Thai Journal of Mathematics Volume 16 (2018) Number 3 : 643-650
http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

On the Diophantine Equation $4^{x}-p^{y}=3 z^{2}$ where p is a Prime

Julius Fergy Tiongson Rabago
Department of Mathematics and Computer Science, College of Science
University of the Philippines Baguio, Governor Pack Road
Baguio City 2600, Philippines
e-mail : jfrabago@gmail.com

Abstract

We find all solutions to $4^{x}-7^{y}=z^{2}$ and $4^{x}-11^{y}=z^{2}$ to complement the results found by Suvarnamani, et. al. in [1. We also consider the two Diophantine equations $4^{x}-7^{y}=3 z^{2}$ and $4^{x}-19^{y}=3 z^{2}$ and show that these two equations have exactly two solutions (x, y, z) in non-negative integers, i.e. $(x, y, z) \in\{(0,0,0),(1,0,1)\}$. In fact, the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ has the two solutions $(0,0,0)$ and $(1,0,1)$ under some additional assumption on p. These results were all obtained using elementary methods and Mihăilescu's Theorem. Finally, we end our paper with an open problem.

Keywords : exponential Diophantine equation; integer solutions. 2010 Mathematics Subject Classification : 11D61.]

1 Introduction

Recently, there have been an increasing interest in finding solutions to exponential Diophantine equations of the form $p^{x}+q^{y}=z^{2}$, see e.g. 22 11], and the references therein.

In 1], A. Suvarnamani, A. Singta, and S. Chotchaisthit showed that the two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$ have no solution in the set of non-negative integers. In fact, the Diophantine equation $4^{x}-11^{y}=z^{2}$ also contain no solution in the set of non-negative integers (this set we denote by \mathbb{N}_{0} throughout the paper) except possibly when $x=y=z=0$, and the Diophantine

Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

equation $4^{x}-7^{y}=z^{2}$ holds true in \mathbb{N}_{0} for $(x, y, z)=(0,0,0)$ and $(2,1,3)$ only.
The results found in [1 were obtained using Mihăilescu's Theorem: $a^{x}-$ $b^{y}=1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$ in positive integers for $\min (a, b, x, y)>1$. This remarkable result was first conjectured by E. Catalan in a one page note dated 1844 (see $[12]$) and was finally proven my P. Mihăilescu in 2002 (see [13]). B. Peker and S. I. Çenberci generalized the results found in 1 by considering the Diophantine equation $\left(4^{n}\right)^{x}+p^{y}=z^{2}$ where p is an odd prime, $n \in \mathbb{N}$, and x, y, and $z \in \mathbb{N}_{0}$ in [14]. On the other hand, in [15], the author and J. B. Bacani obtained all solutions to the Diophantine equation $p^{x}+q^{y}=z^{2}$ where p and q are twin primes under some additional assumptios on p and q. The paper 15 gives a correct set of solutions to $p^{x}+q^{y}=z^{2}$ (under some assumptions on p and q) in contrary to the main result presented in 16 .

Another type of Diophantine equations of great interest are those of the form $a^{x} \pm b^{y} \pm c^{z}=w^{n}$. In 17] and 18], the authors studied exponential Diophantine equations of the form $p^{x} \pm q^{y} \pm r^{z}=c$ where p, q, r are primes, x, y and $z \in \mathbb{N}_{0}$, and c an integer have been studied. Particularly, J. Leitner 17. solved the equation $3^{a}+5^{b}-7^{c}=1$ for $a, b, c \in \mathbb{N}_{0}$ and the equation $y^{2}=3^{a}+2^{b}+1$ for $a, b \in \mathbb{N}_{0}$ and integer y. R. Scott and R. Styer [18] studied, among other things, the Diophantine equation $p^{x} \pm q^{y} \pm 2^{z}=0$ for primes p and q and positive integers x, y, and z. These authors used elementary methods to show that, with a few explicitly listed exceptions, there are at most two solutions (x, y) to $\left|p^{x} \pm q^{y}\right|=c$ (where c is a fixed positive integer) and at most two solutions (x, y, z) to $p^{x} \pm q^{y} \pm 2^{z}=0$ in positive integers.

In an earlier paper, the author along with Bacani gave all solutions to the Diophantine equation $3^{x}+5^{y}+7^{z}=w^{2}$ in response to an open problem posed by B. Sroysang in 19 .

In this note, we verify our claim that $4^{x}-11^{y}=z^{2}$ contains no solution in \mathbb{N}_{0} except possibly when $x=y=z=0$, and the Diophantine equation $4^{x}-$ $7^{y}=z^{2}$ has exactly two solutions (x, y, z) in non-negative integers, i.e. $(x, y, z) \in$ $\{(0,0,0),(2,1,3)\}$. We remark that our approach in proving these two claims can be applied to prove a general case of the problem. Also, we show that the two Diophantine equations $4^{x}-7^{y}=3 z^{2}$ and $4^{x}-19^{y}=3 z^{2}$ have exactly two solutions (x, y, z) in \mathbb{N}_{0}, i.e. $(x, y, z) \in\{(0,0,0),(1,0,1)\}$. Finally, we state and prove a generalization of these two previous results at the end of our paper. Most precisely, we show that $4^{x}-p^{y}=3 z^{2}$ has the two solutions $(x, y, z)=(0,0,0)$ and $(1,0,1)$ in \mathbb{N}_{0} for prime $p \equiv 3(\bmod 4)$.

2 Preliminaries

In this section we state some helpful results to prove our claims. First, it is known that the equation $X^{2}-d Y^{2}=1$ has a solution in positive integers X and Y for all positive, nonsquare integers d (see e.g. 20, Theorem 1, pg. 9]), and that if k is a perfect square, then the Pell Equation $X^{2}-d Y^{2}=k$ is solvable in integers for all positive, nonsquare integers d (cf. [20, Theorem 6, pg. 16]). In relation to

Pell's equation the following lemma was proved by K. Matthews in [21, Section 3].
Lemma 2.1. Let $N \geq 1$ be an odd integer, $D>1$ and not a perfect square. Then, a necessary condition for the solvability of the equation $x^{2}-D y^{2}=N$ with $\operatorname{gcd}(x, y)=1$ is that the congruence $u^{2} \equiv D(\bmod N)$ shall be soluble.

The following results shall be used to show that the title equation has no solution in positive integers x, y, and z for prime $p \equiv 3(\bmod 4)$.

Theorem $2.2\left(\sqrt[22]{ }\right.$, Theorem 2.9, pg. 32). Let $p \equiv 3(\bmod 4)$ and $k=m^{2} n$ with n square free. If $X^{2}-p Y^{2}=k$ is solvable, then $n \equiv 1(\bmod 4)$.

Corollary 2.3 ($\boxed{22}$, Corollary 2.10 , pg. 33). Let $k=m^{2} n$ with n square free. If $p \equiv n \equiv 3(\bmod 4)$, then $X^{2}-p Y^{2}=k$ is not solvable.

Corollary 2.4 ($(22$, Corollary 2.11 , pg. 33). If $p \equiv k \equiv 3(\bmod 4)$ and $l \equiv 1$ $(\bmod 4)$, then $X^{2}-p Y^{2}=k l$ is not solvable.

Now we prove our results in the following section.

3 Main Results

We first consider the two Diophantine equations $4^{x}-7^{y}=z^{2}$ and $4^{x}-11^{y}=z^{2}$ and later in this section we study the equations $4^{x}-7^{y}=3 z^{2}$ and $4^{x}-19^{y}=3 z^{2}$.

Theorem 3.1. The Diophantine equation $4^{x}-7^{y}=z^{2}$ has exactly two solutions (x, y, z) in \mathbb{N}_{0}, namely (the trivial solution) $(0,0,0)$ and $(2,1,3)$.

Proof. Evidently, the case when $z=0$ will give us $(x, y, z)=(0,0,0)$, so we may assume that $z>0$. For $z>0$, we consider three cases.

Case 1. $x=0$. This case is trivial.
Case 2. $y=0$. If $y=0$, then we have $\left(2^{x}\right)^{2}-z^{2}=1$ which is impossible due to Mihăilescu's Theorem.

Case 3. $x, y>0$. For this case we have $\left(2^{x}\right)^{2}-z^{2}=\left(2^{x}+z\right)\left(2^{x}-z\right)=7^{y}$. It follows that $\left(2^{x}+z\right)+\left(2^{x}-z\right)=2^{x+1}=7^{\beta}+7^{\alpha}$ for some $\alpha<\beta$, where $\alpha+\beta=y$. Hence, $2^{x+1}=7^{\alpha}\left(7^{\beta-\alpha}+1\right)$. Thus, $\alpha=0$ and $2^{x+1}-7^{\beta}=1$, which is true when $x=2$ and $y=1$. These give us the value $z=3$. Therefore, $(2,1,3)$ is a solution of $4^{x}-7^{y}=z^{2}$. Now, if we assume $y>1$, then we get $2^{x+1}-7^{\beta}=1$ which has no solution because of Mihăilescu's Theorem and this proves the theorem.

Theorem 3.2. The Diophantine equation $4^{x}-11^{y}=z^{2}$ contains no solution in \mathbb{N}_{0} except the trivial solution $x=y=z=0$.

Proof. The theorem can be shown easily by utilizing Mihăilescu's Theorem and is similar to the proof of the previous theorem. The case when $z=0$ and $x=0$ are both trivial. So we may assume without loss of generality that $\min (x, z)>0$. If this is the case, then we have $\left(2^{x}\right)^{2}-z^{2}=\left(2^{x}+z\right)\left(2^{x}-z\right)=11^{y}$. It follows that,
$\left(2^{x}+z\right)+\left(2^{x}-z\right)=2^{x+1}=11^{\beta}+11^{\alpha}$ for some $\alpha<\beta$, where $\alpha+\beta=y$. Hence, $2^{x+1}=11^{\alpha}\left(11^{\beta-\alpha}+1\right)$. Thus, $\alpha=0$ and $2^{x+1}-11^{\beta}=1$ and by Mihăilescu's Theorem, we can now conclude that this Diophantine equation has no solution. The theorem is now proved.

In the following result we shall state and prove a more general case of Theorem 3.1 and Theorem 3.2 .

Theorem 3.3. The Diophantine equation $4^{x}-p^{y}=z^{2}$ has the set of all solutions $\{(x, y, z)\}$ given by

$$
\{(x, y, z)\}=\{(0,0,0)\} \cup\left\{\left(q-1,1,2^{q-1}-1\right)\right\}
$$

for prime $p=2^{q}-1$ (with q also a prime). For $p \equiv 3(\bmod 4)$ not of the form $2^{q}-1$, the Diophantine equation $4^{x}-p^{y}=z^{2}$ has only the trivial solution $(x, y, z)=(0,0,0)$.

Proof. Consider the Diophantine equation $4^{x}-p^{y}=z^{2}$. We consider the following cases.

Case 1. $x=0$. If $x=0$, then $1-z^{2}=p^{y}$ which implies that $z=y=0$ and p is any prime number.

Case 2. $y=0$. If $y=0$, then $2^{2 x}-z^{2}=1$ which is obviously impossible because of Mihăilescu's Theorem.

Case 3. $x, y>0$. If $\min (x, y)>0$, then $4^{x}-p^{y}=z^{2}$ is equivalent to $\left(2^{x}+z\right)\left(2^{x}-z\right)=p^{y}$. Hence, $2^{x+1}=(2 x+z)+\left(2^{x}-z\right)=p^{\alpha}\left(p^{\beta-\alpha}-1\right)$ for some integers α and β such that $\alpha+\beta=y$ and $\beta>\alpha \geq 0$. Therefore, $\alpha=0$ and $2^{x+1}-p^{y}=1$ which has no solution for $\min (x, y)>1$ by Mihăilescu's Theorem. For $y=1$, we get $p=2^{x+1}-1$. Note that $2^{x+1}-1$ is a prime if and only if $x+1$ is also a prime. Thus, we get a family of solutions to $4^{x}-p^{y}=z^{2}$ given by $(x, y, z)=\left\{\left(q-1,1,2^{q}-1\right) \mid q\right.$ is a prime $\}$ for $p=2^{q}-1$. On the other hand, if $p \equiv 1(\bmod 4)$ not of the form $2^{q}-1($ with $y=1)$, then we get $-1 \equiv 1(\bmod 4)$ and this a clear contradiction. Thus, we only have the trivial solution $(0,0,0)$ to $4^{x}-p^{y}=z^{2}$ for $p \equiv 3(\bmod 4)$. Now, conclusion follows.

Remark 3.4. Theorem 3.1 (respectively, Theorem 3.2) agrees with Theorem 3.3 since $7=2^{3}-1($ respectively, $11 \equiv 3(\bmod 4))$.

Theorem 3.5. The Diophantine equation $4^{x}-7^{y}=3 z^{2}$ has exactly two solutions (x, y, z) in \mathbb{N}_{0}. In particular, the solutions are $(0,0,0)$ and $(1,0,1)$.

Proof. Evidently, for the case when $z=0$ we get $(x, y, z)=(0,0,0)$. So we let $z>0$ and consider the following three cases.

Case 1. $x=0$. This case is trivial.
Case 2. $y=0$. If $y=0$, then we have $4^{x}-3 z^{2}=1$. It can be seen easily that the equation holds true for $x=z=1$. Here we get $(x, y, z)=(1,0,1)$. Now, it remains for us to show that there is no solution to $\left(2^{x}\right)^{2}-3 z^{2}=1$ other than $(x, y, z)=(1,0,1)$ for $y=0$. Note that $\left(2^{x}\right)^{2}-1=\left(2^{x}+1\right)\left(2^{x}-1\right)=3 z^{2}$.

So, $2^{x}+1=3 z$ and $2^{x}-1=z$. This claim is easily verified as follows: if x is odd, then there exists an integer $k>0$ such that $2^{x}+1=3 k$. So $\left(2^{x}\right)^{2}-1=$ $\left(2^{x}+1\right)\left(2^{x}-1\right)=3 k(3 k-2)$. Hence, we have $3 k-2=2^{x}-1$ but this is impossible since $3 k-2 \neq k$ for $k \neq 1$. Indeed, $2^{x}+1=3 z$ and $2^{x}-1=z$. It follows that, $z=1$ and $2^{x}-1=z$. The latter equation is true only when $x=1$. Thus, the case when $y=0$ implies a unique solution $(x, y, z)=(1,0,1)$ to $4^{x}-7^{y}=3 z^{2}$.

Case 3. $x, y>0$. Suppose $4^{x}-7^{y}=3 z^{2}$ has a solution in \mathbb{N} for $\min (x, y)>0$. We rewrite the equation into $\left(2^{x}\right)^{2}-3 z^{2}=7^{y}$. First, suppose that y is even, say $y=2 m$ for some $m \in \mathbb{N}$. Then, by [20, Theorem 6 , pg. 16], we could find $X_{n}=2^{x_{n}}, Z_{n}=z_{n}$, and $Y_{n}=7^{m_{n}}$ such that $X_{n}^{2}-3 Z_{n}^{2}=Y_{n}^{2}$. Furthermore, by 20, Theorem 1, pg. 9], there is a solution (u, v) such that $u^{2}-3 v^{2}=1$. Let $u=2^{x_{j}}$ and $v=z_{j}$ where $\left(2^{x_{j}}\right)^{2}-3 z_{j}^{2}=1$. Multiplying $\left(2^{x_{j}}\right)^{2}-3 z_{j}^{2}=1$ by $7^{2 m_{j}}$ both sides with $m_{j}>0$, we get $\left(2^{x_{j}} 7^{m_{j}}\right)^{2}-3\left(z_{j} 7^{m_{j}}\right)^{2}=\left(7^{m_{j}}\right)^{2}$. This is impossible since every solution X_{n} is a power of two. It follows that y is odd. Suppose now that y is odd. Then, we have $\left(2^{x}\right)^{2}-3 z^{2}=7\left(49^{m}\right)$. Let $p=3$ and $k=7$ in Corollary 2.4 . Obviously, $7 \equiv 3(\bmod 4)$. Since 49 is of the form $4 t+1$ (with $t=12$), then 49^{m} is of the form $4 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{N}$. Thus, by Corollary 2.4. $\left(2^{x}\right)^{2}-3 z^{2}=7^{y}$ for odd y is not solvable. This completes the proof of the theorem.

Remark 3.6. The conclusion in Case 3 of the previous theorem can also be shown using Lemma 2.1. That is, if we rewrite $4^{x}-7^{y}=3 z^{2}$ into $(X)^{2}-3 z^{2}=7^{y}$ where $X=2 x$, then, by Lemma 2.1, this equation is soluble if and only if there is a natural number u such that $u^{2} \equiv 3\left(\bmod 7^{y}\right)$. Note that Lemma 2.1 applies to $(X)^{2}-3 z^{2}=7^{y}$ since $z^{2} \equiv-3 z^{2} \equiv 7^{y}(\bmod 4)$ implies that z must be odd. Indeed, we have $\operatorname{gcd}(X, z)=1$. Now, the equivalence relation $u^{2} \equiv 3\left(\bmod 7^{y}\right)$ is soluble provided $u^{2}=3(\bmod 7)$ has a solution. So we must find a solution to $u^{2} \equiv 3(\bmod 7)$. But, $3^{3} \equiv 6(\bmod 7)$. Hence, by Euler's Criterion, 3 is a quadratic nonresidue of 7 . Thus, $u^{2} \equiv 3\left(\bmod 7^{y}\right)$ is insoluble. Here we conclude that $(X)^{2}-3 z^{2}=\left(2^{x}\right)^{2}-3 z^{2}=7^{y}$ has no solution in \mathbb{N}_{0}.

Theorem 3.7. The Diophantine equation $4^{x}-19^{y}=3 z^{2}$ has exactly two solutions (x, y, z) in \mathbb{N}_{0}, i.e. $(x, y, z) \in\{(0,0,0),(1,0,1)\}$.

Proof. The proof is similar to the previous theorem. The case when $z=0$ and $x=0$ are equivalent and are both trivial. We only consider the following two cases.

Case 1. $y=0$. If $y=0$, then we have $4^{x}-3 z^{2}=1$ which has the unique solution $(x, y, z)=(1,0,1)$ by Case 2 of Theorem 3.5.

Case 2. $x, y>0$. For $\min (x, y)>0$, the Diophantine equation $4^{x}-19^{y}=3 z^{2}$ is equivalent to $\left(2^{x}\right)^{2}-3 z^{2}=19^{y}$. First, suppose that y is even, say $y=2 m$ for some $m \in \mathbb{N}$. Then, we could find $X_{n}=2^{x_{n}}, Z_{n}=z_{n}$, and $Y_{n}=19^{m_{n}}$ such that $X_{n}^{2}-3 Z_{n}^{2}=Y_{n}^{2}$. Moreover there is a solution (u, v) such that $u^{2}-3 v^{2}=1$. Choose $u=2^{x_{j}}$ and $v=z_{j}$ where $\left(2^{x_{j}}\right)^{2}-3 z_{j}^{2}=1$. Multiplying $\left(2^{x_{j}}\right)^{2}-3 z_{j}^{2}=1$ by $19^{2 m_{j}}$ both sides (with $m_{j}>0$), we obtain $\left(2^{x_{j}} 19^{m_{j}}\right)^{2}-3\left(z_{j} 19^{m_{j}}\right)^{2}=\left(19^{m_{j}}\right)^{2}$. This is clearly a contradiction since every solution X_{n} is a power of two. So y must be
odd. Now, suppose that y is odd. Then, $\left(2^{x}\right)^{2}-3 z^{2}=7\left(361^{m}\right)$. Let $p=3$ and $k=19$. Obviously, $19 \equiv 3(\bmod 4)$. Since 361 is of the form $4 t+1$ (with $t=90)$, then 361^{m} is of the form $4 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{N}$. Therefore, by Corollary 2.4 the Diophantine equation $\left(2^{x}\right)^{2}-3 z^{2}=19^{y}$ for odd y is not solvable. This proves the theorem.

Remark 3.8. Similar to what we remarked for Case 3 of Theorem 3.5, the conclusion obtained in Case 2 of Theorem 3.7 can be shown using Lemma 2.1running along the same inductive line of argument in Remark 3.6.

We note that $4^{x}-7^{y}=3 z^{2}$ and $4^{x}-19^{y}=3 z^{2}$ are of the form $4^{x}-p^{y}=3 z^{2}$ where $p \equiv 3(\bmod 4)$. This Diophantine equation has in fact the two solutions $(0,0,0)$ and $(1,0,1)$ in \mathbb{N}_{0}, and this result is the content of our last and final theorem.

Theorem 3.9. Let $p \equiv 3(\bmod 4)$ be a prime. Then, the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ has exactly two solutions (x, y, z) in \mathbb{N}_{0}, i.e. $(x, y, z) \in$ $\{(0,0,0),(1,0,1)\}$.

Proof. Let $p \equiv 3(\bmod 4)$ be a prime and consider the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ where x, y, and z are non-negative integers. We first treat the case when $\min (x, y, z)=0$. If $x=0$, then we have $1-p^{y}=3 z^{2}$. Note that $p^{y} \equiv 1(\bmod$ 4) when y is even and $p^{y} \equiv-1(\bmod 4)$ when y is odd. Also, note that z is odd. Hence, $1-p^{y} \equiv 0,2(\bmod 4)$ whereas $3 z^{2} \equiv 3(\bmod 4)$. Therefore, $4^{x}-p^{y}=3 z^{2}$ has no solution for $x=0$.

If $y=0$, then we get $4^{x}-1=3 z^{2}$ which has the unique solution $(x, y, z)=$ $(1,0,1)$ by Case 2 of Theorem 3.5 .

If $z=0$, then it immediately follows that $x=y=0$. Here we get $(x, y, z)=$ $(0,0,0)$.

Now suppose $\min (x, y, z)>0$. Note that the equivalence relation $4^{x}-p^{y} \equiv$ $3 z^{2} \equiv-1(\bmod 4)$ implies that y and z are both odd. If y is odd, then $\left(2^{x}\right)^{2}-3 z^{2}=$ $p\left(p^{2 m}\right)$. But, $p=4 t+3$ for some $t \in \mathbb{N}_{0}$, hence p^{2} is of the form $4 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{N}$. Then, $p^{2 m} \equiv 1(\bmod 4)$. By virtue of Corollary 2.4 we conclude that $\left(2^{x}\right)^{2}-3 z^{2}=p^{y}$ is not solvable. This proves the theorem.

4 Summary

In this work, we have exhibited all solutions to the Diophantine equation $4^{x}-p^{y}=z^{2}$ in the set of non-negative integers for prime number p. Also, we have given all solutions to the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ under the assumption that $p \equiv 3(\bmod 4)$. With this restriction on p, the case when $p \equiv 1$ $(\bmod 4)$ remains open and we leave this to the interested reader. Also, we leave the set of all solutions of the Diophantine equation $4^{x}-p^{y}=d z^{2}$ in \mathbb{N}_{0} (where d is an integer) as an open problem. It is worth mentioning that the two Diophantine equations $2^{x}+3 y^{2}=4^{z}$ and $2^{x}+7 y^{2}=4^{z}$ were already been studied by the author
in 23] in which a general solution to $2^{x}+d y^{2}=4^{z}$ in non-negative integers (with $d=(2 k-1) / 9$ and $k \equiv 0(\bmod 6))$ was also also presented.

Acknowledgement : The author would like to thank the referee for his valuable comments and suggestions that help improve the present paper.

References

[1] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Sci. \& Tech. RMUTT J. 1 (2011) 25-28.
[2] S. Chotchaisthit, On a Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number, Amer. J. Math. Sci. 1 (2012) 191-193.
[3] S. Chotchaisthit, On a Diophantine equation $2^{x}+11^{y}=z^{2}$, Maejo Int. J. Sci. Technol. 7 (2013) 291-293.
[4] A.D. Nicoară, C.E. Pumnea, On a Diophantine equation of $a^{x}+b^{y}=z^{2}$ type, Educaţia Matematică 4 (2008) 65-75.
[5] J.F.T. Rabago, A note on two Diophantine equations $17^{x}+19^{y}=z^{2}$ and $71^{x}+73^{y}=z^{2}$, Math. J. Interdisciplinary Sci. 2 (2013) 19-24.
[6] B. Sroysang, On two Diophantine equation $7^{x}+19^{y}=z^{2}$ and $7^{x}+91^{y}=z^{2}$, Int. J. Pure Appl. Math. 92 (2014) 113-116.
[7] B. Sroysang, On the Diophantine equation $7^{x}+31^{y}=z^{2}$, Int. J. Pure Appl. Math. 92 (2014) 109-112.
[8] B. Sroysang, On the Diophantine equation $5^{x}+63^{y}=z^{2}$, Int. J. Pure Appl. Math. 91 (2014) 541-544.
[9] B. Sroysang, On the Diophantine equation $5^{x}+43^{y}=z^{2}$, Int. J. Pure Appl. Math. 91 (2014) 537-540.
[10] B. Sroysang, On the Diophantine equation $483^{x}+485^{y}=z^{2}$, Int. J. Pure Appl. Math. 91 (2014) 536-533.
[11] B. Sroysang, More on the Diophantine equation $8^{x}+59^{y}=z^{2}$, Int. J. Pure Appl. Math. 91 (2014) 139-142.
[12] E. Catalan, Note extraite d'une lettre adresśee a l'éditeur, J. Reine Angew. Math. 27 (1844) 192.
[13] P. Mihăilescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 27 (2004) 167-195.
[14] B. Peker, S.I. Çenberci, On the Diophantine equations of $\left(4^{n}\right)^{x}+p^{y}=z^{2}$, http://arxiv.org/pdf/1202.2267v1.pdf. (2012).
[15] J.B. Bacani, J.F.T. Rabago, The complete set of solutions of the Diophantine equation $p^{x}+q^{y}=z^{2}$ for twin primes p and q, Int. J. Pure Appl. Math. 104 (2015) 517-521.
[16] A. Suvarnamani, Solution of the Diophantine Equation $p^{x}+q^{y}=z^{2}$, Int. J. Pure Appl. Math. 94 (2014) 457-460.
[17] D.J. Leitner, Two exponential Diophantine equation, J. de Théor. Nombres Bordeaux 23 (2011) 479-487.
[18] R. Scott, R. Styer, On $p^{x}-q^{y}=c$ and related three term exponential Diophantine equations with prime bases, J. Number Theory 105 (2004) 212-234.
[19] B. Sroysang, On the Diophantine equation $5^{x}+7^{y}=z^{2}$, Int. J. Pure Appl. Math. 89 (2013) 115-118.
[20] M. Wright, Solving Pell Equations, Undergraduate Thesis, 2006.
[21] K. Matthews, Thue's Theorem and the Diophantine equation $x^{2}-D y^{2}= \pm N$, Math. Comp. 71 (2001) 1281-1286.
[22] J. Smith, Solvability Characterizations of Pell-like Equations, Master's Thesis, 2009.
[23] J.F.T. Rabago, On two Diophantine equations $2^{x}+3 y^{2}=4^{z}$ and $2^{x}+7 y^{2}=4^{z}$, Int. J. Adv. Math. Sci. 1 (2013) 23-25.
(Received: 18 January 2013)
(Accepted: 10 June 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

