$
(3.9)

Finally, we prove the inclusion (3.6) under the assumption $\alpha = U$ and $\alpha = u_k$ for all $k \in \mathbb{N}_0$. For this, we consider

$$(\Delta_{uv} - \alpha I) x = \begin{pmatrix} (u_0 - \alpha) x_0 \\ v_0 x_0 + (u_1 - \alpha) x_1 \\ \vdots \\ -v_{k-1} x_{k-1} + (u_k - \alpha) x_k \\ \vdots \end{pmatrix}.$$

Case(i): If (u_k) is a constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$, then for $\alpha = U$ $(\Delta_{uv} - UI)x = \mathbf{0} \Rightarrow x_0 = 0, \ x_1 = 0, \ x_2 = 0, \cdots$.

This shows that the operator $(\Delta_{uv} - UI)$ is one to one, but $R(\Delta_{uv} - UI)$ is not dense in c_0 . So condition (R3) fails. Hence $U \in \sigma(\Delta_{uv}, c_0)$.

Case(ii): If (u_k) is a sequence of distinct real numbers, then the series S_k is divergent for each $\alpha = u_k$ from equality (3.2) and consequently, $\sup_n S_n$ is unbounded. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha = u_k.$$
(3.10)

So condition (R2) fails. Hence $u_k \in \sigma(\Delta_{uv}, c_0)$ for all $k \in \mathbb{N}_0$.

Again, taking limit both sides of equality (3.9), we see that $\lim_{n\to\infty} S_n$ does not exist for $\alpha = U$. So $\sup S_n$ is unbounded. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha = U.$$
(3.11)

So condition (R2) fails. Hence $U \in \sigma(\Delta_{uv}, c_0)$. Thus, in this case also $u_k \in \sigma(\Delta_{uv}, c_0)$ for all $k \in \mathbb{N}_0$ and $U \in \sigma(\Delta_{uv}, c_0)$. Hence we have

$$\{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\} \subseteq \sigma\left(\Delta_{uv}, c_0\right).$$
(3.12)

From inclusions (3.5) and (3.12), we get

$$\sigma(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| \leq |V| \}.$$

This completes the proof.

Theorem 3.3. Point spectrum of the operator Δ_{uv} on the sequence space c_0 is

$$\sigma_p(\Delta_{uv}, c_0) = \emptyset.$$

Proof. For the point spectrum of the operator Δ_{uv} , we find those α in \mathbb{C} such that the matrix equation $\Delta_{uv}x = \alpha x$ is satisfy for non-zero vector $x = (x_k)$ in c_0 .

Consider $\Delta_{uv} x = \alpha x$ for $x \neq \mathbf{0} = (0, 0, \cdots)$ in c_0 , which gives system of equations

$$\begin{array}{c}
 u_0 x_0 = \alpha x_0 \\
 v_0 x_0 + u_1 x_1 = \alpha x_1 \\
 \vdots \\
 v_{k-1} x_{k-1} + u_k x_k = \alpha x_k \\
 \vdots \\
\end{array}$$

$$(3.13)$$

657

The proof of this Theorem is divided into two cases.

Case(i): Suppose (u_k) is a constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$. Let x_t be the first nonzero entry of the sequence $x = (x_n)$. Then equation $v_{t-1}x_{t-1} + Ux_t =$ αx_t gives $\alpha = U$, and from the equation $v_t x_t + U x_{t+1} = \alpha x_{t+1}$, we get $x_t = 0$, which is a contradiction to our assumption. Hence $\sigma_p(\Delta_{uv}, c_0) = \emptyset$. Case(ii): S

se(11): Suppose
$$(u_k)$$
 is a sequence of distinct real numbers. Clearly

$$x_k = \left(\frac{v_{k-1}}{\alpha - u_k}\right) x_{k-1} \quad \text{for all } k \ge 1$$

If $\alpha = u_0$, then $\lim_{k \to \infty} \left| \frac{x_k}{x_{k-1}} \right| > 1$ because $|U - u_0| < |V|$. So $x \notin l_1$ and hence $x \notin c_0$ for $x_0 \neq 0$.

Similarly, if $\alpha = u_k$ for all $k \ge 1$, then $x_{k-1} = 0$, $x_{k-2} = 0$, \cdots , $x_0 = 0$ and

$$x_{n+1} = \left(\frac{v_n}{u_k - u_{n+1}}\right) x_n \text{ for all } n \ge k.$$

This implies $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| > 1$ because $|U - u_k| < |V|$ for all $k \ge 1$. So $x \notin l_1$ and hence $x \notin c_0$ for $x_0 \neq 0$. If $x_0 = 0$, then $x_k = 0$ for all $k \ge 1$. Only

possibility is $x = \mathbf{0} = (0, 0, \cdots)$. Hence $\sigma_p(\Delta_{uv}, c_0) = \emptyset$.

Residual and Continuous Spectrum of the Operator Δ_{uv} 3.2on the Sequence Space c_0

Let $T: X \to X$ be a bounded linear operator having matrix representation A and the dual space of X denoted by X^* . Again, let T^{\times} be its adjoint operator on X^{\star} . Then the matrix representation of T^{\times} is the transpose of the matrix A.

Theorem 3.4. Point spectrum of the adjoint operator Δ_{uv}^{\times} on c_o^{\star} is

$$\sigma_p(\Delta_{uv}^{\times}, c_o^{\star}) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}.$$

Proof. For the point spectrum of the operator Δ_{uv}^{\times} , we find those α in \mathbb{C} such that the matrix equation $\Delta_{uv}^{\times} f = \alpha f$ is satisfy for non-zero vector $f = (f_k)$ in $c_0^{\star} \cong l_1$. Consider $\Delta_{uv}^{\times} f = \alpha f$, which gives system of equations

$$u_0 f_0 + v_0 f_1 = \alpha f_0$$

$$u_1 f_1 + v_1 f_2 = \alpha f_1$$

$$\vdots$$

$$u_{k-1} f_{k-1} + v_{k-1} f_k = \alpha f_{k-1}$$

$$\vdots$$

This gives

$$|f_k| = \left|\frac{\alpha - u_{k-1}}{v_{k-1}}\right| |f_{k-1}| \quad \text{for all } k \ge 1.$$

$$(3.14)$$

Now, we take those $\alpha \in \mathbb{C}$ which satisfy the condition $|U - \alpha| < |V|$. From equality (3.14), $\lim_{k\to\infty} \frac{|f_k|}{|f_{k-1}|} < 1$. So, series $\sum_{k=0}^{\infty} |f_k|$ converges and hence $f \in l_1$.

Thus, $\alpha \in \mathbb{C}$ satisfying the condition $|U - \alpha| < |V|$ implies $f \in l_1$. Conversely, we show that

$$\sum_{k=0}^{\infty} |f_k| < \infty \text{ implies } \alpha \in \mathbb{C} \text{ satisfy the condition } |U - \alpha| < |V|$$

or equivalently for $\alpha \in \mathbb{C}$ satisfy the condition $|U - \alpha| \ge |V|$ implies $\sum_{k=0}^{\infty} |f_k|$ diverges. We first consider $\alpha \in \mathbb{C}$ which satisfy the condition $|U - \alpha| > |V|$. From equality (3.14), $\lim_{k \to \infty} \frac{|f_k|}{|f_{k-1}|} > 1$. So, series $\sum_{k=0}^{\infty} |f_k|$ diverges.

Next, we consider $\alpha \in \mathbb{C}$ such that $|U - \alpha| = |V|$, i.e., $\lim_{k \to \infty} \left| \frac{u_k - \alpha}{v_k} \right| = 1$. So for each $\epsilon > 0$, there exists a positive integer k_0 such that

$$1 - \epsilon < \left| \frac{u_k - \alpha}{v_k} \right| < 1 + \epsilon \quad \text{for all } k \ge k_0.$$
(3.15)

Take

$$m = \min\left\{ \left| \frac{u_0 - \alpha}{v_0} \right|, \left| \frac{u_1 - \alpha}{v_1} \right|, \cdots, \left| \frac{u_{k_0 - 1} - \alpha}{v_{k_0 - 1}} \right| \right\}.$$
(3.16)

Using equality (3.14), the series $\sum_{k=0}^{n} |f_k|$ can be write as

$$\begin{split} \sum_{k=0}^{\infty} |f_k| &= |f_0| + \left| \frac{u_0 - \alpha}{v_0} \right| |f_0| + \dots + \left| \frac{u_0 - \alpha}{v_0} \right| \dots \left| \frac{u_{k_0 - 1} - \alpha}{v_{k_0 - 1}} \right| |f_0| \\ &+ \left| \frac{u_0 - \alpha}{v_0} \right| \dots \left| \frac{u_{k_0} - \alpha}{v_{k_0}} \right| |f_0| + \left| \frac{u_0 - \alpha}{v_0} \right| \dots \left| \frac{u_{k_0 + 1} - \alpha}{v_{k_0 + 1}} \right| |f_0| + \dots \\ &> |f_0| + m |f_0| + \dots + m^{k_0} |f_0| + m^{k_0} (1 - \epsilon) |f_0| \\ &+ m^{k_0} (1 - \epsilon)^2 |f_0| + \dots, \qquad (\text{using (3.15) and (3.16)}) \\ &= (1 + m + \dots + m^{k_0 - 1}) |f_0| + \frac{m^{k_0} |f_0|}{\epsilon} \to \infty \text{ as } \epsilon \to 0. \end{split}$$

So, in this case also series $\sum_{k=0}^{\infty} |f_k|$ diverges. Thus, $f \in l_1$ implies $\alpha \in \mathbb{C}$ satisfying the condition $|U - \alpha| < |V|$.

This means that $f \in c_0^*$ if and only if $f_0 \neq 0$ and $\alpha \in \mathbb{C}$ such that $|U - \alpha| < |V|$. Hence

$$\sigma_p(\Delta_{uv}^{\times}, c_0^{\star}) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}.$$

Theorem 3.5. Residual spectrum of the operator Δ_{uv} on the sequence space c_0 is

$$\sigma_r(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}.$$

Proof. The proof of this theorem is divided into two cases. Case(i): Suppose (u_k) is a constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$. For $\alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$, the operator $(\Delta_{uv} - \alpha I)$ is a triangle except $\alpha = U$ and consequently, the operator $(\Delta_{uv} - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_{uv} - \alpha I)$ is one to one for $\alpha = U$ and hence has an inverse.

But by Theorem 3.4, the operator $(\Delta_{uv} - \alpha I)^{\times}$ is not one to one for $\alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$. Hence by Lemma 2.5, the range of the operator $(\Delta_{uv} - \alpha I)$ is not dense in c_0 . Thus, $\sigma_r (\Delta_{uv}, c_0) = \{\alpha \in \mathbb{C} : |U - \alpha| < |V|\}.$

Case(ii): Suppose (u_k) is a sequence of distinct real numbers. For $\alpha \in \mathbb{C}$ such that $|U - \alpha| < |V|$, the operator $(\Delta_{uv} - \alpha I)$ is a triangle except $\alpha = u_k$ for all $k \in \mathbb{N}_0$ and consequently, the operator $(\Delta_{uv} - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_{uv} - u_k I)$ is one to one and hence $(\Delta_{uv} - u_k I)^{-1}$ exists for all $k \in \mathbb{N}_0$.

On the basis of argument as given in Case(i), it is easy to verify that the range of the operator $(\Delta_{uv} - \alpha I)$ is not dense in c_0 . Thus,

$$\sigma_r \left(\Delta_{uv}, c_0 \right) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}.$$

Theorem 3.6. Continuous spectrum of the operator Δ_{uv} on the sequence space c_0 is

$$\sigma_c(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| = |V| \}.$$

Proof. The proof of this theorem is divided into two cases. Case(i): Suppose (u_k) is a constant sequence. For $\alpha \in \mathbb{C}$ with $|U - \alpha| = |V|$, the operator $(\Delta_{uv} - \alpha I)$ is a triangle because $\alpha \neq U$ and has an inverse. The operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous by condition (3.9). Therefore, the operator $(\Delta_{uv} - \alpha I)$ has an unbounded inverse.

As the operator $(\Delta_{uv} - \alpha I)^{\times}$ is one to one for $\alpha \in \mathbb{C}$ satisfying $|U - \alpha| = |V|$ follows from Theorem 3.4. So, the range of the operator $(\Delta_{uv} - \alpha I)$ is dense in c_0 by Lemma 2.5. Hence

$$\sigma_c \left(\Delta_{uv}, c_0 \right) = \left\{ \alpha \in \mathbb{C} : |U - \alpha| = |V| \right\}.$$

Case(ii): Suppose (u_k) is a sequence of distinct real numbers. For $\alpha \in \mathbb{C}$ with $|U - \alpha| = |V|$, the operator $(\Delta_{uv} - \alpha I)$ is a triangle because $\alpha \neq u_k$ for each $k \in \mathbb{N}$ and consequently, the operator $(\Delta_{uv} - \alpha I)$ has an inverse. The operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous by condition (3.9). Therefore, $(\Delta_{uv} - \alpha I)$ has an unbounded inverse.

On the basis of argument as given in Case (i), it is easy to verify that the range of the operator $(\Delta_{uv} - \alpha I)$ is dense in c_0 . Hence

$$\sigma_c \left(\Delta_{uv}, c_0 \right) = \{ \alpha \in \mathbb{C} : |U - \alpha| = |V| \}.$$

3.3 Fine Spectrum of the Operator Δ_{uv} on the Sequence Space c_0

Theorem 3.7. If α satisfies $|U - \alpha| > |V|$, then $(\Delta_{uv} - \alpha I) \in A_1$.

Proof. It is required to show that the operator $(\Delta_{uv} - \alpha I)$ is bijective and has a continuous inverse for $\alpha \in \mathbb{C}$ with $|U - \alpha| > |V|$. Since $\alpha \neq U$ and $\alpha \neq u_k$ for each $k \in \mathbb{N}_0$, therefore the operator $(\Delta_{uv} - \alpha I)$ is a triangle. Hence it has an inverse. The operator $(\Delta_{uv} - \alpha I)^{-1}$ is continuous for $\alpha \in \mathbb{C}$ with $|U - \alpha| > |V|$ by statement (3.4). Also the equation

$$(\Delta_{uv} - \alpha I)x = y \text{ gives } x = (\Delta_{uv} - \alpha I)^{-1}y, \text{ i.e.},$$
$$x_n = \left((\Delta_{uv} - \alpha I)^{-1}y\right)_n, \ n \in \mathbb{N}_0.$$

Thus, for every $y \in c_0$, we can find $x \in c_0$ such that

$$(\Delta_{uv} - \alpha I)x = y$$
, since $(\Delta_{uv} - \alpha I)^{-1} \in B(c_0)$.

This shows that the operator $(\Delta_{uv} - \alpha I)$ is onto and hence $(\Delta_{uv} - \alpha I) \in A_1$. \Box

Theorem 3.8. Let u be constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$. Then $U \in C_1 \sigma(\Delta_{uv}, c_0)$.

Proof. We have $\sigma_r(\Delta_{uv}, c_0) = \{\alpha \in \mathbb{C} : |U - \alpha| < |V|\}$. Clearly, $U \in \sigma_r(\Delta_{uv}, c_0)$. It is sufficient to show that the operator $(\Delta_{uv} - UI)^{-1}$ is continuous. By Lemma 2.6, it is enough to show that $(\Delta_{uv} - UI)^{\times}$ is onto, i.e., for given $y = (y_n) \in c_0^{\star}$, we have to find $x = (x_n) \in c_0^{\star}$ such that $(\Delta_{uv} - UI)^{\times} x = y$. Now $(\Delta_{uv} - UI)^{\times} x = y$, i.e.,

$$v_0 x_1 = y_0$$

 $v_1 x_2 = y_1$
 \vdots
 $v_{i-1} x_i = y_{i-1}$

Thus, $v_{n-1}x_n = y_{n-1}$ for all $n \ge 1$ which implies $\sum_{n=0}^{\infty} |x_n| < \infty$, since $y \in l_1$ and $v = (v_k)$ is a convergent sequence. This shows that operator $(\Delta_{uv} - UI)^{\times}$ is onto and hence $U \in C_1 \sigma (\Delta_{uv}, c_0)$.

Theorem 3.9. Let u be constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$ and $\alpha \neq U$ but $\alpha \in \sigma_r(\Delta_{uv}, c_0)$. Then $\alpha \in C_2\sigma(\Delta_{uv}, c_0)$.

Proof. It is sufficient to show that the operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous for $\alpha \neq U$ and $\alpha \in \sigma_r (\Delta_{uv}, c_0)$. The operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous by statement (3.7) for $U \neq \alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$.

Theorem 3.10. Let u be a sequence of distinct real numbers and $\alpha \in \sigma_r(\Delta_{uv}, c_0)$. Then $\alpha \in C_2\sigma(\Delta_{uv}, c_0)$.

Proof. It is sufficient to show that the operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous for $\alpha \in \sigma_r (\Delta_{uv}, c_0)$. The operator $(\Delta_{uv} - \alpha I)^{-1}$ is discontinuous by statements (3.7), (3.10) and (3.11) for $\alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$.

Theorem 3.11. Let u and v be constant sequences and $\alpha \in \sigma_c(\Delta_{uv}, c_0)$. Then $\alpha \in B_2\sigma(\Delta_{uv}, c_0)$.

Proof. It is sufficient to show that the operator $(\Delta_{uv} - \alpha I)$ is not onto, i.e., there is no sequence $x = (x_n)$ in c_0 such that $(\Delta_{uv} - \alpha I)x = y$ for some $y \in c_0$. Clearly, $y = (1, 0, 0, \dots) \in c_0$. We have

$$(\Delta_{uv} - \alpha I)x = y \Rightarrow x_n = (-1)^n \frac{V^n}{(U - \alpha)^{n+1}}$$
 for each $n \ge 0$.

Therefore, $|x_n| = \left|\frac{1}{V}\right|$ for each $n \ge 0$ because $|U - \alpha| = |V|$. Consequently, $\lim_{n \to \infty} |x_n| = \left|\frac{1}{V}\right| > 0$. This shows that $x \notin c_0$ and hence the operator $(\Delta_{uv} - \alpha I)$ is not onto.

Acknowledgements : I would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was supported by the Indian Institute of Technology, Kharagpur.

References

- J.B. Reade, On the spectrum of the Cesaro operator, Bull. London Math. Soc. 17 (3) (1985) 263-267.
- [2] A.M. Akhmedov, F. Basar, On the fine spectrum of the Cesaro operator in c₀, Math. J. Ibaraki Univ. 36 (2004) 25-32.
- [3] J.I. Okutoyi, On the spectrum of C_1 as an operator on bv_0 , J. Austral. Math. Soc. Ser. A 48 (1990) 79-86.
- [4] J.T. Okutoyi, On the spectrum of C_1 as an operator on bv, Comm. Fac. sci. univ. Ankara ser. A_1 Math. Statist. 41 (1-2) (1992) 197-207.

- [5] C. Coskun, The spectra and fine spectra for p-Cesaro operators, Turkish J. Math. 21 (2) (1997) 207-212.
- [6] M. Yildirim, On the spectrum and fine spectrum of the compact Rhaly operators, Indian J. Pure Appl. Math. 27 (8) (1996) 779-784.
- [7] M. Yildirim, The fine spectra of the Rhaly operators on c_0 , Turkish J. Math. 26 (2002) 273-282.
- [8] B. Altay, F. Basar, On the fine spectrum of the difference operator Δ on c_0 and c, Inform. Sci. 168 (2004) 217-224.
- [9] B. Altay, M. Karakus, On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math. 3 (2) (2005) 153-162.
- [10] B. Altay, F. Basar, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces c_0 and c, Int. J. Math. Math. Sci. 18 (2005) 3005-3013.
- [11] H. Furkan, H. Bilgic, B. Altay, On the fine spectrum of the operator B(r, s, t) over c_0 and c, Comput. Math. Appl. 53 (2007) 989-998.
- [12] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Inc. New York-Chichester-Brisbane-Toronato, 1978.
- [13] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc. New York, 1985.
- [14] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, North-Holland, Amsterdam, 85, 1984.

(Received 12 July 2012) (Accepted 12 September 2016)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th