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Abstract : We find all solutions to 4x − 7y = z2 and 4x − 11y = z2 to com-
plement the results found by Suvarnamani, et. al. in [1]. We also consider the
two Diophantine equations 4x − 7y = 3z2 and 4x − 19y = 3z2 and show that
these two equations have exactly two solutions (x, y, z) in non-negative integers,
i.e. (x, y, z) ∈ {(0, 0, 0), (1, 0, 1)}. In fact, the Diophantine equation 4x − py = 3z2

has the two solutions (0, 0, 0) and (1, 0, 1) under some additional assumption on
p. These results were all obtained using elementary methods and Mihăilescu’s
Theorem. Finally, we end our paper with an open problem.
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1 Introduction

Recently, there have been an increasing interest in finding solutions to expo-
nential Diophantine equations of the form px + qy = z2, see e.g. [2–11], and the
references therein.

In [1], A. Suvarnamani, A. Singta, and S. Chotchaisthit showed that the two
Diophantine equations 4x + 7y = z2 and 4x + 11y = z2 have no solution in the
set of non-negative integers. In fact, the Diophantine equation 4x − 11y = z2 also
contain no solution in the set of non-negative integers (this set we denote by N0

throughout the paper) except possibly when x = y = z = 0, and the Diophantine
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equation 4x − 7y = z2 holds true in N0 for (x, y, z) = (0, 0, 0) and (2, 1, 3) only.

The results found in [1] were obtained using Mihăilescu’s Theorem: ax −
by = 1 has the unique solution (a, b, x, y) = (3, 2, 2, 3) in positive integers for
min(a, b, x, y) > 1. This remarkable result was first conjectured by E. Catalan in
a one page note dated 1844 (see [12]) and was finally proven my P. Mihăilescu in
2002 (see [13]). B. Peker and S. I. Çenberci generalized the results found in [1] by
considering the Diophantine equation (4n)x + py = z2 where p is an odd prime,
n ∈ N, and x, y, and z ∈ N0 in [14]. On the other hand, in [15], the author
and J. B. Bacani obtained all solutions to the Diophantine equation px + qy = z2

where p and q are twin primes under some additional assumptios on p and q. The
paper [15] gives a correct set of solutions to px+qy = z2 (under some assumptions
on p and q) in contrary to the main result presented in [16].

Another type of Diophantine equations of great interest are those of the form
ax ± by ± cz = wn. In [17] and [18], the authors studied exponential Diophantine
equations of the form px±qy±rz = c where p, q, r are primes, x, y and z ∈ N0, and
c an integer have been studied. Particularly, J. Leitner [17] solved the equation
3a + 5b− 7c = 1 for a, b, c ∈ N0 and the equation y2 = 3a + 2b + 1 for a, b ∈ N0 and
integer y. R. Scott and R. Styer [18] studied, among other things, the Diophantine
equation px ± qy ± 2z = 0 for primes p and q and positive integers x, y, and z.
These authors used elementary methods to show that, with a few explicitly listed
exceptions, there are at most two solutions (x, y) to |px ± qy| = c (where c is a
fixed positive integer) and at most two solutions (x, y, z) to px ± qy ± 2z = 0 in
positive integers.

In an earlier paper, the author along with Bacani gave all solutions to the
Diophantine equation 3x + 5y + 7z = w2 in response to an open problem posed by
B. Sroysang in [19].

In this note, we verify our claim that 4x − 11y = z2 contains no solution in
N0 except possibly when x = y = z = 0, and the Diophantine equation 4x −
7y = z2 has exactly two solutions (x, y, z) in non-negative integers, i.e. (x, y, z) ∈
{(0, 0, 0), (2, 1, 3)}. We remark that our approach in proving these two claims
can be applied to prove a general case of the problem. Also, we show that the
two Diophantine equations 4x − 7y = 3z2 and 4x − 19y = 3z2 have exactly two
solutions (x, y, z) in N0, i.e. (x, y, z) ∈ {(0, 0, 0), (1, 0, 1)}. Finally, we state and
prove a generalization of these two previous results at the end of our paper. Most
precisely, we show that 4x− py = 3z2 has the two solutions (x, y, z) = (0, 0, 0) and
(1, 0, 1) in N0 for prime p ≡ 3 (mod 4).

2 Preliminaries

In this section we state some helpful results to prove our claims. First, it is
known that the equation X2 − dY 2 = 1 has a solution in positive integers X and
Y for all positive, nonsquare integers d (see e.g. [20, Theorem 1, pg. 9]), and that
if k is a perfect square, then the Pell Equation X2−dY 2 = k is solvable in integers
for all positive, nonsquare integers d (cf. [20, Theorem 6, pg. 16]). In relation to
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Pell’s equation the following lemma was proved by K. Matthews in [21, Section 3].

Lemma 2.1. Let N ≥ 1 be an odd integer, D > 1 and not a perfect square.
Then, a necessary condition for the solvability of the equation x2 −Dy2 = N with
gcd(x, y) = 1 is that the congruence u2 ≡ D (mod N) shall be soluble.

The following results shall be used to show that the title equation has no
solution in positive integers x, y, and z for prime p ≡ 3 (mod 4).

Theorem 2.2 ([22], Theorem 2.9, pg. 32). Let p ≡ 3 (mod 4) and k = m2n with
n square free. If X2 − pY 2 = k is solvable, then n ≡ 1 (mod 4).

Corollary 2.3 ([22], Corollary 2.10, pg. 33). Let k = m2n with n square free. If
p ≡ n ≡ 3 (mod 4), then X2 − pY 2 = k is not solvable.

Corollary 2.4 ([22], Corollary 2.11, pg. 33). If p ≡ k ≡ 3 (mod 4) and l ≡ 1
(mod 4), then X2 − pY 2 = kl is not solvable.

Now we prove our results in the following section.

3 Main Results

We first consider the two Diophantine equations 4x−7y = z2 and 4x−11y = z2

and later in this section we study the equations 4x− 7y = 3z2 and 4x− 19y = 3z2.

Theorem 3.1. The Diophantine equation 4x − 7y = z2 has exactly two solutions
(x, y, z) in N0, namely (the trivial solution) (0, 0, 0) and (2, 1, 3).

Proof. Evidently, the case when z = 0 will give us (x, y, z) = (0, 0, 0), so we may
assume that z > 0. For z > 0, we consider three cases.

Case 1. x = 0. This case is trivial.
Case 2. y = 0. If y = 0, then we have (2x)2 − z2 = 1 which is impossible due

to Mihăilescu’s Theorem.
Case 3. x, y > 0. For this case we have (2x)2− z2 = (2x + z)(2x− z) = 7y. It

follows that (2x+z)+(2x−z) = 2x+1 = 7β +7α for some α < β, where α+β = y.
Hence, 2x+1 = 7α(7β−α + 1). Thus, α = 0 and 2x+1 − 7β = 1, which is true when
x = 2 and y = 1. These give us the value z = 3. Therefore, (2, 1, 3) is a solution
of 4x − 7y = z2. Now, if we assume y > 1, then we get 2x+1 − 7β = 1 which has
no solution because of Mihăilescu’s Theorem and this proves the theorem.

Theorem 3.2. The Diophantine equation 4x − 11y = z2 contains no solution in
N0 except the trivial solution x = y = z = 0.

Proof. The theorem can be shown easily by utilizing Mihăilescu’s Theorem and is
similar to the proof of the previous theorem. The case when z = 0 and x = 0 are
both trivial. So we may assume without loss of generality that min(x, z) > 0. If
this is the case, then we have (2x)2 − z2 = (2x + z)(2x − z) = 11y. It follows that,
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(2x + z) + (2x − z) = 2x+1 = 11β + 11α for some α < β, where α+ β = y. Hence,
2x+1 = 11α(11β−α + 1). Thus, α = 0 and 2x+1 − 11β = 1 and by Mihăilescu’s
Theorem, we can now conclude that this Diophantine equation has no solution.
The theorem is now proved.

In the following result we shall state and prove a more general case of Theorem
3.1 and Theorem 3.2.

Theorem 3.3. The Diophantine equation 4x−py = z2 has the set of all solutions
{(x, y, z)} given by

{(x, y, z)} = {(0, 0, 0)} ∪ {(q − 1, 1, 2q−1 − 1)},

for prime p = 2q − 1 (with q also a prime). For p ≡ 3 (mod 4) not of the
form 2q − 1, the Diophantine equation 4x − py = z2 has only the trivial solution
(x, y, z) = (0, 0, 0).

Proof. Consider the Diophantine equation 4x−py = z2. We consider the following
cases.

Case 1. x = 0. If x = 0, then 1− z2 = py which implies that z = y = 0 and
p is any prime number.

Case 2. y = 0. If y = 0, then 22x − z2 = 1 which is obviously impossible
because of Mihăilescu’s Theorem.

Case 3. x, y > 0. If min(x, y) > 0, then 4x − py = z2 is equivalent to
(2x + z)(2x − z) = py. Hence, 2x+1 = (2x + z) + (2x − z) = pα(pβ−α − 1) for
some integers α and β such that α+ β = y and β > α ≥ 0. Therefore, α = 0 and
2x+1 − py = 1 which has no solution for min(x, y) > 1 by Mihăilescu’s Theorem.
For y = 1, we get p = 2x+1 − 1. Note that 2x+1 − 1 is a prime if and only if
x+ 1 is also a prime. Thus, we get a family of solutions to 4x − py = z2 given by
(x, y, z) = {(q − 1, 1, 2q − 1) | q is a prime} for p = 2q − 1. On the other hand, if
p ≡ 1 (mod 4) not of the form 2q − 1 (with y = 1), then we get −1 ≡ 1 (mod 4)
and this a clear contradiction. Thus, we only have the trivial solution (0, 0, 0) to
4x − py = z2 for p ≡ 3 (mod 4). Now, conclusion follows.

Remark 3.4. Theorem 3.1 (respectively, Theorem 3.2) agrees with Theorem 3.3
since 7 = 23 − 1 (respectively, 11 ≡ 3 (mod 4)).

Theorem 3.5. The Diophantine equation 4x−7y = 3z2 has exactly two solutions
(x, y, z) in N0. In particular, the solutions are (0, 0, 0) and (1, 0, 1).

Proof. Evidently, for the case when z = 0 we get (x, y, z) = (0, 0, 0). So we let
z > 0 and consider the following three cases.

Case 1. x = 0. This case is trivial.
Case 2. y = 0. If y = 0, then we have 4x − 3z2 = 1. It can be seen easily

that the equation holds true for x = z = 1. Here we get (x, y, z) = (1, 0, 1). Now,
it remains for us to show that there is no solution to (2x)2 − 3z2 = 1 other than
(x, y, z) = (1, 0, 1) for y = 0. Note that (2x)2 − 1 = (2x + 1)(2x − 1) = 3z2.
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So, 2x + 1 = 3z and 2x − 1 = z. This claim is easily verified as follows: if x is
odd, then there exists an integer k > 0 such that 2x + 1 = 3k. So (2x)2 − 1 =
(2x+1)(2x−1) = 3k(3k−2). Hence, we have 3k−2 = 2x−1 but this is impossible
since 3k − 2 6= k for k 6= 1. Indeed, 2x + 1 = 3z and 2x − 1 = z. It follows that,
z = 1 and 2x−1 = z. The latter equation is true only when x = 1. Thus, the case
when y = 0 implies a unique solution (x, y, z) = (1, 0, 1) to 4x − 7y = 3z2.

Case 3. x, y > 0. Suppose 4x−7y = 3z2 has a solution in N for min(x, y) > 0.
We rewrite the equation into (2x)2 − 3z2 = 7y. First, suppose that y is even, say
y = 2m for some m ∈ N. Then, by [20, Theorem 6, pg. 16], we could find
Xn = 2xn , Zn = zn, and Yn = 7mn such that X2

n − 3Z2
n = Y 2

n . Furthermore,
by [20, Theorem 1, pg. 9], there is a solution (u, v) such that u2 − 3v2 = 1. Let
u = 2xj and v = zj where (2xj )2 − 3z2j = 1. Multiplying (2xj )2 − 3z2j = 1 by

72mj both sides with mj > 0, we get (2xj7mj )2 − 3(zj7
mj )2 = (7mj )2. This is

impossible since every solution Xn is a power of two. It follows that y is odd.
Suppose now that y is odd. Then, we have (2x)2 − 3z2 = 7(49m). Let p = 3 and
k = 7 in Corollary 2.4. Obviously, 7 ≡ 3 (mod 4). Since 49 is of the form 4t + 1
(with t = 12), then 49m is of the form 4t′ + 1 for some t′ ∈ N. Thus, by Corollary
2.4, (2x)2 − 3z2 = 7y for odd y is not solvable. This completes the proof of the
theorem.

Remark 3.6. The conclusion in Case 3 of the previous theorem can also be shown
using Lemma 2.1. That is, if we rewrite 4x− 7y = 3z2 into (X)2− 3z2 = 7y where
X = 2x, then, by Lemma 2.1, this equation is soluble if and only if there is a
natural number u such that u2 ≡ 3 (mod 7y). Note that Lemma 2.1 applies to
(X)2 − 3z2 = 7y since z2 ≡ −3z2 ≡ 7y (mod 4) implies that z must be odd.
Indeed, we have gcd(X, z) = 1. Now, the equivalence relation u2 ≡ 3 (mod 7y)
is soluble provided u2 = 3 (mod 7) has a solution. So we must find a solution
to u2 ≡ 3 (mod 7). But, 33 ≡ 6 (mod 7). Hence, by Euler’s Criterion, 3 is a
quadratic nonresidue of 7. Thus, u2 ≡ 3 (mod 7y) is insoluble. Here we conclude
that (X)2 − 3z2 = (2x)2 − 3z2 = 7y has no solution in N0.

Theorem 3.7. The Diophantine equation 4x−19y = 3z2 has exactly two solutions
(x, y, z) in N0, i.e. (x, y, z) ∈ {(0, 0, 0), (1, 0, 1)}.

Proof. The proof is similar to the previous theorem. The case when z = 0 and
x = 0 are equivalent and are both trivial. We only consider the following two
cases.

Case 1. y = 0. If y = 0, then we have 4x − 3z2 = 1 which has the unique
solution (x, y, z) = (1, 0, 1) by Case 2 of Theorem 3.5.

Case 2. x, y > 0. For min(x, y) > 0, the Diophantine equation 4x−19y = 3z2

is equivalent to (2x)2 − 3z2 = 19y. First, suppose that y is even, say y = 2m for
some m ∈ N. Then, we could find Xn = 2xn , Zn = zn, and Yn = 19mn such that
X2
n−3Z2

n = Y 2
n . Moreover there is a solution (u, v) such that u2−3v2 = 1. Choose

u = 2xj and v = zj where (2xj )2−3z2j = 1. Multiplying (2xj )2−3z2j = 1 by 192mj

both sides (with mj > 0), we obtain (2xj19mj )2 − 3(zj19mj )2 = (19mj )2. This is
clearly a contradiction since every solution Xn is a power of two. So y must be
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odd. Now, suppose that y is odd. Then, (2x)2 − 3z2 = 7(361m). Let p = 3 and
k = 19. Obviously, 19 ≡ 3 (mod 4). Since 361 is of the form 4t+ 1 (with t = 90),
then 361m is of the form 4t′ + 1 for some t′ ∈ N. Therefore, by Corollary 2.4, the
Diophantine equation (2x)2− 3z2 = 19y for odd y is not solvable. This proves the
theorem.

Remark 3.8. Similar to what we remarked for Case 3 of Theorem 3.5, the con-
clusion obtained in Case 2 of Theorem 3.7 can be shown using Lemma 2.1 running
along the same inductive line of argument in Remark 3.6.

We note that 4x − 7y = 3z2 and 4x − 19y = 3z2 are of the form 4x − py = 3z2

where p ≡ 3 (mod 4). This Diophantine equation has in fact the two solutions
(0, 0, 0) and (1, 0, 1) in N0, and this result is the content of our last and final
theorem.

Theorem 3.9. Let p ≡ 3 (mod 4) be a prime. Then, the Diophantine equa-
tion 4x − py = 3z2 has exactly two solutions (x, y, z) in N0, i.e. (x, y, z) ∈
{(0, 0, 0), (1, 0, 1)}.

Proof. Let p ≡ 3 (mod 4) be a prime and consider the Diophantine equation
4x − py = 3z2 where x, y, and z are non-negative integers. We first treat the case
when min(x, y, z) = 0. If x = 0, then we have 1−py = 3z2. Note that py ≡ 1 (mod
4) when y is even and py ≡ −1 (mod 4) when y is odd. Also, note that z is odd.
Hence, 1− py ≡ 0, 2 (mod 4) whereas 3z2 ≡ 3 (mod 4). Therefore, 4x − py = 3z2

has no solution for x = 0.
If y = 0, then we get 4x − 1 = 3z2 which has the unique solution (x, y, z) =

(1, 0, 1) by Case 2 of Theorem 3.5.
If z = 0, then it immediately follows that x = y = 0. Here we get (x, y, z) =

(0, 0, 0).
Now suppose min(x, y, z) > 0. Note that the equivalence relation 4x − py ≡

3z2 ≡ −1 (mod 4) implies that y and z are both odd. If y is odd, then (2x)2−3z2 =
p(p2m). But, p = 4t+ 3 for some t ∈ N0, hence p2 is of the form 4t′ + 1 for some
t′ ∈ N. Then, p2m ≡ 1 (mod 4). By virtue of Corollary 2.4, we conclude that
(2x)2 − 3z2 = py is not solvable. This proves the theorem.

4 Summary

In this work, we have exhibited all solutions to the Diophantine equation
4x − py = z2 in the set of non-negative integers for prime number p. Also, we
have given all solutions to the Diophantine equation 4x − py = 3z2 under the
assumption that p ≡ 3 (mod 4). With this restriction on p, the case when p ≡ 1
(mod 4) remains open and we leave this to the interested reader. Also, we leave
the set of all solutions of the Diophantine equation 4x−py = dz2 in N0 (where d is
an integer) as an open problem. It is worth mentioning that the two Diophantine
equations 2x+3y2 = 4z and 2x+7y2 = 4z were already been studied by the author
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in [23] in which a general solution to 2x + dy2 = 4z in non-negative integers (with
d = (2k − 1)/9 and k ≡ 0 (mod 6)) was also also presented.

Acknowledgement : The author would like to thank the referee for his valuable
comments and suggestions that help improve the present paper.
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