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1 Introduction and Preliminaries

Nordall defined ? semigroup in terms of unary operation ? [1], then a regular
? semigroup was introduced. In order to let the results which Kehayopulu did
in ordered semigroups be more flexible, Wu imposed unary operation ? on or-
dered semigroups with additional property that ? preserves orders [2]. The word
”flexible” refers to the fact that if ? is an identity mapping, then the results in
ordered ?-semigroups will be the same as those in ordered semigroups. Ordered
?-semigroups, in which all ideals are (weakly) prime, was characterized. And after
the analogue of the definition of filters was made, he created a characterization on
intra-regular ordered ?-semigroups in terms of the least filter [2]. In this paper we
will develop further analogous results which provided in [3, 4].

An ordered semigroup S is a partial ordering set at the same semigroup such
that for any a, b, x ∈ S, a ≤ b implies xa ≤ xb and ax ≤ bx. An ordered semigroup

Copyright c© 2018 by the Mathematical Association of Thailand.
All rights reserved.



600 Thai J. Math. 16 (2018)/ C. Y. Wu

S with a unary operation ? : S −→ S is called an ordered ?-semigroup if it satisfies
(x?)? = x and (xy)? = y?x? for any x, y ∈ S. Such a unary operation ? is called
an involution [1]. If for any a, b with a ≥ b, we have a? ≥ b?, then ? is called
an order preserving involution [2]. Let S be an ordered ?-semigroup, we denote
(H] := {t ∈ S | t ≤ h for some h ∈ H} for H ⊆ S [2].

Let S be a ?-semigroup (or an ordered ?-semigroup) and T be a subset of S.
Then S = S?, but T = T ? is not necessary. However if T = T ?, then a? ∈ T if and
only if a ∈ T . Let S be an ordered ?-semigroup with order preserving involution
and I be an ideal of S. Then I? will be an ideal ([2] Proposition 2.2).

Definition 1.1. ([2]; Definition 2.3) Let S be an ordered ?-semigroup. A subset
T of S is called prime if ab ∈ T implies a? ∈ T or b? ∈ T .

Definition 1.2. ([2]; Definition 2.5) Let S be an ordered ?-semigroup. A subset
T of S is called semiprime if aa ∈ T implies a? ∈ T .

Definition 1.3. ([2]; Definition 2.9) An ordered ?-semigroup S is called intra-
regular if a ∈ (Sa?a?S] for any a ∈ S.

Definition 1.4. ([2]; Definition 3.1) Let S be an ordered ?-semigroup. A sub-
semigroup F of S is called a filter if

1. for any a, b ∈ S, ab ∈ F implies a? ∈ F and b? ∈ F ,
2. for any a ∈ F , c ∈ S, c ≥ a implies c ∈ F .

Let N(x) be the least filter of S containing x. Let N defined by N := {(x, y) ∈
S × S | N(x) = N(y)}. A congruence on ordered ?-semigroup S is an equivalence
relation σ on S which preserves both · and ?. In other words, if (a, b) ∈ σ, then
(a?, b?) ∈ σ [1].

Definition 1.5. ([2]; Definition 3.2) A congruence σ on ordered ?-semigroup S is
called semilattice congruence if (a?a?, a) ∈ σ and (ab, ba) ∈ σ for all a, b ∈ S. A
semilattice congruence σ on S is called complete if a ≤ b implies (a, ab) ∈ σ.

Proposition 1.6. ([2]; Proposition 3.3) Let S be an ordered ?-semigroup. Then
the relation N is a complete semilattice congruence on S.

Let a ∈ S. We denote the N -class of S containing a by (a)N .

2 Decomposition of Intra-Regular Ordered
?-Semigroup

Let S be an ordered ?-semigroup. In this paragraph, we first introduce an
equivalence relation N relating least filter of S. Then it is shown that N is a
semilattice congruence. If S is intra-regular, then each equivalence class of N is
a simple subsemigroup of S. From this we can induce that S is a union of these
simple subsemigroups satisfying some special properties. On the other hand if S
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is a union of these simple subsemigroups satisfying some special properties, then
S can be proved to be intra-regular. Furthermore we find a characterization of
intra-regular ordered ?-semigroup in which any two ideals are comparable under
the inclusion relation ⊆.

A non-empty subset L (resp. R) of S is called a left (resp. right) ideal of
ordered ?-semigroup S if (1) SL ⊆ L (resp. RS ⊆ R), and (2) a ∈ L (resp. R),
S 3 b ≤ a implies b ∈ L (resp. R). I is called an ideal of S if it is both a left and
a right ideal of S [2].

Proposition 2.1. Let S be an ordered ?-semigroup with order preserving involu-
tion ?. Then (a)N is a subsemigroup of S for any a ∈ S.

Proof. We claim that (x, x?) ∈ N for any x ∈ S. Since x? ∈ N(x?), we have
x?x? ∈ N(x?) because N(x?) is a subsemigroup. So x ∈ N(x?) by Definition 1.4.
Thus N(x) ⊆ N(x?). Similarly N(x?) ⊆ N(x). Therefore N(x) = N(x?), i.e.
(x, x?) ∈ N .

Let a ∈ S. To show that (a)N is a subsemigroup it suffices to prove that
bc ∈ (a)N for any b, c ∈ (a)N . Since b, c ∈ (a)N , we have (b, c) ∈ N , hence
(bc, cc) ∈ N by Proposition 1.6. Also since (cc, c?) ∈ N by Proposition 1.6 and
(c?, c) ∈ N as claimed above, we have (bc, c) ∈ N . Consequently, (bc, a) ∈ N
because (c, a) ∈ N . This means that bc ∈ (a)N , hence (a)N is a subsemigroup of
S.

Proposition 2.2. ( [2]; Proposition 3.4) Let S be an ordered ?-semigroup with
order preserving involution ?. Then S is intra-regular if and only if N(x) = {y ∈
S | x ∈ (Sy?S]}.

Theorem 2.3. ([2]; Theorem 3.5) Let S be an ordered ?-semigroup with order
preserving involution ?. Then S is intra-regular if and only if N = I.

A subsemigroup T of ordered ?-semigroup S is called simple if for every ideal
I of T we have I = T . Also as in ordered semigroups [3,5], if σ is a congruence on
ordered ?-semigroup S, then the multiplication ”.” on the set S/σ := {(x)σ|x ∈ S}
is defined by (x)σ · (y)σ := (xy)σ for any x, y ∈ S, and (S/σ, ·) is a semigroup.
Then since N is a complete semilattice congruence and (x, x?) ∈ N , it is easy to
see that (x)N (y)N := (xy)N = (yx)N = (y)N (x)N and (x, x2) ∈ N . These facts
will be used in the proof of Proposition 2.4 below.

Proposition 2.4. Let S be an intra-regular ordered ?-semigroup with order pre-
serving involution ?. Then

1. (a)N is a simple subsemigroup of S for any a ∈ S,
2. (a)N = ((a)N )? for any a ∈ S.

Proof. (1) By Proposition 2.1, we need only show that (a)N is simple.
We first claim that (b?)N ⊆ (Sb3S] for any b ∈ S. Since b? ≤ b?, (b?)2 ≤ (b?)2,

we get that (b?, (b?)2) ∈ N and ((b?)2, (b?)4) ∈ N by Proposition 1.6. Hence
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(b?)N = ((b?)4)N . Let x ∈ (b?)N . Then x ∈ ((b?)4)N . So N(x) = N((b?)4),
thus (b?)4 ∈ N(x). This implies x ∈ (Sb4S] by Proposition 2.2. Consequently,
(b?)N ⊆ (Sb3S] since (Sb4S] ⊆ (Sb3S].

To show that (a)N is simple it suffices to prove that (a)N ⊆ (Sb3S] for any b ∈
I and I is any ideal (a)N . For in this case if y ∈ (a)N , then y ∈ (Sb3S]. Hence y ≤
u1b

3u2 = (u1b)b(bu2) for some u1, u2 ∈ S. Therefore u1b ∈ (u1b)N := (u1)N (b)N
= (u1)N (y)N = (u1)N (yu1b

3u2)N = (yu1b
3u2)N = (y)N = (a)N . Similarly bu2 ∈

(bu2)N := (b)N (u2)N = (y)N (u2)N = (yu1b
3u2)N (u2)N = (yu1b

3u2)N = (y)N =
(a)N . Now since I is an ideal of (a)N , we get u1b, bu2 ∈ (a)N . This implies that
y ∈ (I] = I, hence (a)N ⊆ I. Consequently (a)N = I.

Now to complete the proof we show that (a)N ⊆ (Sb3S]. Since b ∈ I ⊆ (a)N ,
we have (b, a) ∈ N . Then N(b) = N(a). Thus b ∈ N(a), so bb ∈ N(a) because
N(a) is a subsemigroup. This implies b? ∈ N(a) because N(a) is a filter. Hence
N(b?) ⊆ N(a). On the other hand, since (a?, b?) ∈ N , we have a? ∈ N(b?). Simi-
larly we can get that N(a) ⊆ N(b?). Therefore N(b?) = N(a), i.e. (a)N = (b?)N .
This implies (a)N ⊆ (Sb3S] because (b?)N ⊆ (Sb3S] as claimed above.

(2) Let y ∈ (a)N . Then yy ∈ (a)N because (a)N is a subsemigroup. This
implies y? ∈ (a)N because (yy, y?) ∈ N . Thus y ∈ ((a)N )?, i.e. (a)N ⊆ ((a)N )?.
By symmetry, ((a)N )? ⊆ (a)N . So ((a)N )? = (a)N .

Proposition 2.5. Let S be an ordered ?-semigroup with order preserving involu-
tion ?. If S is intra-regular, then {(x?)N | x ∈ S} is the set of all maximal simple
subsemigroups of S.

Proof. Denote T be the set of all maximal simple subsemigroups of S.
Let a ∈ S. By Proposition 2.4, (a?)N is a simple subsemigroup of S. Let M

be any simple subsemigroup of S such that (a?)N ⊆ M . Clearly a? ∈ M . Since
(Sa?S] ∩M is an ideal of M and (a?)3 ∈ (Sa?S] ∩M , we have (Sa?S] ∩M = M
because M is simple. Thus M ⊆ (Sa?S]. Let m ∈ M . By Proposition 2.2, we
have a ∈ N(m) because m ∈ (Sa?S]. Hence N(a) ⊆ N(m), so N(a?) ⊆ N(m)
because N(a?) = N(a) ( as shown in the proof of Proposition 2.1 ). Similarly
m3 ∈ (SmS] ∩M and (SmS] ∩M = M because (SmS] ∩M is an ideal of M and
M is simple. Hence a? ∈ (SmS] because a? ∈ M . By Proposition 2.2, we get
m? ∈ N(a?). Hence N(m?) ⊆ N(a?), so N(m) ⊆ N(a?) because N(m) = N(m?).
Consequently N(m) = N(a?), i.e. m ∈ (a?)N . Thus M ⊆ (a?)N . Therefore
M = (a?)N . This means that (a?)N ∈ T . So {(a?)N | a ∈ S} ⊆ T .

Conversely, let U ∈ T and u ∈ U . Clearly (SuS] ∩ U is an ideal of U . Since
u3 ∈ (SuS] ∩ U and U is simple, we get that (SuS] ∩ U = U . Let b ∈ U . Then
b ∈ (SuS] because U ⊆ (SuS]. Proposition 2.2 implies u? ∈ N(b). Hence N(u?) ⊆
N(b). So N(u) ⊆ N(b) because N(u) = N(u?). Also since b3 ∈ (SbS]∩U and U is
simple, we get that (SbS]∩U = U . Then u ∈ (SbS] because u ∈ U . So b? ∈ N(u)
by Proposition 2.2. Thus N(b?) ⊆ N(u). So N(b) ⊆ N(u) because N(b) = N(b?).
Consequently we get N(b) = N(u), i.e. b ∈ (u)N . Therefore U ⊆ (u)N . So
U = (u)N because U is a maximal simple subsemigroup of S. Since u? ∈ S, we
have (u)N = ((u?)?)N ∈ {(a?)N | a ∈ S}. Thus T ⊆ {(a?)N | a ∈ S}.



On Decompositions of Intra-Regular and Left Regular Ordered ?-Semigroups 603

In ordered semigroups an equivalent definition for semilattice of simple semi-
groups was established by Kehayopulu (Definition 2.8). The analogous statement
in ordered ?-semigroups will be induced by Proposition 2.9. Note that although
in ordered ?-semigroups the semilattice of simple semigroups is defined exactly
as in the case of ordered semigroups, the corresponding definitions of semilattice
congruences are defined different (Definitions 1.5 and 2.7).

Definition 2.6. An ordered ?-semigroup S is called a (complete) semilattice of
simple semigroups if there exists a (complete) semilattice congruence σ on S such
that the class (x)σ of S containing x is a simple subsemigroup of S for any x ∈ S.

Definition 2.7. [4] A congruence σ on ordered semigroup S (without ?) is called
semilattice congruence if (aa, a) ∈ σ and (ab, ba) ∈ σ for all a, b ∈ S. A semilattice
congruence σ on S is called complete if a ≤ b implies (a, ab) ∈ σ.

Definition 2.8. [3] An ordered semigroup S (without ?) is called a semilattice of
simple semigroups if there exists a semilattice congruence σ on S such that the
class (x)σ of S containing x is a simple subsemigroup of S for any x ∈ S.

Equivalent definition: there exists a semilattice Y and a family {Sα}α∈Y of
simple subsemigroups of S such that (1) Sα ∩ Sβ = Ø for each α, β ∈ Y , α 6= β,
(2) S = ∪α∈Y Sα, (3) SαSβ ⊆ Sαβ for each α, β ∈ Y .

Proposition 2.9. Let S be an ordered ?-semigroup. Then S is a semilattice of
simple semigroups if and only if there exists a semilattice Y and a family {Sα}α∈Y
of simple subsemigroups of S such that

1) Sα ∩ Sβ = Ø for each α, β ∈ Y , α 6= β,
2) S = ∪α∈Y Sα,
3) SαSβ ⊆ Sαβ for each α, β ∈ Y ,
4) Sα = (Sα)? for α ∈ Y .

Proof. (=⇒) Let S be a semilattice of simple semigroups. By Definition 2.6, there
exists a semilattice congruence σ on S such that the σ-class (x)σ of S containing
x is a simple subsemigroup of S for every x ∈ S. Let y ∈ (x)σ. Since yy ∈ (x)σ
and (yy, y?) ∈ σ, we have y? ∈ (x)σ. It follows that y ∈ (x)?σ, and (x)σ ⊆ (x)?σ.
Therefore (x)?σ = (x)σ by (x)?σ ⊆ ((x)?σ)? = (x)σ, hence (4) follows. Note that a? ∈
(a)?σ. So a? ∈ (a)σ because (a)σ = (a)?σ. Thus (a?, a) ∈ σ. Therefore (a?a?, a?) ∈ σ
since (a?a?, a) ∈ σ. Then S = S? implies that (aa, a) ∈ σ. Consequently σ is a
semilattice congruence on ordered semigroups S (without ?), and (1)-(3) follows
by Definition 2.8.

(⇐=) By hypothesis there exists a semilattice Y and a family {Sα}α∈Y of
simple subsemigroups of S such that (1) Sα ∩ Sβ = Ø for each α, β ∈ Y , α 6= β,
(2) S = ∪α∈Y Sα, (3) SαSβ ⊆ Sαβ for each α, β ∈ Y , and (4) Sα = (Sα)? for
α ∈ Y . Since (1)-(3) are exactly the same as those in the equivalent definition
of Definition 2.8, there exists a congruence σ on S such that the σ-class (x)σ of
S containing x is a simple subsemigroup of S for every x ∈ S, and (aa, a) ∈ σ,
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(ab, ba) ∈ σ for any a, b ∈ S. In order to show that σ is a semilattice congruence on
ordered ?-semigroup, we need to claim that (a?a?, a) ∈ σ for any a ∈ S according
to Definition 1.5. Let a ∈ Sα for some α ∈ Y . Since Sα is a subsemigroup, we
have aa ∈ Sα. Also Sα = (Sα)? implies that a?a? ∈ Sα. Observe that Sα = (x)σ
for some x ∈ S. Therefore (aa, a?a?) ∈ σ. Consequently (a?a?, a) ∈ σ because
(a, aa) ∈ σ.

Proposition 2.10. Let S be an ordered ?-semigroup. If S is a semilattice of
simple subsemigroups, then S is intra-regular.

Proof. By Proposition 2.9, there exists a semilattice Y and a family {Sα}α∈Y of
simple subsemigroups of S such that S = ∪α∈Y Sα and Sα = (Sα)?. Let x ∈ S
and let x ∈ Sα = (Sα)? for some α ∈ Y . We will claim that (Sx?x?S] ∩ Sα is an
ideal of Sα. Then since Sα is simple, we have that (Sx?x?S]∩Sα = Sα. Therefore
x ∈ Sα = (Sx?x?S], that is S is intra-regular.

The proof of (Sx?x?S]∩Sα is an ideal of Sα consists of combining three facts.
(1) ((Sx?x?S]∩Sα)Sα ⊆ (Sx?x?S]∩Sα. (2) Sα((Sx?x?S]∩Sα) ⊆ (Sx?x?S]∩Sα.
(3) b ∈ (Sx?x?S]∩Sα for any b ∈ Sα with b ≤ a ∈ (Sx?x?S]∩Sα. These statements
are justified as follows.

(1) Note that (Sx?x?S] ∩ Sα 6= Ø because (x?)4 ∈ (Sx?x?S] ∩ Sα. Let y ∈
((Sx?x?S] ∩ Sα)Sα. Then y = y1y2 with y1 ∈ (Sx?x?S] ∩ Sα and y2 ∈ Sα. So
y1 ≤ u1x

?x?u2 for some u1, u2 ∈ S. Clearly y1y2 ≤ u1x
?x?u2y2 ∈ Sx?x?S and

y1y2 ∈ Sα. This implies that y1y2 ∈ (Sx?x?S]∩Sα. Therefore ((Sx?x?S]∩Sα)Sα ⊆
(Sx?x?S] ∩ Sα.

(2) Let y ∈ Sα((Sx?x?S] ∩ Sα). Then y = y1y2 with y1 ∈ Sα, y2 ≤ u1x
?x?u2

and y2 ∈ Sα for some u1, u2 ∈ S. Hence y1y2 ≤ y1u1x
?x?u2 ∈ Sx?x?S and

y1y2 ∈ Sα. This implies that y ∈ (Sx?x?S] ∩ Sα. Therefore Sα((Sx?x?S] ∩ Sα) ⊆
(Sx?x?S] ∩ Sα.

(3) Since a ≤ u1x
?x?u2 for some u1, u2 ∈ S with b ≤ a, we have b ≤

u1x
?x?u2 ∈ Sx?x?S. So b ∈ (Sx?x?S]. Thus b ∈ (Sx?x?S] ∩ Sα because

b ∈ Sα.

Theorem 2.11. Let S be an ordered ?-semigroup with order preserving involution
?. Then S is intra-regular if and only if S is a semilattice of simple subsemigroups.

Proof. By Propositions 2.4 and 2.10.

Proposition 2.12. ([2]; Proposition 2.10) Let S be an ordered ?-semigroup. Then
S is intra-regular if and only if the ideals of S are semiprime.

Corollary 2.13. Let S be an ordered ?-semigroup with order preserving involution
?. Then the following are equivalent:

1. S is a union of simple subsemigroups of S,

2. S is intra-regular,

3. any ideal of S is semiprime,
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4. The relation N is a complete semilattice congruence on S and the class (a)N
is a simple subsemigroup of S for any a ∈ S,

5. S is a complete semilattice of simple semigroups,
6. S is a semilattice of simple semigroups,
7. There exists a congruence σ on S such that the class (a)σ of S is a simple

subsemigroup of S for any a ∈ S.

Proof. (1) =⇒ (2). By Theorem 2.11.
(2) =⇒ (3). Use Proposition 2.12.
(3) =⇒ (4). Proposition 2.12 implies that S is intra-regular. Then Proposition

1.6 shows that N is a complete semilattice congruence on S. Furthermore (a)N is
a simple subsemigroup of S by Proposition 2.4.

(4) =⇒ (5). By Definition 2.6.
(5) =⇒ (6). The result is obtained immediately since a complete semilattice

congruence is a semilattice congruence.
(6) =⇒ (7). Clearly, because a semilattice congruence is a congruence.
(7) =⇒ (1). By hypothesis, (x)σ is a congruence class containing x, hence

there exists A ⊆ S such that S = ∪x∈A(x)σ. Therefore S is a union of simple
subsemigroups of S because (x)σ is a simple subsemigroup of S for any x ∈ S.

Theorem 2.14. ([2]; Theorem 2.13) Let S be an ordered ?-semigroup with order
preserving involution ?. (S is intra-regular and any two ideals are comparable
under the inclusion relation ⊆) if and only if the ideals of S are prime.

Theorem 2.15. Let S be an ordered ?-semigroup with order preserving involution
?. Then (S is intra-regular and any two ideals are comparable under the inclusion
relation ⊆) if and only if for any x, y ∈ S we have x ∈ (Sx?y?S] or y ∈ (Sx?y?S].

Proof. (=⇒) By Theorem 2.14, we must show that all ideals of S are prime. Let
I be an ideal of S and ab ∈ I, a, b ∈ S. By hypothesis we have b ∈ (Sb?a?S] or
a ∈ (Sb?a?S]. If b ∈ (Sb?a?S], then b ∈ (S(ab)?S] ⊆ (I?] = I?, hence b? ∈ I. If
a ∈ (Sb?a?S], then a ∈ (S(ab)?S] ⊆ (I?] = I?, hence a? ∈ I. This means that I is
prime.

(⇐=) Let x, y ∈ S. Since (Sx?y?S] is an ideal of S, we have (Sx?y?S] is
prime by Theorem 2.14. This implies that x2 ∈ (Sx?y?S] or y2 ∈ (Sx?y?S]
because (x?)2(y?)2 ∈ (Sx?y?S]. If x2 ∈ (Sx?y?S], then x? ∈ (Sx?y?S]. So
x? ≤ u1x

?y?u2 for some u1, u2 ∈ S. Thus (x?)2 ≤ u1x
?y?u2x

? ∈ Sx?y?S. Hence
(x?)2 ∈ (Sx?y?S]. This implies x ∈ (Sx?y?S]. Similarly, if y2 ∈ (Sx?y?S], then
y ∈ (Sx?y?S].

Theorem 2.16. Let S be an ordered ?-semigroup with order preserving involution
?. Then (S is intra-regular and any two ideals are comparable under the inclusion
relation ⊆) if and only if there exists a semilattice congruence σ such that the
following hold:

1. For any a ∈ S, (a)σ is a simple subsemigroup of S,
2. For any x, y ∈ S, either (x, x?y?) ∈ σ or (y, x?y?) ∈ σ.
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Proof. (=⇒) Let σ be N . Since S is intra regular, by Proposition 2.4, we have
(a)N is a simple subsemigroup of S for any a ∈ S. Let x, y ∈ S. Since S is
intra-regular and any two ideals are comparable under the inclusion relation ⊆,
we have x ∈ (Sx?y?S] or y ∈ (Sx?y?S] by Theorem 2.15. If x ∈ (Sx?y?S], then
x ≤ u1x

?y?u2 for some u1, u2 ∈ S. So u1x
?y?u2 ∈ N(x) and (u1x

?y?)? ∈ N(x)
by Definition 1.4. Hence yxu?1 ∈ N(x) and (yx)? ∈ N(x) by Definition 1.4 again.
Thus N(x?y?) ⊆ N(x) because x?y? ∈ N(x). Also since x?y? ∈ N(x?y?), we have
x ∈ N(x?y?), so N(x) ⊆ N(x?y?). Therefore N(x) = N(x?y?). This means that
(x, x?y?) ∈ N . Similarly if y ∈ (Sx?y?S], we can get N(y) = N(x?y?). Thus
(y, x?y?) ∈ N .

(⇐=) By Theorem 2.14, we must show that the ideals of S are prime. Let I be
an ideal of S with ab ∈ I. Then since (ab)σ is a subsemigroup of S by hypothesis,
we have ((ab)σ ∩ I)(ab)σ = ((ab)σ)2 ∩ I(ab)σ ⊆ (ab)σ ∩ I and (ab)σ((ab)σ ∩ I) =
((ab)σ)2∩(ab)σI ⊆ (ab)σ∩I. Thus (ab)σ∩I is an ideal of (ab)σ. So (ab)σ∩I = (ab)σ
because (ab)σ is simple. Also by hypothesis we have that (a?, ab) ∈ σ or (b?, ab) ∈
σ. If (a?, ab) ∈ σ, i.e. (a?)σ = (ab)σ, then a? ∈ (a?)σ = (ab)σ = (ab)σ ∩ I ⊆ I. If
(b?, ab) ∈ σ, i.e. (b?)σ = (ab)σ, then b? ∈ (b?)σ = (ab)σ = (ab)σ ∩ I ⊆ I. Therefore
I is a prime ideal.

Example 2.17. Let S = {a, b, c, d} be an ordered semigroup. The multiplication
“ ·”, the order “≤” and the corresponding Hasse diagram are given below. Define
the involution ? by a? = a and b? = c (hence c? = b), d? = d. It is easy to check
that S is an ordered ?-semigroup with order preserving involution ?.

≤:= {(a, a), (b, a), (b, b), (c, a), (c, c), (d, d)}

·
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b

c

d
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S is intra-regular because (Sa?a?S] = (Sb?b?S] = (Sc?c?S] = S and (Sd?d?S]
= {d} by Definition 1.4. N(a) = N(b) = N(c) = {a, b, c} and N(d) = S by Defini-
tion 3.3, thus (a)N = (b)N = (c)N = {a, b, c}, (d)N = {d} because N := {(x, y) ∈
S × S | N(x) = N(y)}. Clearly (x)N is a simple subsemigroup of S for any x ∈ S
and S = ∪{(x)N | x ∈ S}. Also N = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c), (d, d)}.
Furthermore I(a) = (a∪Sa∪aS∪SaS] implies I(a) = S. Similarly, I(b) = I(c) =
S and I(d) = {d}. Therefore I = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c), (d, d)},
whence N = I.

Clearly, any two ideals are comparable under the inclusion relation ⊆ because
all the ideals are {d} and S. On the other hand N is semilattice congruences on
S. Also if x or y ∈ {a, b, c}, then x?y? ∈ {a, b, c}. If x = y = d, then x?y? = d.
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Therefore either (x, x?y?) ∈ N or (y, x?y?) ∈ N for any x, y ∈ S . Thus Theorem
2.16 coincides on this example.

3 Decomposition of Left (resp. Right) Regular
Ordered ?-Semigroup

In this paragraph, we first get some equivalent relations referring to left (resp.
right) ideals. Then we find a characterization of left (resp. right) regular ordered
?-semigroup in terms of left (resp. right) ideals. Now since left (resp. right) regular
ordered ?-semigroup is intra-regular, a decomposition can be made by Theorem
2.15.

Let S be an ordered ?-semigroup. We denote by L(a), R(a) and I(a) the
left ideal, right ideal and the ideal of S, respectively, generated by a. Clearly
L(a) = (a ∪ Sa], R(a) = (a ∪ aS], I(a) = (a ∪ Sa ∪ aS ∪ SaS] [2].

Let S be an ordered ?-semigroup with order preserving involution ?. Then L?

is a right ideal for any left ideal L of S, R? is a left ideal for any right ideal R of
S and I? is an ideal for any ideal I of S ([2] Proposition 2.2). As usual we define
aLb if and only if L(a) = L(b). aRb if and only if R(a) = R(b). aIb if and only if
I(a) = I(b).

Proposition 3.1. Let S be an ordered ?-semigroup. The following are equivalent:

1. S ⊆ (Sa?a] for any a ∈ S,
2. L(a) ⊆ L(a?a) for any a ∈ S,
3. aL(a?a) for any a ∈ S.

Proof. (1) =⇒ (2). Let a ∈ S. Since a ∈ (Sa?a], we have a ≤ u1a?a for some u1 ∈
S. This implies that u2a ≤ u2u1a?a ∈ Sa?a for any u2 ∈ S, so Sa ⊆ (Sa?a]. Thus
a ∪ Sa ⊆ (Sa?a]. Therefore L(a) = (a ∪ Sa] ⊆ (Sa?a] ⊆ (a?a ∪ Sa?a] = L(a?a).

(2) =⇒ (3). Let a ∈ S. Clearly a?a ∈ Sa, so Sa?a ⊆ Sa. Hence L(a?a) =
(a?a ∪ Sa?a] ⊆ (Sa] ⊆ (a ∪ Sa] = L(a). Then by hypothesis L(a) = L(a?a), i.e.
aL(a?a).

(3) =⇒ (1). Let a ∈ S. Since a ∈ (a ∪ Sa] = L(a) = L(a?a) = (a?a ∪ Sa?a],
we have that a ≤ a?a or a ≤ ua?a for some u ∈ S. If a ≤ a?a, then a ≤
a?(a) ≤ a(a?a) ∈ Sa?a, so a ∈ (Sa?a]. If a ≤ ua?a for some u ∈ S, then
a ≤ ua?(a) ≤ ua?(ua?a) ∈ Sa?a, so a ∈ (Sa?a]. Therefore S ⊆ (Sa?a].

Proposition 3.2. Let S be an ordered ?-semigroup. The following are equivalent:

1. S ⊆ (aa?S] for any a ∈ S,
2. R(a) ⊆ R(aa?) for any a ∈ S,
3. aR(aa?) for any a ∈ S.

Proof. (1) =⇒ (2). Let a ∈ S. Since a ∈ (aa?S], we have a ≤ aa?u1 for some u1 ∈
S. This implies that au2 ≤ aa?u1u2 ∈ aa?S for any u2 ∈ S, so aS ⊆ (aa?S]. Thus
a ∪ aS ⊆ (aa?S]. Therefore R(a) = (a ∪ aS] ⊆ (aa?S] ⊆ (aa? ∪ aa?S] = R(aa?).
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(2) =⇒ (3). Let a ∈ S. Clearly aa? ∈ aS, so aa?S ⊆ aS. Hence R(aa?) =
(aa? ∪ aa?S] ⊆ (aS] ⊆ (a ∪ aS] = R(a). Then by hypothesis R(a) = R(aa?), i.e.
aR(aa?).

(3) =⇒ (1). Let a ∈ S. Since a ∈ (a ∪ aS] = R(a) = R(aa?) = (aa? ∪ aa?S],
we have that a ≤ aa? or a ≤ aa?u for some u ∈ S. If a ≤ aa?, then a ≤
(a)a? ≤ (aa?)a? ∈ aa?S, so a ∈ (aa?S]. If a ≤ aa?u for some u ∈ S, then
a ≤ (a)a?u ≤ (aa?u)a?u ∈ aa?S, so a ∈ (aa?S]. Therefore S ⊆ (aa?S].

Definition 3.3. An ordered ?-semigroup S is called left (resp. right) regular if
a ∈ (Sa?a?] (resp. a ∈ (a?a?S]) for any a ∈ S.

Definition 3.4. An ordered ?-semigroup S is called a (complete) semilattice of left
(resp. right) regular and simple semigroups if there exists a (complete) semilattice
congruence σ on S such that the class (x)σ of S, which is a subsemigroup of S, is
left (resp. right) regular and simple for any x ∈ S.

Proposition 3.5. Let S be an ordered ?-semigroup. Then S is left (resp. right)
regular if and only if the left (resp. right) ideals of S are semiprime.

Proof. (=⇒) Let L be a left ideal and a?a? ∈ L for some a ∈ S. Clearly Sa?a? ⊆
SL ⊆ L. Since S is left regular, we have a ∈ (Sa?a?] ⊆ (SL] ⊆ (L] = L. Thus L
is semiprime.

(⇐=) Let a ∈ S. It is easy to see that (Sa?a?] is a left ideal of S. Since
(a?a?)(a?a?) ∈ Sa?a? ⊆ (Sa?a?], we have aa ∈ (Sa?a?] because (Sa?a?] is
semiprime by hypothesis. Hence a? ∈ (Sa?a?] similarly. This implies a?a? ∈
(Sa?a?] because (Sa?a?] is a left ideal. Thus a ∈ (Sa?a?]. So S is left regular.
The rest of the proof (when replacing the word “ left ” by “ right ”) is similar.

Proposition 3.6. Let S be an ordered ?-semigroup with order preserving involu-
tion ?. If S is left (resp. right) regular, then S is intra-regular.

Proof. Let a ∈ S. Then a ∈ (Sa?a?] because S is left regular. Hence a ≤ ua?a?

for some u ∈ S, so a? ≤ aau?. This implies that a ≤ ua?a? ≤ u(aau?)a? ≤
u((ua?a?)au?)a? ∈ Sa?a?S. Therefore a ∈ (Sa?a?S], i.e. S is intra-regular.

The rest of the proof (when replacing the word “left” by “right”) is similar.

Proposition 3.7. Let S be an ordered ?-semigroup. If S is a union of left (resp.
right) regular subsemigroups of S, then S is left (resp. right) regular.

Proof. Let S =
⋃
α∈Y Sα where S′

αs are left regular subsemigroups of S. Let
a ∈ S. Then a ∈ Sβ for some β ∈ Y . Since Sβ is left regular, we get that
a ∈ (Sβa

?a?] ⊆ (Sa?a?], so S is left regular.
The rest of the proof (when replacing the word “left” by “right”) is similar.

Proposition 3.8. Let S be an ordered ?-semigroup with order preserving involu-
tion ?. If S is left (resp. right) regular, then (a)N is a left (resp. right) regular
subsemigroup of S for any a ∈ S.
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Proof. In view of Theorem 2.3 and Proposition 3.6, we have thatN = I. Therefore
it suffices to prove that (a)I is left regular subsemigroup. Proposition 2.1 implies
that (a)I is a subsemigroup. We need only show that it is left regular as well.

We first prove the fact that I(xb?x) = I(a) for any b ∈ (a)I and x ∈ S, which
is an immediate consequence of combining three statements (1) I(b) = I(b?). (2)
I(xb?x) = I(b). (3) I(xb?x) = I(a). They are justified as follows.

(1) Since S is intra-regular by Proposition 3.6, we have b ∈ (Sb?b?S]. Thus
b ≤ y for some y ∈ Sb?b?S. Since Sb?b?S ⊆ Sb?S ⊆ b? ∪ b?S ∪ Sb? ∪ Sb?S, we
have b ≤ y ∈ b? ∪ b?S ∪ Sb? ∪ Sb?S. Thus b ∈ (b? ∪ b?S ∪ Sb? ∪ Sb?S] = I(b?).
Hence I(b) ⊆ I(b?). By symmetry we have I(b?) ⊆ I(b). Therefore I(b) = I(b?).

(2) Clearly xb?x ∈ I(b?). Thus I(xb?x) ⊆ I(b) because I(b?) = I(b). Also
since b ≤ xb?b? ≤ (xb?x)b?b? ∈ I(xb?x), we have b ∈ (I(xb?x)] = I(xb?x). Thus
I(b) ⊆ I(xb?x). So I(xb?x) = I(b). Clearly I(b) = I(a) because b ∈ (a)I .
Therefore I(xb?x) = I(a).

(3) Since b ∈ (a)I , we have I(b) = I(a). Thus I(xb?x) = I(a) because
I(xb?x) = I(b).

Finally we use the fact that I(xb?x) = I(a) to complete the proof. Let b ∈ (a)I .
Since (a)I ⊆ S and S is left regular, we have b ∈ (Sb?b?]. Thus b ≤ xb?b? for
some x ∈ S. Therefore b ≤ xb?xb?b? = (xb?x)b?b?. Now since I(xb?x) = I(a),
we have xb?x ∈ (a)I , hence b ≤ xb?xb?b? = (xb?x)b?b? ∈ (a)Ib

?b?. Consequently
b ∈ ((a)Ib

?b?] and (a)I is left regular.
The rest of the proof (when replacing the word “left” by “right”) is similar.

Corollary 3.9. Let S be an ordered ?-semigroup with order preserving involution
?. Then the following are equivalent:

1. S is a union of left (resp. right) regular subsemigroups of S,

2. S is left (resp. right) regular,

3. Any left (resp. right) ideal of S is semiprime,

4. S is a complete semilattice of left (resp. right) regular and simple semi-
groups,

5. S is a semilattice of left (resp. right) regular and simple semigroups,

6. There exists a congruence σ on S such that the class (x)σ of S is a left (resp.
right) regular and simple subsemigroup of S for any x ∈ S.

Proof. (1) =⇒ (2). By Proposition 3.7.
(2) =⇒ (3) By Proposition 3.5.
(3) =⇒ (4). Since any left (resp. right) ideal of S is semiprime, Proposition

3.5 implies that S is left regular. Let a ∈ S. In view of Proposition 3.8, (a)N is a
left (resp. right) regular subsemigroup of S. Also Proposition 3.6 shows that S is
intra-regular because S is left (resp. right) regular. Then by Proposition 2.4, (a)N
is a simple subsemigroup of S. So there exists a complete semilattice congruence
N on S such that the class (x)N of S, which is a subsemigroup of S, is left (resp.
right) regular and simple for any x ∈ S. Consequently we get that S is a complete
semilattice of left (resp. right) regular and simple semigroups by Definition 3.4.
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(4) =⇒ (5). Clearly, because a complete semilattice congruence is a semilattice
congruence.

(5) =⇒ (6). By Definition 3.4.
(6) =⇒ (1). Since (x)σ is a congruence class containing x, there exists A ⊆ S

such that S = ∪x∈A(x)σ. So S is a union of left regular subsemigroups of S
because (x)σ is a left regular and subsemigroup of S for any x ∈ S.

The rest of the proof (when replacing the word “left” by “right”) is similar.

The following are two examples of left regular ordered ?-semigroups with order
preserving involution ?.

Example 3.10. Let S = {a, b, c, d} be an ordered semigroup. The multiplication
“ ·”, the order “≤” and the corresponding Hasse diagram are given below. Define
the involution ? by a? = a and b? = c (hence c? = b), d? = d. It is easy to check
that S is an ordered ?-semigroup with order preserving involution ?.

≤:= {(a, a), (a, d), (b, b), (b, d), (c, c), (c, d), (d, d)}

·
a

b

c

d

a

a

a

a
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d

d
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d
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b

•
c
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S is left regular because (Sa?a?] = (Sb?b?] = (Sc?c?] = (Sd?d?] = S by
Definition 1.4. N(a) = N(b) = N(c) = N(d) = S by Definition 3.3, thus (a)N =
(b)N = (c)N = (d)N = S because N := {(x, y) ∈ S × S | N(x) = N(y)}, hence
S = ∪{(x)N | x ∈ S}. Since the only non trivial left ideal of S is itself, S is
semiprime. Clearly (x)N is a simple semigroup of for any x ∈ S. Furthermore N
is a (complete) semilattice congruence because N = S × S.

Example 3.11. Let S = {a, b, c, d} be an ordered semigroup. The multiplication
“ · ”, the order “≤ ”and the corresponding Hasse diagram are given below. Define
the involution ? by a? = a and b? = c (hence c? = b), d? = d, e? = e. It is easy to
check that S is an ordered ?-semigroup with order preserving involution ?.

≤:= {(a, a), (b, a), (b, b), (c, a), (c, c), (d, d), (e, e)}

·
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S is left regular because (Sa?a?] = (Sb?b?] = (Sc?c?] = S, (Sd?d?] = {d, e}
and (Se?e?] = {e} by Definition 1.4. N(a) = N(b) = N(c) = {a, b, c}, N(d) =
{a, b, c, d} and N(e) = S by Definition 3.3, thus (a)N = (b)N = (c)N = {a, b, c},
(d)N = {d} and (e)N = {e}, hence S = ∪{(x)N | x ∈ S}. Clearly {a, b, c}, {d},
{e} are simple subsemigroups and left regular. All left ideals are S, {d, e} and
{e}, obviously they are semiprime. Furthermore (c?c?, c) = (bb, c) = (b, c) ∈ N ,
(b?b?, b) = (cc, b) = (c, b) ∈ N , (b, ab) = (b, a) ∈ N and (c, ac) = (c, a) ∈ N . Then
by the facts that (1) ”·” is a commutative multiplication, (2) c? = b and z? = z
for any S \ {b, c}, (3) b ≤ a and c ≤ a, we have that N is a (complete) semilattice
congruence.
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